MATH 223: A Putnam Problem using our Linear Algebra.
(This problem came from a 1994 Putnam Problem.)
Problem: Let A, B, be two integer 2×2 matrices (i.e. 2×2 matrices with integer entries). Assume they have the property that $A, A+B, A+2 B, A+3 B, A+4 B$ which are integer 2×2 matrices all with integer 2×2 inverse matrices. We are asked to show that $A+5 B$ has an integer inverse.

Proof: An integer 2×2 matric C has an integer inverse if and only if $\operatorname{det}(C)= \pm 1$. This isn't too hard to prove using our expression for the inverse.

$$
C=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] ; \quad C^{-1}=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
$$

Since C has integer entries, $\operatorname{det}(C)$ is an integer. In order for C to have an integer inverse, we would need $a d-b c$ to divide all of a, b, c, d. Let $a d-b c=e$. Then we may write $a=e p, b=e q$, $c=e r, d=e s$, for some integers p, q, r, s. Then $\operatorname{det}(C)=e^{2} \operatorname{det}\left(\left[\begin{array}{cc}p & q \\ r & s\end{array}\right]\right)$ which is a contradiction unless $e^{2}= \pm e$ and so $\operatorname{det}(C)= \pm 1$.

Our hypothesis that $A+i B$ has an integer inverse for $i=0,1,2,3,4$ means $\operatorname{det}(A+i B)= \pm 1$ for $i=0,1,2,3,4$.

Now $\operatorname{det}(A+\lambda B)$ is a quadratic expression in λ (write it out!). Moreover it takes on the values ± 1 for 5 values of λ and hence for three values of λ it takes on the same value; say 1 without loss of generality.

A quadratic expression in λ that takes on the same value for 3 choices of λ is a constant. You may know this fact from your knowledge of the functions $f(x)=a x^{2}+b x+c$. It is actually a consequence of the deep theorem, called the Fundamental Theorem of Algebra. In our case we have $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)$ and so the quadratic function $g(x)=a x^{2}+b x+\left(c-f\left(x_{1}\right)\right)$ has three roots at x_{1}, x_{2}, x_{3} and so must be the zero function. Hence $\operatorname{det}(A+\lambda B)=1$ for all λ or $\operatorname{det}(A+\lambda B)=-1$ for all λ. But then $\operatorname{det}(A+5 B)= \pm 1$ and so $A+5 B$ has an integer inverse.

The hypotheses are not vacuous. An example of a pair A, B would be

$$
A=\left[\begin{array}{ll}
2 & 3 \\
5 & 8
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

