MATH 223: Some results for 2×2 matrices.
Richard Anstee

Multiplicative Inverses

It would be nice to have a multiplicative inverse. That is given a matrix A, find the inverse matrix A^{-1} so that $A A^{-1}=A^{-1} A=I$. Such an inverse can be shown to be unique, if it exists (How?).

The following remarkable fact is useful where we introduce A^{*}, known as the adjoint of A,:

$$
\underset{A}{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]} \underset{A^{*}}{\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]}=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(a d-b c)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\operatorname{det}(A) I
$$

where we have defined

$$
\operatorname{det}(A)=\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Now if $\operatorname{det}(A) \neq 0$, then

$$
A \cdot\left(\frac{1}{\operatorname{det}(A)} A^{*}\right)=I
$$

and so it is sensible to define

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} A^{*}
$$

and we find that $A A^{-1}=I$ and then we can verify that $A^{-1} A=I$ as well so that A^{-1} is the multiplicative inverse of A. One verification is obtained by showing $A^{*} A=\operatorname{det}(A) I$.

If $\operatorname{det}(A) \neq 0$, then A has an inverse A^{-1} of the form

$$
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
$$

If $\operatorname{det}(A)=0$, then we can show no inverse exists. If $A=0$, then we can easily verify that $A B=0$ for any choice of B and so there can be no A^{-1}. If $A \neq 0$, we note that $A A^{*}=0$ and we get a contradiction by computing

$$
A^{*}=A^{-1} A A^{*}=A^{-1} 0=0
$$

A better way to state this is as follows: If $\operatorname{det}(A)=0$, then there exists an $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$ and hence A^{-1} does not exist. The choice of \mathbf{x} could either be a non zero column of A^{*} or in the event that A^{*} is 0 , then any non zero vector \mathbf{x} would do. We compute to get a contradiction as before:

$$
\mathbf{x}=I \mathbf{x}=A^{-1} A \mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}
$$

Another approach is to note that A has an inverse if and only if the two columns of A are not multiples of one another. This is the observation that

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { has } a d-b c \neq 0 \text { if }
$$

the fractions $\frac{a}{c} \neq \frac{b}{d}$ and so $\left[\begin{array}{l}a \\ c\end{array}\right] \neq k\left[\begin{array}{l}b \\ d\end{array}\right]$ for any k.

Of course, this argument must be extended to take care of cases where either $c=0$ or $d=0$, but I will leave that as an exercise.

We can check that

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Rather more remarkably, we find

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

which we can verify using arbitrary matrices.

$$
A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

We compute

$$
\begin{gathered}
\operatorname{det}(A) \operatorname{det}(B)=(a d-b c)(e h-g f)=a d e h-a d g f-b c e h+b c g f \\
\operatorname{det}(A B)=(a e+b g)(c f+d h)-(a f+b h)(c e+d g)= \\
a c e f+a d e h+b c f g+b d g h-a c e f-a d f g-b c e h-b d g h
\end{gathered}
$$

Noting the remarkable cancellation of the terms terms acef and bdgh, we verify the equality $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. (Aside: a general proof for larger matrices will have a different flavour, this particular proof can also be generalized)

