
MATH 223. Quadratic Forms, Conic Sections. Richard Anstee

When faced with a ‘quadratic function such as f(x, y, z) = x2 + 3xy+ y2 + 2yz+ z2 we discover
that we can write it using a matrix:

x2 + 3xy + y2 + 2yz + z2 = [x y z]

 1 3 0
0 1 2
0 0 1


xy
z


and then we make the interesting observation that we can do this with a symmetric matrix:

x2 + 3xy + y2 + 2yz + 2z2 = [x y z]

 1 3/2 0
3/2 1 1
0 1 1


xy
z


The symmetric matrix makes this so much easier to analyze. In this particular case you can
compute (I used Wolfram Alpha) that eigenvalues are λ1 = 1, λ2 = (1/2)(2 +

√
13), λ3 = (1/2)(2−√

13). Eigenvectors are v1 = (−2/3, 0, 1)T , v2 = (3/2,
√

13/2, 1)T , v3 = (3/2,−
√

13/2, 1)T . The
eigenvectors are orthogonal, not yet orthonormal. They make the axes for the picture.

We readily deduce that for f(x, y, x) = const > 0, that we have cross sections in v1, v2 plane
being eliptical with the ellipse growing as the coordinate in v3 direction is more distant from 0.
Some call this a hyperboloid of one sheet. For f(x, y, x) = const < 0, there will be no points with
the coordinate in v3 being 0 but as you move away from origin it will again be an ellipses growing
in size as the coordinate in v3 direction is more distant from the origin. Sometimes this takes a
non diagonalizable matrix to a symmetric matrix.

x2 + 4xy + y2 = [x y]
[

1 4
0 1

] [
x
y

]
= [x y]

[
1 2
2 1

] [
x
y

]

Let A be a symmetric matrix with AM = MD for an orthogonal matrix M (with MT = M−1) and
a diagonal matrix D. In this case[

1 2
2 1

]
=
[

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

] [
3 0
0 −1

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]

We apply this with xTAx = xTMDMTx = zTDz where z = MTx = [u v]T (or x = Mz). Then

xTAx = xTMDMTx = uTDu for u = MTx.

A change of variable allows us to do diagonalization in this setting. This question does have
MT = M which follows from our theorem on the orthogonal diagonalzation of symmetric matrices..
Using the change of variables [u v]T = MTx or more explicitly u = 1√

2
x+ 1√

2
y and v = 1√

2
x− 1√

2
y ,

then we have our original expression x2 +4xy+y2 = 3u2−v2, where perhaps the second expression
in u, v is simpler.

We could view these transformation as a general completing the square idea. Admittedly we
need a transformation to remove linear terms but that is comparitivel straighforward after the
diagonalization (or perhaps before).

An exam question was to determine sketch the family of curves given by

x2 + 8xy − 5y2 = t



for various t. As t varies you get nice hyperbolas except that for t = 0 you get two lines (the axes
of the hyperbola for the cases with t 6= 0. These curves would be called Conic Sections and would
arise from the intesection of a plane with a double cone (e.g. {(x, y, z) : x2 + y2 = |z|}).

In these curve problems, the orthonormal matrices have the virtue of not disturbing the shape
of the curve but merely rotating and perhaps reflecting. General change of basis matriceswill often
disturb such curves greatly . Consider the white and blue coordinates in our handout. An example
would be to imagine the circle x2 + y2 = 1 in white coordinates and try to see it as an ellipse in
blue coordinates and similarly consider the circle v21 + v22 = 1 in blue coordinates and try to see it
as an ellipse in white coordinates.

You do need to have a little familiarity with these curves such as(
x

a

)2

+
(
y

b

)2

= 1

which is the ellipse with semi axes a (along x-axis) and b (along y-axis). Of course using plotting
software would help visualize in 2 and 3 dimensions.

Local Extrema

Given a function f(x1, x2, . . . , xn) of n variables, one would look for critical points. For example
0 is critical when

∂

∂x1
f(x)|x=0 = 0,

∂

∂x2
f(x)|x=0 = 0, · · · , ∂

∂xn
f(x)|x=0 = 0

Let

A =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

· · ·
∂2f

∂x2∂x1

∂2f
∂x2∂x2

∂2f
∂x2∂x3

· · ·
∂2f

∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x3∂x3

· · ·
...


This is called the Hessian. We have that ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
so the matrix is symmetric. But it is also

true that the partial derivatives provide the coefficients for the second degree Taylor polynomial
(centred at x = 0) in the n variables. We have that

∂2

∂xi∂xj
xixj = 1 while

∂2

∂xi∂xi
x2i = 2.

We then compute that f ≈ 1
2
xTAx + f(0) (using our hypothesis that the first derivatives are 0 at

x = 0).
Now xTAx = xMDMTx = (MTx)TD(MTx). Let z = MTx. If λ1, λ2, . . . , λn are the eigenval-

ues so that these are the diagonal entries of D, then

xTAx = zTDz = λ1z
2
1 + λ2z

2
2 + · · ·+ λnz

2
n.

The point x = 0 is a local minimum if xTAx > 0 for x 6= 0. This is true if and only if all the
eigenvalues of A are positive! Similarly the point x = 0 is a local maximum if xTAx < 0 and so if
all the eigenvalues of A are negative. The orthogonality of the eigenspaces is used to provide the
appropriate change of variables z = MTx.

Interestingly there are special quick ways to test for these properties for symmetric matrices
(Sylvester’s Law of Inertia) which I won’t prove here.


