Let U, V be vector spaces with $U \subseteq V$. We consider

$$
U^{\perp}=\left\{\mathbf{v} \in \mathbf{R}^{n}: \text { for all } \mathbf{u} \in U,<\mathbf{u}, \mathbf{v}>=0\right\}
$$

Theorem 0.1 U^{\perp} is a vector space.
Proof: We show that U^{\perp} is a vector space. Here we must verify that $\mathbf{0} \in U^{\perp}$ since this will not follow from the other two closure rules. We have $\mathbf{0} \in U^{\perp}$ because $<\mathbf{u}, \mathbf{0}>=0$ always for any choice \mathbf{u}. Also if $\mathbf{x}, \mathbf{y} \in U^{\perp}$, then $\langle\mathbf{x}+\mathbf{y}, \mathbf{u}>=<\mathbf{x}, \mathbf{u}>+\langle\mathbf{y}, \mathbf{u}>$ and $<c \mathbf{x}, \mathbf{u}\rangle=c<\mathbf{x}, \mathbf{u}\rangle$ by our inner product axioms. Thus if for all $\mathbf{u} \in U,<\mathbf{x}, \mathbf{u}\rangle=0$ and $\langle\mathbf{y}, \mathbf{u}\rangle=0$, then we conclude that $<\mathbf{x}+\mathbf{y}, \mathbf{u}>=<\mathbf{x}, \mathbf{u}>+<\mathbf{y}, \mathbf{u}>=0+0=0$ and also $<c \mathbf{x}, \mathbf{u}>=c<\mathbf{x}, \mathbf{u}>=c \cdot 0=0$. Thus we have $\mathbf{x}+\mathbf{y}$ and $c \mathbf{x}$ in U^{\perp}, verifying closure. So U^{\perp} is a vector space.

Consider a vector space $U \subseteq \mathbf{R}^{n}$. Thus we are thinking of $V=\mathbf{R}^{n}$ with the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ be a basis for U. Then if we write each \mathbf{u}_{i} with respect to the standard basis we can form a matrix $A=\left(a_{i j}\right)$ with the i th row A being \mathbf{u}_{i}^{T}. Thus row space $(A)=U$ and $\operatorname{dim}(U)=\operatorname{rank}(A)$. Then

$$
\begin{aligned}
\operatorname{null} \operatorname{space}(A) & =\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}=\left\{\mathbf{x}:<\mathbf{x}, \mathbf{u}_{i}>=0 \text { for } i=1,2, \ldots, k\right\} \\
& =\{\mathbf{x}:<\mathbf{x}, \mathbf{u}>=0 \text { for all } \mathbf{u} \in U\}=U^{\perp}
\end{aligned}
$$

Here we are assuming $<\mathbf{x}, \mathbf{u}_{i}>$ is the standard dot product. Thus $\operatorname{dim}(U)+\operatorname{dim}\left(U^{T}\right)=n$ using our result that $\operatorname{dim}(\operatorname{nullsp}(A))+\operatorname{rank}(A)=n$ where n is the number of columns in A.

These ideas will happily generalize to two vector spaces U, V with $U \subseteq V$ with a general inner product. We do not need $V=\mathbf{R}^{n}$. There are two approaches. The first uses an orthonormal basis for V in order to use the nullsp (A)) idea. If we apply Gram Schmidt or otherwise, we can obtain a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ with the orthonormal properties:

$$
<\mathbf{v}_{i}, \mathbf{v}_{j}>= \begin{cases}0 & \text { if } i \neq j \tag{*}\\ 1 & \text { if } i=j\end{cases}
$$

Now proceed much as before, expressing

$$
\mathbf{u}_{i}=\sum_{j=1}^{n} a_{i j} \mathbf{v}_{j}
$$

since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V and $\mathbf{u}_{i} \in V$. Let A be the associated $k \times n$ matrix. Now consider any vector $\mathbf{w} \in V$ which we can write as $\mathbf{w}=\sum_{j=1}^{n} w_{j} \mathbf{v}_{j}$. Let \mathbf{w} denote the vector in the coordinates of the orthonormal basis so $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{T}$ Then

$$
\begin{gathered}
<\mathbf{u}_{i}, \mathbf{w}>=<\sum_{j=1}^{n} a_{i j} \mathbf{v}_{j}, \sum_{\ell=1}^{n} w_{\ell} \mathbf{v}_{\ell}> \\
=\sum_{j=1}^{n} a_{i j}\left(\left\langle\mathbf{v}_{j}, \sum_{\ell=1}^{n} w_{\ell} \mathbf{v}_{\ell}\right\rangle\right) \\
=\sum_{j=1}^{n} a_{i j}\left(\sum_{\ell=1}^{n} w_{\ell}\left(<\mathbf{v}_{j}, \mathbf{v}_{\ell}>\right)\right)
\end{gathered}
$$

$$
=\sum_{j=1}^{n} a_{i j} w_{j}
$$

using properties of $\left({ }^{*}\right)$. Now $\sum_{j=1}^{n} a_{i j} w_{j}$ is the i th entry of $A \mathbf{w}$. Thus we have a way of expressing U^{\perp} as the null space (A) and we have the desired result.

Theorem 0.2 Let U, V be vector spaces over \mathbf{R} with U a subspace of V and V is finite dimensional. Then $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)$.

Another approach that doesn't use an orthonormal basis of V (with respect to the given inner product) but just any basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, we use the observation that for a given \mathbf{u}_{i}, the function $<\mathbf{u}_{i}, \mathbf{x}>$ is a linear transformation $V \rightarrow \mathbf{R}$ and so has an associated $1 \times n$ matrix R_{i}. First we verify that the k linear transformations $<\mathbf{u}_{i}, \mathbf{x}>$ are linearly independent (and so the $k \times n$ matrix formed by these rows has rank $=k$). Assume

$$
\sum_{i=1}^{k} c_{i}<\mathbf{u}_{i}, \mathbf{x}>\equiv 0
$$

where we use the notation $\equiv 0$ to mean the identically 0 function, namely the $\mathbf{0}$ vector in the space of functions. But now

$$
\sum_{i=1}^{k} c_{i}<\mathbf{u}_{i}, \mathbf{x}>=<\sum_{i=1}^{k} c_{i} \mathbf{u}_{i}, \mathbf{x}>\text { for all } \mathbf{x}
$$

but when we evaluate the righthand side at $\mathbf{x}=\sum_{i=1}^{k} c_{i} \mathbf{u}_{i}$, we obtain $\langle\mathbf{x}, \mathbf{x}\rangle=0$ and so by the axioms of an inner product we have $\mathbf{x}=\mathbf{0}$ i.e. $\sum_{i=1}^{k} c_{i} \mathbf{u}_{i}=\mathbf{0}$ which forces $c_{1}=c_{2}=\cdots=c_{k}=0$ since the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ are linearly independent.

We now form a matrix

$$
A=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{k}
\end{array}\right]
$$

and null $\operatorname{space}(A)=U^{\perp}$.
As an example consider the vector space of polynomials of degree at most 2 . Let $U=$ span $<$ $\mathbf{1}, x>$ and $V=\operatorname{span}<\mathbf{1}, x, x^{2}>$. The basis of V will be $\left\{\mathbf{1}, x, x^{2}\right\}$ and the basis for U will be $\{\mathbf{1}, x\}$. We introduce the inner product

$$
<f, g>=\int_{0}^{1} f(x) g(x) d x
$$

and so we have an inner product space. We have that $<\mathbf{1}, a+b x+c x^{2}>$ and $<x, a+b x+c x^{2}>$ are linear transformations $T: V \rightarrow \mathbf{R}$.

$$
\begin{gathered}
<1, a+b x+c x^{2}>=\int_{0}^{1}\left(a+b x+c x^{2}\right) d x=a+\frac{b}{2}+\frac{c}{3}=\left[\begin{array}{lll}
1 & 1 / 2 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
<x, a+b x+c x^{2}>=\int_{0}^{1}\left(a x+b x^{2}+c x^{3}\right) d x=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}=\left[\begin{array}{lll}
1 / 2 & 1 / 3 & 1 / 4
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{gathered}
$$

Thus we take $R_{1}=\left[\begin{array}{lll}1 & 1 / 2 & 1 / 3\end{array}\right]$ and $R_{2}=\left[\begin{array}{lll}1 / 2 & 1 / 3 & 1 / 4\end{array}\right]$ and form

$$
A=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4
\end{array}\right]
$$

Gaussian elimination yields

$$
\operatorname{null} \operatorname{space}(A)=\left\{s\left[\begin{array}{c}
1 / 6 \\
-1 \\
1
\end{array}\right]: s \in \mathbf{R}\right\}
$$

We may check that $<1 / 6-x+x^{2}, \mathbf{1}>=\int_{0}^{1}\left(1 / 6-x+x^{2}\right) d x=1 / 6-1 / 2+1 / 3=0$ and $<1 / 6-x+x^{2}, x>=\int_{0}^{1}\left((1 / 6) x-x^{2}+x^{3}\right) d x=1 / 12-1 / 3+1 / 4=0$ as expected. Thus

Theorem 0.3 Let U, V be vector spaces with U a subspace of V and V is finite dimensional. Then

$$
U^{\perp^{\perp}}=U
$$

Proof: We note that if $\mathbf{u} \in U$, then $\mathbf{u} \perp \mathbf{v}$ for all $\mathbf{v} \in U^{\perp}$ and so $\mathbf{u} \in U^{\perp \perp}$, hence $U \subseteq U^{\perp \perp}$. We have that, with $\operatorname{dim}(U)=k$ and $\operatorname{dim}(V)=n$, then $\operatorname{dim}\left(U^{\perp}\right)=n-k$ using the nullity theorem and then $\operatorname{dim}\left(U^{\perp^{\perp}}\right)=n-(n-k)=k$. Given that $\operatorname{dim}(U)=\operatorname{dim}\left(U^{\perp \perp}\right)=k$, we deduce from $U \subseteq U^{\perp \perp}$ that $U^{\perp \perp}=U$..

