
MATH 223: Notes on the Wronskian. Richard Anstee

We have indicated that determining if a set of n functions {f1, f2, . . . , fn} is linearly independent
is as easy as finding n values x1, x2, . . . , xn in the domain and forming the matrix A = (aij) where
aij = fj(xi). If det(A) 6= 0, then the n functions are linearly independent.

The idea of the wronskian is another way to check if a set of functions are linearly independent
using derivatives. The applications are typically in differential equations for which derivatives are
often easy to come by. Imagine we have n functions {f1, f2, . . . , fn} satisfying

a1f1 + a2f2 + · · ·+ anfn = 0

Then, assuming the functions have the appropriate derivatives, we can differentiate repeatedly to
have
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where f (i) refers to the ith derivative of f . Now form the matrix A(x) = (aij) where the entries

are functions aij = f
(i−1)
j (x). The wronskian W (x) = det(A(x)), which will be a function of x.

Now if W (x) 6= 0 for some x = c, then the n functions {f1, f2, . . . , fn} are seen to be linearly
independent since if a1f1 + a2f2 + · · · + anfn = 0 then A(c)x = 0 with x = (a1, a2, . . . , an)T . But
det(A(c)) = W (c) 6= 0 and so we conclude a1 = a2 = . . . = an = 0 (since (A(c))−1 exists). This
shows that the n functions {f1, f2, . . . , fn} are linearly independent.

An attractive application is for the function f(x) = 1
x−r for which
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compute that
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and so
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where si = 1

x−ri . We have pulled out a factor si from the ith column and a factor (−1)n−1(i− 1)!
from the ith row. We know that the determininant is a VanderMonde determinant and is non-zero
since the si’s are all distinct. Thus the n functions are linearly independent.


