MATH 223: White and Blue Coordinates.
We intially understood that a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ was given in the standard way with $\left[\begin{array}{l}a \\ b\end{array}\right]=a \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]+b \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and hence a units to the left and b units up from the origin.

We had an assignment question on assignment 1 changing between variables s, t and x, y. Our bird population model is an excellent example of changing coordinates. We have our standard coordinate system given by the vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Thus the vector $\left[\begin{array}{l}a \\ b\end{array}\right]=a \cdot \mathbf{e}_{1}+b \cdot \mathbf{e}_{2}$. We consider a and b as the white coordinates of the vector although of course it appears black. Think chalk.

We have the blue coordinate system given by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
5
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-4
\end{array}\right]
$$

Hopefully your viewer lets you see the colour difference. We discover that any vector can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
3 \\
5
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-4
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
5 & -4
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
5 & -4
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
4 / 17 & 1 / 17 \\
5 / 17 & -3 / 17
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

We think of $A=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$ as the matrix taking us from blue coordinates to white coordinates and A^{-1} necessarily takes from white coordinates to blue coordinates. We write this

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
3 & 1 \\
5 & -4
\end{array}\right],} & {\left[\begin{array}{cc}
4 / 17 & 1 / 17 \\
5 / 17 & -3 / 17
\end{array}\right] .} \\
\text { white } \leftarrow \text { blue }, & \text { blue } \leftarrow \text { white }
\end{array}
$$

Some easy calculations have

$$
\left[\begin{array}{cc}
3 & 1 \\
5 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad\left[\begin{array}{cc}
4 / 17 & 1 / 17 \\
5 / 17 & -3 / 17
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
11 / 17 \\
1 / 17
\end{array}\right] .
$$

Thus $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in blue coordinates is the vector $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ in white coordinates. Similarly $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ in white coordinates is the vector $\left[\begin{array}{c}11 / 17 \\ 1 / 17\end{array}\right]$ in blue coordinates.

Now we had been considering the linear transformation $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with $f(\mathbf{x})=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]
$$

Our application with diagonalization is the matrix equation

$$
\begin{gathered}
{\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]} \\
\text { white } \leftarrow \text { white } \\
\qquad f
\end{gathered}=\underset{\text { white } \leftarrow \text { blue }}{\left[\begin{array}{cc}
3 & 1 \\
5 & -4
\end{array}\right]} \underset{f}{\left[\begin{array}{cc}
1.2 & 0 \\
0 & -.5
\end{array}\right]} \underset{\text { blue } \leftarrow \text { blue }}{\left[\begin{array}{cc}
4 / 17 & 1 / 17 \\
5 / 17 & -3 / 17
\end{array}\right]} \text { blue } \leftarrow \text { white } .
$$

Thus in blue coordinates our linear transormation can be interpreted as a 'simple' diagonal matrix.

I wanted to include a picture of the two coordinate systems overlayed one over the other. The fine black lines are the integer gridlines of the white coordinates.

