We have indicated that determining if a set of n functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly independent is as easy as finding n values $x_{1}, x_{2}, \ldots, x_{n}$ in the domain and forming the matrix $A=\left(a_{i j}\right)$ where $a_{i j}=f_{j}\left(x_{i}\right)$. If $\operatorname{det}(A) \neq 0$, then the n functions are linearly independent.

The idea of the wronskian is another way to check if a set of functions are linearly independent using derivatives. The applications are typically in differential equations for which derivatives are often easy to come by. Imagine we have n functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ satisfying

$$
a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}=\mathbf{0}
$$

Then, assuming the functions have the appropriate derivatives, we can differentiate repeatedly to have

$$
\begin{gathered}
a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}=\mathbf{0} \\
a_{1} f_{1}^{\prime}+a_{2} f_{2}^{\prime}+\cdots+a_{n} f_{n}^{\prime}=\mathbf{0} \\
a_{1} f_{1}^{\prime \prime}+a_{2} f_{2}^{\prime \prime}+\cdots+a_{n} f_{n}^{\prime \prime}=\mathbf{0} \\
\vdots \\
a_{1} f_{1}^{(n-1)}+a_{2} f_{2}^{(n-1)}+\cdots+a_{n} f_{n}^{(n-1)}=\mathbf{0}
\end{gathered}
$$

where $f^{(i)}$ refers to the i th derivative of f. Now form the matrix $A(x)=\left(a_{i j}\right)$ where the entries are functions $a_{i j}=f_{j}^{(i-1)}(x)$. The wronskian $W(x)=\operatorname{det}(A(x))$, which will be a function of x. Now if $W(x) \neq 0$ for some $x=c$, then the n functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ are seen to be linearly independent since if $a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}=\mathbf{0}$ then $A(c) \mathbf{x}=\mathbf{0}$ with $\mathbf{x}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$. But $\operatorname{det}(A(c))=W(c) \neq 0$ and so we conclude $a_{1}=a_{2}=\ldots=a_{n}=0$ (since $(A(c))^{-1}$ exists). This shows that the n functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ are linearly independent.

An attractive application is for the function $f(x)=\frac{1}{x-r}$ for which

$$
f^{(i)}(x)=\frac{(-1)^{i} i!}{(x-r)^{i+1}}
$$

Are the n functions $\left\{\frac{1}{x-r_{1}}, \frac{1}{x-r_{2}}, \ldots, \frac{1}{x-r_{n}}\right\}$ linearly independent for n distinct choices of r_{i} ? We compute that

$$
W(x)=\operatorname{det}\left(\begin{array}{cccc}
\frac{1}{x-r_{1}} & \frac{1}{x-r_{2}} & \cdots & \frac{1}{x-r_{n}} \\
\frac{-1}{\left(x-r_{1}\right)^{2}} & \frac{-1}{\left(x-r_{2}\right)^{2}} & \cdots & \frac{-1}{\left(x-r_{n}\right)^{2}} \\
\frac{2}{\left(x-r_{1}\right)^{3}} & \frac{2}{\left(x-r_{2}\right)^{3}} & \cdots & \frac{2}{\left(x-r_{n}\right)^{3}} \\
& \vdots & & \\
\frac{(-1)^{n-1}(n-1)!}{\left(x-r_{1}\right)^{n}} & \frac{(-1)^{n-1}(n-1)!}{\left(x-r_{2}\right)^{n}} & \cdots & \frac{(-1)^{n-1}(n-1)!}{\left(x-r_{n}\right)^{n}}
\end{array}\right)
$$

and so

$$
W(x)=\left((-1)^{(n-1)(n-2) / 2} \prod_{i=1}^{n} s_{i} \prod_{i=1}^{n-1}(i)!\right) \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
s_{1} & s_{2} & \cdots & s_{n} \\
s_{1}^{2} & s_{2}^{2} & \cdots & s_{n}^{2} \\
& \vdots & & \\
s_{1}^{n-1} & s_{2}^{n-1} & \cdots & s_{n}^{n-1}
\end{array}\right)
$$

where $s_{i}=\frac{1}{x-r_{i}}$. We have pulled out a factor s_{i} from the i th column and a factor $(-1)^{n-1}(i-1)$! from the i th row. We know that the determininant is a VanderMonde determinant and is non-zero since the s_{i} 's are all distinct. Thus the n functions are linearly independent.

