Math 223 Symmetric and Hermitian Matrices. Richard Anstee

An n x n matrix Q is orthogonal if QT = Q~'. The columns of ) would form an orthonormal
basis for R". The rows would also form an orthonormal basis for R".

A matrix A is symmetric if AT = A.

Theorem 1 Let A be a symmetric n xn matriz of real entries. Then there is an orthogonal matrix
Q@ and a diagonal matriz D so that

AQ = QD, i.e. QTAQ = D.

Note that the entries of QQ and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.

We have proven this in a previous set of notes.

Recall that for a complex number z = a + bi, the conjugate Z = a — bi. We may extend the
conjugate to vectors and matrices. We would like some notation for the conjugate transpose. For
a vector, define v =¥ (so that zf = z). Some use the dagger in place of H. When we consider
extending inner products to C™ we must define

<x,y >=xy

so that < x,x >€ R and < x,x >> 0. Note that < y,x >= <X,y > and so we don’t have
commutivity. Thus we have made a choice for the definition of the complex inner product
< x,y >= xy which we use in what follows. We define A# = (A)7T.

We define two vectors x,y to be orthogonal if x?y = 0. We need to do Gram Schmidt process

and so need the projection. Define:

XH

rojl,y — —X
projy Hx

Then
. xy . .
proj,y = TXX so that proj,y and y — proj,y are orthogonal,
X
namely
(projy)( <Yy
ro ro —xX
proj,y)” (y — projyy) iy
H
y'x_y Xy H y'x xy. y
- -7 J = -0
(XHXX ) xHx )= XHXX (XHX)(XHX)X x

Using this inner product one can perform Gram Schmidt on complex vectors (but remain careful
with the order since in general < u, v >#< v, u >. You are determining an orthogonal set of vectors
Vi,V ...,V from ug, uy, ..., u; and so we need vZv; = 0 for all pairs i # j. We need not worry
about order in this setting after computing v;’s since if v/’v; = 0 then Vf v; = 0. This may not be
immediate but you note that (viv;)# = vai as well as 07 = 0 and so if v//v; = 0 then vai =0.

Our Gram-Schmidt process carries on as before.



Vi = Uu;.
Vo = U2 —prOJvl Uy
V3 = U3 —PIOJy,U3 —pProj,,us

Vk = uk _prOJvluk _prOJVQUk e _projvk_luk

A matrix A is hermitian if A' = A. For example any symmetric matrix of real entries is also
hermitian. The follow matrix is hermitian:

3 1—-2
1+2 4

Sensibly, Hermitian matrices are allowed to have complex entries. One has interesting identities
such as < x, Ay >=< Ax,y > when A is hermitian. The following Theorem is essentially a
generalization of the result for symmetric matrices. Note that a Unitary matrix U is an orthogonal
matrix if the entries of U are real.

Theorem Let A be a hermitian matrix. Then there is a unitary matrix U with entries in C
and a diagonal matrix D of real entries so that

AU = UD, A=UDU!

Proof: We follow the proof of the theorem for symmetric matrices. The proof begins with an appeal
to the fundamental theorem of algebra applied to det(A — AI) which asserts that the polynomial
factors into linear factors and one of which yields an eigenvalue \ which may not be real.

Our second step it to show A is real. Let x be an eigenvector for A so that Ax = Ax. Again, if
A is not real we must allow for the possibility that x is not a real vector.

Now xfx > 0 with x¥x = 0 if and only if x = 0. We compute x? Ax = x”(\x) = \xx.
Now taking complex conjugates and transpose (x# Ax)” = xH AHx using that (x1)H = x. Then
(xFAx)? = xHAx = MxfIx using A¥ = A. It is important to use our hypothesis that A is
Hermitian. But also (x Ax)” = Axfx = Axx (using xx € R). Knowing that x”x > 0 (since
x # 0) we deduce that A = X and so we deduce that A € R.

The rest of the proof uses induction on n. The result is easy for n = 1 (U = [1]!). Note that
an orthogonal matrix is unitary. Assume we have a real eigenvalue A\; and an eigenvector x; (not

necessarily real) with Ax; = Aix; and ||x1|| = 1. We can extend x; to an orthonormal basis
{x1,X2,...,%,} using Gram Schmidt applied as described above so that xx; = 0 for all pairs
i # 7. Let M = [x1x3 - -X,] be the unitary matrix formed with columns x;,xa, ...,x,. Then
_ )\1 B —1 . )\1 B
AM_M[OC]MM AM—[OC.

which is the sort of result from our assignments. But the matrix on the right is hemitian since it is
equal to M~YAM = M* AM (since the basis was orthonormal) and we note (M7 AM)# = MH" AM
(using A” = A since A is hermitian). Then B is a 1 x (n — 1) zero matrix and C is a hermitian
(n—1) x (n — 1) matrix.



By induction there exists a unitary (n—1) x (n—1) matrix N (with N¥ = N~!) and a diagonal

(n —1) x (n — 1) matrix £ with N"'CN = E. We form a new unitary matrix

|

|

|

p_ lé ooj-v-- 0
which is seen to be unitary since
pH _ lé 00]\};0] _ é 0(}\[.~1-0] _pt
We obtain Ty o A 000
RS A
This becomes v 00 0
P‘lM‘lAMP:[ o £

which is a n x n diagonal matrix D. We note that (M P)? = PEMH = P~1M~! and so U = M P
is an Unitary matrix with U AU = D. This proves the result by induction. ]

As an example let
1 3
e
We compute
det(A—AD)=| 17 T | = xan
- 1=A

and thus the eigenvalues are 0,2 (Note that they are real which is a consequence of the theorem).

Z], )\2:0 VQZ[IZ

We find that the eigenvectors are
)\1 =2 Vi, = [ 1

|

Not surprisingly < vy, vy >= vi've = 0, another consequence of the theorem. We would have to

make them of unit length to obtain an orthonormal basis:
1, 1,
U—[\?Z _ﬁzl, D—lg 8] AU =UD
V2 V2

2

Note that U”U = I and so U” = U~!. Such matrices are called unitary.

The following matrix has orthogonal columns:

1 1
T =1
. 1 111 (1171 o
since | .| =] and _ _ .| =0 thus ; _ = 0. To make this unitary we
need to normalize the vectors: . . )
2 2
Si —3i



Here is an example of Gram Schmidt obtaining a unitary matrix but using more ‘complicated’
vectors.

_| 2 | H. . i | .
ul_[1+217 u2_[1+2 ) <U.17112>—U_1112—[21 Z][1+Z]_2+22#0
Vi=m
Vg = Uy — Proj u—u—@v— ¢ _ﬁ 2 _ —g—i-%i
2 = U2 — pProj,, Uz = Uz V{{V1 1= G il = 1—}—%@'

You may check

2 1;
H . iy 4 2. 4 2
< >= =[21- 3.8
ug, Uy uug = | z][ ] s t3its

l—i-%i =—*+fz+f—§Z:0.

Obtaining this was a mess for me keeping track of the terms. I will not test you on such a
computation. To form a unitary matrix we must normalize the vectors.

2 2 1. . 2 1 .
2 = —s+ 30 —2+1 —= T
[1+i]_>l1+1i]’ [1+§i]_>[3+i]_>l\;{—;+li

6 6 5
2 2 1
U — V6 —ym Tyl
AU R vt

where we can check U U = I. Best to let a computer do these calculations!



