
Math 223 Symmetric and Hermitian Matrices. Richard Anstee
An n× n matrix Q is orthogonal if QT = Q−1. The columns of Q would form an orthonormal

basis for Rn. The rows would also form an orthonormal basis for Rn.
A matrix A is symmetric if AT = A.

Theorem 1 Let A be a symmetric n×n matrix of real entries. Then there is an orthogonal matrix
Q and a diagonal matrix D so that

AQ = QD, i.e. QTAQ = D.

Note that the entries of Q and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.

We have proven this in a previous set of notes.

Recall that for a complex number z = a + bi, the conjugate z = a − bi. We may extend the
conjugate to vectors and matrices. We would like some notation for the conjugate transpose. For
a vector, define vH = vT (so that zH = z). Some use the dagger in place of H. When we consider
extending inner products to Cn we must define

< x,y >= xHy

so that < x,x >∈ R and < x,x >≥ 0. Note that < y,x >= < x,y > and so we don’t have
commutivity. Thus we have made a choice for the definition of the complex inner product
< x,y >= xHy which we use in what follows. We define AH = (Ā)T .

We define two vectors x,y to be orthogonal if xHy = 0. We need to do Gram Schmidt process
and so need the projection. Define:

projxy =
xHy

xHx
x

Then

projxy =
xHy

xHx
x so that projxy and y − projxy are orthogonal,

namely

(projxy)H(y − projxy) = (

(
xHy

xHx

)H

xH)(y − xHy

xHx
x)

= (
yHx

xHx
xH)(y − xHy

xHx
x) =

yHx

xHx
xHy − (

yHx

xHx
)(
xHy

xHx
)xHx = 0

Using this inner product one can perform Gram Schmidt on complex vectors (but remain careful
with the order since in general< u,v >6=< v,u >. You are determining an orthogonal set of vectors
v1,v2 . . . ,vk from u1,u2, . . . ,uk and so we need vH

i vj = 0 for all pairs i 6= j. We need not worry
about order in this setting after computing vi’s since if vH

i vj = 0 then vH
j vi = 0. This may not be

immediate but you note that (vH
i vj)

H = vH
j vi as well as 0H = 0 and so if vH

i vj = 0 then vH
j vi = 0.

Our Gram-Schmidt process carries on as before.



v1 = u1.
v2 = u2 −projv1

u2

v3 = u3 −projv1
u3 −projv2

u3
...

vk = uk −projv1
uk −projv2

uk · · · −projvk−1
uk

A matrix A is hermitian if A
T

= A. For example any symmetric matrix of real entries is also
hermitian. The follow matrix is hermitian:[

3 1− 2i
1 + 2i 4

]

Sensibly, Hermitian matrices are allowed to have complex entries. One has interesting identities
such as < x, Ay >=< Ax,y > when A is hermitian. The following Theorem is essentially a
generalization of the result for symmetric matrices. Note that a Unitary matrix U is an orthogonal
matrix if the entries of U are real.

Theorem Let A be a hermitian matrix. Then there is a unitary matrix U with entries in C
and a diagonal matrix D of real entries so that

AU = UD, A = UDU−1

Proof: We follow the proof of the theorem for symmetric matrices. The proof begins with an appeal
to the fundamental theorem of algebra applied to det(A − λI) which asserts that the polynomial
factors into linear factors and one of which yields an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let x be an eigenvector for λ so that Ax = λx. Again, if
λ is not real we must allow for the possibility that x is not a real vector.

Now xHx ≥ 0 with xHx = 0 if and only if x = 0. We compute xHAx = xH(λx) = λxHx.

Now taking complex conjugates and transpose (xHAx)
H

= xHAHx using that (xH)H = x. Then
(xHAx)H = xHAx = λxHx using AH = A. It is important to use our hypothesis that A is
Hermitian. But also (xHAx)H = λxHx = λxHx (using xHx ∈ R). Knowing that xHx > 0 (since
x 6= 0) we deduce that λ = λ and so we deduce that λ ∈ R.

The rest of the proof uses induction on n. The result is easy for n = 1 (U = [1]!). Note that
an orthogonal matrix is unitary. Assume we have a real eigenvalue λ1 and an eigenvector x1 (not
necessarily real) with Ax1 = λ1x1 and ||x1|| = 1. We can extend x1 to an orthonormal basis
{x1,x2, . . . ,xn} using Gram Schmidt applied as described above so that xH

i xj = 0 for all pairs
i 6= j. Let M = [x1 x2 · · ·xn] be the unitary matrix formed with columns x1,x2, . . . ,xn. Then

AM = M

[
λ1 B
0 C

]
or M−1AM =

[
λ1 B
0 C

]
.

which is the sort of result from our assignments. But the matrix on the right is hemitian since it is
equal to M−1AM = MHAM (since the basis was orthonormal) and we note (MHAM)H = MHAM
(using AH = A since A is hermitian). Then B is a 1 × (n − 1) zero matrix and C is a hermitian
(n− 1)× (n− 1) matrix.



By induction there exists a unitary (n−1)× (n−1) matrix N (with NH = N−1) and a diagonal
(n− 1)× (n− 1) matrix E with N−1CN = E. We form a new unitary matrix

P =

[
1 0 0 · · · 0
0 N

]

which is seen to be unitary since

PH =

[
1 0 0 · · · 0
0 NH

]
=

[
1 0 0 · · · 0
0 N−1

]
= P−1.

We obtain

P−1
[
λ1 0T

0 C

]
P =

[
λ1 0 0 · · · 0
0 E

]
This becomes

P−1M−1AMP =

[
λ1 0 0 · · · 0
0 E

]
which is a n× n diagonal matrix D. We note that (MP )H = PHMH = P−1M−1 and so U = MP
is an Unitary matrix with UHAU = D. This proves the result by induction.

As an example let

A =

[
1 i
−i 1

]
We compute

det(A− λI) =

[
1− λ i
−i 1− λ

]
= λ2 − 2λ

and thus the eigenvalues are 0, 2 (Note that they are real which is a consequence of the theorem).
We find that the eigenvectors are

λ1 = 2 v1 =

[
i
1

]
, λ2 = 0 v2 =

[
−i
1

]

Not surprisingly < v1,v2 >= vH
1 v2 = 0, another consequence of the theorem. We would have to

make them of unit length to obtain an orthonormal basis:

U =

[ 1√
2
i − 1√

2
i

1√
2

1√
2

]
, D =

[
2 0
0 0

]
AU = UD

Note that UHU = I and so UH = U−1. Such matrices are called unitary.

The following matrix has orthogonal columns:[
1 1
i −i

]

since

[
1
i

]
=

[
1
−i

]
and

[
1
−i

]T [
1
−i

]
= 0 thus

[
1
i

]H [
1
−i

]
= 0. To make this unitary we

need to normalize the vectors: [
1
2

1
2

1
2
i −1

2
i

]



Here is an example of Gram Schmidt obtaining a unitary matrix but using more ‘complicated’
vectors.

u1 =

[
2

1 + i

]
, u2 =

[
i

1 + i

]
, < u1,u2 >= uH

1 u2 = [2 1− i]
[

i
1 + i

]
= 2 + 2i 6= 0.

v1 = u1

v2 = u2 − projv1u2 = u2 −
vH
1 u2

vH
1 v1

v1 =

[
i

1 + i

]
− 2 + 2i

6

[
2

1 + i

]
=

[
−2

3
+ 1

3
i

1 + 1
3
i

]
You may check

< u2,u1 >= uH
1 u2 = [2 1− i]

[
−2

3
+ 1

3
i

1 + 1
3
i

]
= −4

3
+

2

3
i+

4

3
− 2

3
i = 0.

Obtaining this was a mess for me keeping track of the terms. I will not test you on such a
computation. To form a unitary matrix we must normalize the vectors.[

2
1 + i

]
→
[ 2√

6
1√
6

+ 1√
6
i

]
,

[
−2

3
+ 1

3
i

1 + 1
3
i

]
→
[
−2 + i
3 + i

]
→
[
− 2√

15
+ 1√

15
i

3√
15

+ 1√
15
i

]

U =

[ 2√
6

− 2√
15

+ 1√
15
i

1√
6

+ 1√
6
i 3√

15
+ 1√

15
i

]

where we can check U
T
U = I. Best to let a computer do these calculations!


