
Math 340 Dual Simplex resulting in infeasibility Richard Anstee
Consider a primal

max c · x
Ax ≤ b
x ≥ 0

.

If we have a dictionary with all the coefficients in the z row are negative (namely cN −cBB
−1AN ≤

0T then we can call this dual feasible since cTBB
−1 would be a feasible solution to the dual:

min b · y
ATy ≥ c
y ≥ 0

.

If we start with a dictionary (for the primal) that is infeasible (namely B−1b 6> 0) which has all
the coefficients in the z row being negative then we can proceed with the Dual Simplex algorithm.
The following example gives one way that this could happen but you imagine that this could occur
in a sensitivity analysis problem using the dual simplex.

max −3x1 −x2
2x1 +2x2 ≤ 1
−2x1 −x2 ≤ −2

4x1 +3x2 ≤ 1

x1, x2 ≥ 0

We have our first dictionary

x3 = 1 −2x1 −2x2
x4 = −2 +2x1 +x2
x5 = 1 −4x1 −3x2
z = −3x1 −x2

Rather than introduce x0 and use our two phase method, we are able to embark directly on our
dual simplex method. We choose x4 to leave and then (in order to preserve dual feasibility) we
choose x2 as the entering variable. We obtain the following dictionary:

x3 = −3 +2x1 −2x4
x2 = 2 −2x1 +x4
x5 = −5 +2x1 −3x4
z = −2 −x1 −x4

Note that we have made progress (we have a better dual solution with a smaller objective function
value in the dual of -2 rather than 0). We choose x5 to leave (greedily choosing the ’largest’ negative
coefficient) and then (in order to preserve dual feasibility) we choose x1 as the entering variable.
We obtain the following dictionary:

x3 = 2 +x5 +x4
x2 = −3 −x5 −2x4
x1 = 5/2 +(1/2)x5 +(3/2)x4
z = −9/2 −(1/2)x5 −(5/2)x4

Again we have made progress finding a dual solution of value -9/2. We would choose x2 to leave
but we are unable to find an entering variable since (−(1/2) −(5/2) ) + λ(−1 −2 ) ≤ 0T for all



λ ≥ 0). So we guess that the dual is unbounded but how can we see this? A solution which is
somewhat wishful thinking is taking the current dual solution y = (0, 5/2, 1/2) (obtained as cTBB

−1

which is readily obtained as the coefficients of the slack variables. Now why not add t times the same
coeficients from the row for x2, namely z = (0, 2, 1) to obtain a solution y+tz = (0, 5/2+2t, 1/2+t)
with objective function value −9/2− 3t which shows the dual is unbounded. This wishful thinking
works and you can verify that I have a parametric set of feasible dual solutions whose objective
function, in the dual, goes to −∞. Below I make explicit the reason why this works.

Now we have reached a place where we have a potential leaving variable but no entering variable.
Imagine in general that we are doing the dual simplex method and we have xk leaving. Let
[ 0 0 · · · 0 1 0 · · · 0 ] denote the m × 1 vector with a 1 in the column corresponding to
xk. Thus

[ 0 0 · · · 0 1 0 · · · 0 ]B−1b < 0

since the cosntant entry must be zero in the row corresponding to xk.
If we are unable to determine an entering variable then that is because

[ 0 0 · · · 0 1 0 · · · 0 ]B−1AN ≥ 0

namely the entries in the row corresponding to xk must all be negative and the entries in that row
are the row of −B−1AN .

Now we do the standard trickery (as done in the proof of Strong Duality). We have

[ 0 0 · · · 0 1 0 · · · 0 ]B−1B ≥ 0T

and so for any variable xi we have

[ 0 0 · · · 0 1 0 · · · 0 ]B−1Ai ≥ 0.

Now regroup the variables by original variables and slack variables and we obtain

[ 0 0 · · · 0 1 0 · · · 0 ]B−1A ≥ 0T

and
[ 0 0 · · · 0 1 0 · · · 0 ]B−1I ≥ 0T

If we set zT = [ 0 0 · · · 0 1 0 · · · 0 ]B−1 then we discover that
[ 0 0 · · · 0 1 0 · · · 0 ]B−1A ≥ 0 implies zTA ≥ 0T which is ATz ≥ 0 and
[ 0 0 · · · 0 1 0 · · · 0 ]B−1I ≥ 0T yields zT ≥ 0T and so z ≥ 0.

We also have that the ith entry of B−1b = [ 0 0 · · · 0 1 0 · · · 0 ]B−1b = zTb. Now
the ith entry is less than zero, because that is why we are trying to do a dual simplex pivot. So
zTb = b · z < 0. This is exactly what we need to have the dual be unbounded (towards −∞).
Assume y is a dual solution. The y + tz is also a dual feasible solution and, since b · z = zTb < 0,
we have b · (y + tz) = b · y + tb · z and so limt→∞ b · (y + tz) = −∞.


