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We can readily obtain the marginal values interpretation for the dual variables by using the
Revised Simplex Formulas. We say that yi is the ‘marginal value’ or ‘shadow price’ for resource i
as given in the ith constraint of the primal

ai1x1 + ai2x2 + · · · + ainxn ≤ bi.

If we alter bi by ∆bi, then we expect the objective function to change by about yi∆bi. This is made
more precise in the following theorem. Note that the marginal values interpretation is one of the
reasons that Linear Programming is so useful.

Theorem Consider the standard primal/dual pair of LPs. Let x∗ be an optimal solution for
the primal with z∗ = c · x∗. Let B be an optimal basis for the primal so that y∗ = (cTBB

−1)T =
(y∗1, y

∗
2, . . . , y

∗
m)T is an optimal solution to the dual. Let b′ = (∆1,∆2, . . . ,∆m)T and consider the

altered primal as follows:

primal:
max c · x

Ax ≤ b
x ≥ 0

altered primal:
max c · x

Ax ≤ b + b′

x ≥ 0

Then the optimal value of the objective function for the altered primal is ≤ z∗+ (
∑m

i=1 y
∗
i ·∆i) with

equality holding for B−1(b + b′) ≥ 0.

Proof: We have c · x∗ = cB · xB = cTBB
−1b. You might as well imagine that in fact x∗ arises from

the optimal basis B (the solution x∗B = B−1b that aries from B is an optimal basis) but in general
there can be many different optimal solutions, some not even arising from a basis/dictionary. Given
that B was an optimal basis, we know the optimal value of the objective function can be written
as z∗ = cTBB

−1b.
As in our proof of Strong Duality, we know that y = (cTBB

−1)T is a feasible solution to the dual
and also b · y = yTb = z∗. As we go from the primal to the altered primal we note that y is still a
feasible solution to the dual of the altered primal, since we have not changed A or c. The objective
function value of y in the dual of the altered primal is

(b + b′) · y = b · y + b′ · y = z∗ + (
m∑
i=1

y∗i · ∆i)

and so by weak duality any optimal solution to the primal can have no larger objective function
value.

If in addition we have B−1(b + b′) ≥ 0, then we have a basic feasible solution to the altered
primal xB = B−1(b + b′) and the value of the objective function in the altered primal is

cB · xB = cTBB
−1(b + b′) = cTBB

−1b + cTBB
−1b′ = z∗ +

∑m
i=1 y

∗
i · ∆i.

Thus we have feasible solutions to the altered primal and the dual of the altered primal that
have the same objective function values and so by Weak Duality, we deduce that they are both
optimal.

If there exists a non degenerate optimal basic feasible solution given by an optimal basis B and
then xB = B−1b > 0. In matrix notation, we say v > 0 if each entry of the vector v is greater
than 0. You would immediately note that for b′ relatively small in magnitude, you would expect
that B−1(b + b′) ≥ 0. But also the dual solution y∗ is unique and hence y∗ = (cTBB

−1)T . To see



that the dual solution is unique we use complementary slackness (as we have done in the quiz 3
for example) and find that the m basic variables being strictly positive implies m equations for
the values of y. These equations correspond to the jth equation of the dual if the variable x∗j > 0
and the equations yi = 0 if the variable x∗n+i > 0. If you think of this in matrix form we have the
equations

BTy = cB

and hence the unique solution is yT = cTBB
−1 as stated. If we do have degeneracy then there may

be other optimal dual solutions y∗. And then the predictive value must be diminished.

I would note that for the vector b′ large enough and of a certain direction, it would be quite
reasonable that the altered primal becomes infeasible.


