Math 223 Symmetric and Hermitian Matrices.
An $n \times n$ matrix Q is orthogonal if $Q^{T}=Q^{-1}$. The columns of Q would form an orthonormal basis for \mathbf{R}^{n}. The rows would also form an orthonormal basis for \mathbf{R}^{n}.

A matrix A is symmetric if $A^{T}=A$.
Theorem 1 Let A be a symmetric $n \times n$ matrix of real entries. Then there is an orthogonal matrix Q and a diagonal matrix D so that

$$
A Q=Q D, \quad \text { i.e. } Q^{T} A Q=D
$$

Note that the entries of Q and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.
We have proven this in a previous set of notes.
Recall that for a complex number $z=a+b i$, the conjugate $\bar{z}=a-b i$. We may extend the conjugate to vectors and matrices. We would like some notation for the conjugate transpose. For a vector, define $\mathbf{v}^{H}=\overline{\mathbf{v}}^{T}$ (so that $z^{H}=\bar{z}$). Some use the dagger in place of H. When we consider extending inner products to \mathbf{C}^{n} we must define

$$
<\mathbf{x}, \mathbf{y}>=\mathbf{x}^{H} \mathbf{y}
$$

so that $\langle\mathbf{x}, \mathbf{x}\rangle \in \mathbf{R}$ and $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$. Note that $\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$ and so we don't have commutivity. Thus we have made a choice for the definition of the complex inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{H} \mathbf{y}$ which we use in what follows. We define $A^{H}=(\bar{A})^{T}$.

We define two vectors \mathbf{x}, \mathbf{y} to be orthogonal if $\mathbf{x}^{H} \mathbf{y}=0$. We need to do Gram Schmidt process and so need the projection. Define:

$$
\operatorname{proj}_{\mathbf{x}} \mathbf{y}=\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x}
$$

Then

$$
\operatorname{proj}_{\mathbf{x}} \mathbf{y}=\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x} \text { so that } \operatorname{proj}_{\mathbf{x}} \mathbf{y} \text { and } \mathbf{y}-\operatorname{proj}_{\mathbf{x}} \mathbf{y} \text { are orthogonal, }
$$

namely

$$
\begin{gathered}
\left(\operatorname{proj}_{\mathbf{x}} \mathbf{y}\right)^{H}\left(\mathbf{y}-\operatorname{proj}_{\mathbf{x}} \mathbf{y}\right)=\left(\left(\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}}\right)^{H} \mathbf{x}^{H}\right)\left(\mathbf{y}-\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x}\right) \\
=\left(\frac{\mathbf{y}^{H} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x}^{H}\right)\left(\mathbf{y}-\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x}\right)=\frac{\mathbf{y}^{H} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} \mathbf{x}^{H} \mathbf{y}-\left(\frac{\mathbf{y}^{H} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}}\right)\left(\frac{\mathbf{x}^{H} \mathbf{y}}{\mathbf{x}^{H} \mathbf{x}}\right) \mathbf{x}^{H} \mathbf{x}=0
\end{gathered}
$$

Using this inner product one can perform Gram Schmidt on complex vectors (but remain careful with the order since in general $\langle\mathbf{u}, \mathbf{v}>\neq<\mathbf{v}, \mathbf{u}>$. You are determining an orthogonal set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{k}$ from $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ and so we need $\mathbf{v}_{i}^{H} \mathbf{v}_{j}=0$ for all pairs $i \neq j$. We need not worry about order in this setting after computing \mathbf{v}_{i} 's since if $\mathbf{v}_{i}^{H} \mathbf{v}_{j}=0$ then $\mathbf{v}_{j}^{H} \mathbf{v}_{i}=0$. This may not be immediate but you note that $\left(\mathbf{v}_{i}^{H} \mathbf{v}_{j}\right)^{H}=\mathbf{v}_{j}^{H} \mathbf{v}_{i}$ as well as $0^{H}=0$ and so if $\mathbf{v}_{i}^{H} \mathbf{v}_{j}=0$ then $\mathbf{v}_{j}^{H} \mathbf{v}_{i}=0$.

Our Gram-Schmidt process carries on as before.

$$
\begin{array}{rlll}
\mathbf{v}_{1} & =\mathbf{u}_{1} . \\
\mathbf{v}_{2} & =\mathbf{u}_{2} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2} & \\
\mathbf{v}_{3} & =\mathbf{u}_{3} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{3} & -\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{3} \\
& \vdots \\
\mathbf{v}_{k} & =\mathbf{u}_{k} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{k} & -\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{k} \\
\cdots & & -\operatorname{proj}_{\mathbf{v}_{k-1}} \mathbf{u}_{k}
\end{array}
$$

A matrix A is hermitian if $\bar{A}^{T}=A$. For example any symmetric matrix of real entries is also hermitian. The follow matrix is hermitian:

$$
\left[\begin{array}{cc}
3 & 1-2 i \\
1+2 i & 4
\end{array}\right]
$$

Sensibly, Hermitian matrices are allowed to have complex entries. One has interesting identities such as $<\mathbf{x}, A \mathbf{y}>=<A \mathbf{x}, \mathbf{y}>$ when A is hermitian. The following Theorem is essentially a generalization of the result for symmetric matrices. Note that a Unitary matrix U is an orthogonal matrix if the entries of U are real.

Theorem Let A be a hermitian matrix. Then there is a unitary matrix U with entries in \mathbf{C} and a diagonal matrix D of real entries so that

$$
A U=U D, \quad A=U D U^{-1}
$$

Proof: We follow the proof of the theorem for symmetric matrices. The proof begins with an appeal to the fundamental theorem of algebra applied to $\operatorname{det}(A-\lambda I)$ which asserts that the polynomial factors into linear factors and one of which yields an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let \mathbf{x} be an eigenvector for λ so that $A \mathbf{x}=\lambda \mathbf{x}$. Again, if λ is not real we must allow for the possibility that \mathbf{x} is not a real vector.

Now $\mathbf{x}^{H} \mathbf{x} \geq 0$ with $\mathbf{x}^{H} \mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$. We compute $\mathbf{x}^{H} A \mathbf{x}=\mathbf{x}^{H}(\lambda \mathbf{x})=\lambda \mathbf{x}^{H} \mathbf{x}$. Now taking complex conjugates and transpose $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\mathbf{x}^{H} A^{H} \mathbf{x}$ using that $\left(\mathbf{x}^{H}\right)^{H}=\mathbf{x}$. Then $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\mathbf{x}^{H} A \mathbf{x}=\lambda \mathbf{x}^{H} \mathbf{x}$ using $A^{H}=A$. It is important to use our hypothesis that A is Hermitian. But also $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\bar{\lambda} \mathbf{x}^{H} \mathbf{x}=\bar{\lambda} \mathbf{x}^{H} \mathbf{x}$ (using $\mathbf{x}^{H} \mathbf{x} \in \mathbf{R}$). Knowing that $\mathbf{x}^{H} \mathbf{x}>0$ (since $\mathbf{x} \neq \mathbf{0}$) we deduce that $\lambda=\bar{\lambda}$ and so we deduce that $\lambda \in \mathbf{R}$.

The rest of the proof uses induction on n. The result is easy for $n=1(U=[1]!)$. Note that an orthogonal matrix is unitary. Assume we have a real eigenvalue λ_{1} and an eigenvector \mathbf{x}_{1} (not necessarily real) with $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$ and $\left\|\mathbf{x}_{1}\right\|=1$. We can extend \mathbf{x}_{1} to an orthonormal basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ using Gram Schmidt applied as described above so that $\mathbf{x}_{i}^{H} \mathbf{x}_{j}=0$ for all pairs $i \neq j$. Let $M=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$ be the unitary matrix formed with columns $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$. Then

$$
A M=M\left[\begin{array}{rr}
\lambda_{1} & B \\
\mathbf{0} & C
\end{array}\right] \text { or } M^{-1} A M=\left[\begin{array}{rr}
\lambda_{1} & B \\
\mathbf{0} & C
\end{array}\right] .
$$

which is the sort of result from our assignments. But the matrix on the right is hemitian since it is equal to $M^{-1} A M=M^{H} A M$ (since the basis was orthonormal) and we note $\left(M^{H} A M\right)^{H}=M^{H} A M$ (using $A^{H}=A$ since A is hermitian). Then B is a $1 \times(n-1)$ zero matrix and C is a hermitian $(n-1) \times(n-1)$ matrix.

By induction there exists a unitary $(n-1) \times(n-1)$ matrix N (with $N^{H}=N^{-1}$) and a diagonal $(n-1) \times(n-1)$ matrix E with $N^{-1} C N=E$. We form a new unitary matrix

$$
P=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & N
\end{array}\right]
$$

which is seen to be unitary since

$$
P^{H}=\left[\begin{array}{ccc}
1 & 0 & 0 \cdots 0 \\
\mathbf{0} & N^{H}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0
\end{array}\right] 0.0 .
$$

We obtain

$$
P^{-1}\left[\begin{array}{rc}
\lambda_{1} & \mathbf{0}^{T} \\
\mathbf{0} & C
\end{array}\right] P=\left[\begin{array}{cc}
\lambda_{1} & 00 \\
\mathbf{0} & E
\end{array}\right]
$$

This becomes

$$
P^{-1} M^{-1} A M P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & E
\end{array}\right]
$$

which is a $n \times n$ diagonal matrix D. We note that $(M P)^{H}=P^{H} M^{H}=P^{-1} M^{-1}$ and so $U=M P$ is an Unitary matrix with $U^{H} A U=D$. This proves the result by induction.

As an example let

$$
A=\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right]
$$

We compute

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
1-\lambda & i \\
-i & 1-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda
$$

and thus the eigenvalues are 0,2 (Note that they are real which is a consequence of the theorem). We find that the eigenvectors are

$$
\lambda_{1}=2 \quad \mathbf{v}_{1}=\left[\begin{array}{l}
i \\
1
\end{array}\right], \quad \lambda_{2}=0 \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Not surprisingly $<\mathbf{v}_{1}, \mathbf{v}_{2}>=\mathbf{v}_{1}^{H} \mathbf{v}_{2}=0$, another consequence of the theorem. We would have to make them of unit length to obtain an orthonormal basis:

$$
U=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} i & -\frac{1}{\sqrt{2}} i \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \quad A U=U D
$$

Note that $U^{H} U=I$ and so $U^{H}=U^{-1}$. Such matrices are called unitary.
The following matrix has orthogonal columns:

$$
\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]
$$

since $\overline{\left[\begin{array}{l}1 \\ i\end{array}\right]}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -i\end{array}\right]^{T}\left[\begin{array}{c}1 \\ -i\end{array}\right]=0$ thus $\left[\begin{array}{c}1 \\ i\end{array}\right]^{H}\left[\begin{array}{c}1 \\ -i\end{array}\right]=0$. To make this unitary we need to normalize the vectors:

$$
\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} i & -\frac{1}{2} i
\end{array}\right]
$$

Here is an example of Gram Schmidt obtaining a unitary matrix but using more 'complicated' vectors.

$$
\begin{gathered}
\mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
1+i
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
i \\
1+i
\end{array}\right], \quad<\mathbf{u}_{1}, \mathbf{u}_{2}>=\mathbf{u}_{1}^{H} \mathbf{u}_{2}=\left[\begin{array}{ll}
2 & 1-i
\end{array}\right]\left[\begin{array}{c}
i \\
1+i
\end{array}\right]=2+2 i \neq 0 . \\
\mathbf{v}_{1}=\mathbf{u}_{1} \\
\mathbf{v}_{2}=\mathbf{u}_{2}-\operatorname{proj}_{v_{1}} \mathbf{u}_{2}=\mathbf{u}_{2}-\frac{\mathbf{v}_{1}^{H} \mathbf{u}_{2}}{\mathbf{v}_{1}^{H} \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
i \\
1+i
\end{array}\right]-\frac{2+2 i}{6}\left[\begin{array}{c}
2 \\
1+i
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3}+\frac{1}{3} i \\
1+\frac{1}{3} i
\end{array}\right]
\end{gathered}
$$

You may check

$$
<\mathbf{u}_{2}, \mathbf{u}_{1}>=\mathbf{u}_{1}^{H} \mathbf{u}_{2}=\left[\begin{array}{ll}
2 & 1-i
\end{array}\right]\left[\begin{array}{c}
-\frac{2}{3}+\frac{1}{3} i \\
1+\frac{1}{3} i
\end{array}\right]=-\frac{4}{3}+\frac{2}{3} i+\frac{4}{3}-\frac{2}{3} i=0 .
$$

Obtaining this was a mess for me keeping track of the terms. I will not test you on such a computation. To form a unitary matrix we must normalize the vectors.

$$
\begin{gathered}
{\left[\begin{array}{c}
2 \\
1+i
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}} i
\end{array}\right],\left[\begin{array}{c}
-\frac{2}{3}+\frac{1}{3} i \\
1+\frac{1}{3} i
\end{array}\right] \rightarrow\left[\begin{array}{c}
-2+i \\
3+i
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\frac{2}{\sqrt{15}}+\frac{1}{\sqrt{15}} i \\
\frac{3}{\sqrt{15}}+\frac{1}{\sqrt{15}} i
\end{array}\right]} \\
U=\left[\begin{array}{cc}
\frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{15}}+\frac{1}{\sqrt{15}} i \\
\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}} i & \frac{3}{\sqrt{15}}+\frac{1}{\sqrt{15}} i
\end{array}\right]
\end{gathered}
$$

where we can check $\bar{U}^{T} U=I$. Best to let a computer do these calculations!

