Let $A$ be an $m \times n$ matrix. Each column is a vector in $\mathbf{R}^{m}$ and each row, when interpreted as a column, is a vector in $\mathbf{R}^{n}$. Let $A_{i}$ denote the $i$ th column of $A$. We define the column space of $A$, denoted $\operatorname{colsp}(A)$, as the $\operatorname{span}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Similarly we define the row space of $A$, denoted $\operatorname{rowsp}(A)$ as the span of the rows of $A$, when interpreted as column vectors in $\mathbf{R}^{n}$.

We have already noted that for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$, we have $A \mathbf{x}=\sum_{i=1}^{n} x_{i} A_{i} \in \operatorname{colsp}(A)$. A consequence is that colsp $(A)=\operatorname{Im}(f)$ where we use $\operatorname{Im}(f)$ to denote the image space (or range) of the linear transformation $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{m}}$ given by $f(\mathbf{x})=A \mathbf{x}$.

We have previously noted the following
Proposition 1 Let $A$ be an $m \times n$ matrix.
(a) If $M$ is an $m \times m$ matrix then $\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\} \subseteq\{\mathbf{x}: M A \mathbf{x}=\mathbf{0}\}$
(b) If $M$ is an invertible $m \times m$ matrix, then $\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}=\{\mathbf{x}: M A \mathbf{x}=\mathbf{0}\}$

We proved (b) at the beginning of the course (in the context of $\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\}$ but you can specialize to $\mathbf{b}=\mathbf{0}$ ). Results related to (a) are often used in midterms.

We can also prove results for $\operatorname{rowsp}(A)$ by simply using $\operatorname{rowsp}(A)=\operatorname{colsp}\left(A^{T}\right)$ but it makes sense to use the staircase pattern obtained by applying Gaussian elimination to $A$.

Proposition 2 Let $A$ be an $m \times n$ matrix.
(a) If $M$ is an $m \times m$ matrix then $\operatorname{rowsp}(M A) \subseteq \operatorname{rowsp}(A)$
(b) If $M$ is an invertible $m \times m$ matrix then $\operatorname{rowsp}(M A)=\operatorname{rowsp}(A)$

Consider the following example which we imagine was obtained by Gaussian elimination.

$$
A=\left[\begin{array}{ccccccc}
2 & -2 & 0 & 2 & 1 & 0 & 0 \\
4 & -4 & 0 & 4 & 3 & 2 & 2 \\
2 & -1 & 3 & 4 & 1 & 1 & 2 \\
2 & 0 & 6 & 6 & 2 & 4 & 8
\end{array}\right]
$$

With $E$ invertible we obtain

$$
E A=\left[\begin{array}{ccccccc}
2 & -2 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Any linear dependence among the columns such as $y_{1} A_{1}+y_{2} A_{2}+\cdots+y_{n} A_{n}=\mathbf{0}$ with $\mathbf{y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ yields a solution to $A \mathbf{y}=\mathbf{0}$ and vice versa namely any $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ with $A \mathbf{y}=\mathbf{0}$ yields $y_{1} A_{1}+y_{2} A_{2}+\cdots+y_{n} A_{n}=\mathbf{0}$. Let $I$ denote a subset of $\{1,2, \ldots, n\}$, namely a subset of the column indices. Let $A_{i}$ denote the $i$ th column of $A$ so that $(E A)_{i}$ denotes the $i$ th column of $E A$. We deduce the following using Proposition 1.

Proposition 3 Let $A, E$ be given with $E$ being invertible. The set of columns $\left\{A_{i}: i \in I\right\}$ is linearly dependent if and only if the set of columns $\left\{(E A)_{i}: i \in I\right\}$ is linearly dependent.

Corollary 4 Let $A, E$ be given with $E$ being invertible. It then follows that the set of columns $\left\{A_{i}: i \in I\right\}$ is linearly independent if and only if the set of columns $\left\{(E A)_{i}: i \in I\right\}$ is linearly independent and hence the set of columns $\left\{A_{i}: i \in I\right\}$ forms a basis for $\operatorname{colsp}(A)$ if and only if the set of columns $\left\{(E A)_{i}: i \in I\right\}$ forms a basis for $\operatorname{colsp}(E A)$.

When we look at staircase patterns $E A$, where $E$ is invertible, it is easy to identify linearly independent columns of $E A$ whose span is $\operatorname{colsp}(E A)$. Given that the sets of columns that are linearly dependent in $A$ are precisely those that are linearly dependent in $E A$, then it is also true that those that are linearly independent in $A$ are precisely those that are linearly independent in $E A$. Hence a set of columns of $A$ yielding a column basis for $\operatorname{colsp}(A)$ will correspond to a set of columns of $E A$ yielding a column basis for $\operatorname{colsp}(E A)$. Note that the idea is that the 1 st, 2 nd and 5 th columns of $E A$ yield a column basis for $\operatorname{colsp}(E A)$ if and only if the 1 st, 2 nd and 5 th columns of $A$ yield a column basis for $\operatorname{colsp}(A)$. It is straightforward to deduce that a basis for $\operatorname{colsp}(E A)$ are columns 1,2 and 5:

$$
\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

and so, by Corollary 4, a basis for $\operatorname{colsp}(A)$ is

$$
\left[\begin{array}{l}
2 \\
4 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
-4 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right]
$$

There are other choices for column bases but it is easiest to chose the columns of $A$ whose corresponding columns in $E A$ contain the pivots.

We can now use the (relatively) easy observation that the nonzero rows of $E A$ form a basis for $\operatorname{rowsp}(E A)$. namely a basis for $\operatorname{rowsp}(E A)$ is $\left\{(2,-2,0,2,1,0,0)^{T},(0.1 .3 .2 .0 .1 .3)^{T},(0,0,0,0,1,3,2)^{T}\right\}$. Combine this with Proposition 2 with $E$ being invertible and we have that the nonzero rows of $E A$ are also a basis for $\operatorname{rowsp}(A)$.

We have defined $\operatorname{rowsp}(A)=\operatorname{span}\left\{(2,-2,0,2,1,0,0)^{T},(4,-4,0,4,3,2,2)^{T},(2,-1,3,4,1,1,3)^{T}\right.$, $\left.(2,0,6,6,2,4,8)^{T}\right\}$. With $E$ being invertible we have $\operatorname{rowsp}(A)=\operatorname{rowsp}(E A)$ and so a basis for $\operatorname{rowsp}(A)$ is $\left\{(2,-2,0,2,1,0,0)^{T},(0,1,3,2,0,1,3)^{T},(0,0,0,0,1,3,2)^{T}\right\}$. Please note that $E$ being invertible does not mean that the first 3 rows of $A$ form a basis for rowsp $(A)$, although it is possible.
Theorem $5 \operatorname{dim}(\operatorname{rowsp}(A))=\operatorname{dim}(\operatorname{colsp}(A))$,
Proof: We have $\operatorname{dim}(\operatorname{rowsp}(A))$ being equal to the number of non zero rows of $E A$ and hence the number of pivots and we have $\operatorname{dim}(\operatorname{colsp}(A))$ being equal to the size of a basis for $\operatorname{colsp}(E A)$ which is the number of pivots.

Thus Theorem 5 allows us to define

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{colsp}(A))=\operatorname{dim}(\operatorname{rowsp}(A))
$$

From this we obtain the following lovely result. It is often called the Nullity Theorem where nullity is $\operatorname{dim}(\operatorname{nullsp}(A))$.
Theorem 6 Let $A$ be an $m \times n$ matrix. Then $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{nullsp}(A))=n$.
Proof: $\operatorname{dim}(\operatorname{nullsp}(A))$ is the number of free variables. We have the number of pivot variables and the number of free variables is $n$.

