
MATH 223: Some results for 2× 2 matrices.
Richard Anstee

One can preview a lot of the theory in this course by looking at the special case of 2 × 2
matrices. The proofs are relatively easy in this limited context and not all the complexity is seen.
In particular, the Gaussian Elimination algorithm doesn’t show its full complexity in this context
nor do vector spaces. But 2× 2 matrices are very concrete and we will be able to introduce many
topics such as determinants, inverses, linear transformations, diagonalization.

Here are some 2× 2 matrices: [
a b
c d

]
,

[
1 3
5 −2

]

column 1 column 2
↓ ↓

row 1→ a11 a12
row 2→ a21 a22

,

[
π 0

6.7 e

]

The matrices have two rows and two columns, hence 2× 2. We always give indices in (row,column)
form.

What are matrices good for? They are remarkably good for many things. The first use is as a
function taking 2-tuples (vectors in the plane, for example) to other 2-tuples.

A =

[
a b
c d

]
, x =

[
x
y

]

Ax =

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
.

Please note that in this course vectors are always given as columns (so called column vectors) and
this standard notation makes manipulation of vectors as matrices (2 × 1 matrices) more straight-
forward. We will see that many interesting functions of vectors in the plane, such as rotations, can
be represented in the above way through matrices. If we have b = c = 0, then

Ax =

[
ax
dy

]

which is like a kind of scalar multiplication. In that case

A =

[
a 0
0 d

]

is called a diagonal matrix.
If we have a matrix B,

B =

[
e f
g h

]
then we can think of B as two column vectors[

e
g

]
,

[
f
h

]



and can try to give the product of two matrices using the formula for Ax:

AB =

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]

(Note: we could have written this as A · B). With a definition of matrix multiplication, we can
think about 2× 2 matrices as numbers but we will be wary about the differences. Addition has a
straightforward definition:

A+B =

[
a b
c d

]
+

[
e f
g h

]
=

[
a+ e b+ f
c+ g d+ h

]

One can verify the following:
A+B = B + A; (commutativity)
A+ (B + C) = (A+B) + C; (associativity)

A+ 0 = A where 0 =

[
0 0
0 0

]

A+ (−A) = 0 where −A =

[
−a −b
−c −d

]
Not everything is OK since in general AB 6= BA:[

1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
,

[
0 0
1 0

] [
1 0
0 0

]
=

[
0 0
1 0

]

This example even has AB = 0 with neither A = 0 or B = 0. This not our familiar multiplication.
If we consider diagonal matrices special things happen:[

a b
c d

] [
e 0
0 h

]
=

[
ae bh
ce dh

]

If we take e = h we get [
a b
c d

] [
e 0
0 e

]
=

[
ae be
ce de

]
= e

[
a b
c d

]

Of course I am inventing the notation eA to denote this multiplication of A by the scalar e in
analogy with notation ex denoting multiplying vector x by the scalar e. Special things happen
with e = h = 1: [

a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
.

It makes sense to define

I =

[
1 0
0 1

]
so that I acts as 1 does in ordinary multiplication, namely AI = A. Of course we need to check
IA = A. Now [

e 0
0 h

] [
a b
c d

]
=

[
ea eb
hc hd

]
namely that right multiplication by a diagonal matrix is multiplying the rows by scalars and so
IA = A.



There are other laws to be verified
A(BC) = (AB)C; associativity
A(B + C) = AB + AC; distributive law
(A+B)C = AC +BC; distributive law
I’ll delay demonstrating the associative law, but you could try verifying it using three arbitrary

matrices, which is not so difficult, just tedious. The latter two distributive laws suggest the following
idea. Let Eij = matrix with a 1 in position i, j and 0’s elsewhere. Then we have

A =

[
a b
c d

]
= aE11 + bE12 + cE21 + dE22,

and so using matrix multiplication of AB with B = eE11+fE12+gE21+hE22, we need only consider
products of the form EijEkl in the product (aE11 + bE12 + cE21 +dE22)(eE11 +fE12 +gE21 +hE22).
What are the products EijEkl? Can you deduce the general formula?


