Big new concepts in MATH 223 include a vector space, linear independence (or linear dependence), and dimension.

Definition A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ of k vectors is said to be linearly dependent if there are coefficients $a_{1}, a_{2}, \ldots, a_{k}$ not all zero such that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0}$.

Definition A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ of k vectors is said to be linearly independent if when there are coefficients $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0}$ then $a_{1}=a_{2}=\cdots=$ $a_{k}=0$.

Note that $\mathbf{0}$ is a linearly dependent set, since $1 \cdot \mathbf{0}=\mathbf{0}$.
These definitions are more symmetric than for example identifying S as linearly dependent because one vector in S is a linear combination of the others. Note however if \mathbf{v}_{i} is a linear combination of the other vectors in S, then $\operatorname{span}\left(S \backslash \mathbf{v}_{i}\right)=\operatorname{span}(S)$ and so S is not minimal and S is a linearly independent set of vectors.

Determining Linear Independence for n-tuples is a problem for Gaussian Elimination. Let $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ as follows

$$
V=\operatorname{span}\left\{\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
3 \\
7 \\
4
\end{array}\right]\right\}
$$

We might note that $\mathbf{v}_{4}=2 \mathbf{v}_{1}+\mathbf{v}_{3}$. Thu $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. But such clever observations can be discovered by Gaussian Elimination.

$$
\begin{gathered}
x_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+x_{4}\left[\begin{array}{l}
3 \\
7 \\
4
\end{array}\right]=\mathbf{0} \\
{\left[\begin{array}{llll}
1 & 2 & 1 & 3 \\
1 & 3 & 5 & 7 \\
0 & 1 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

By elementary row operations we obtain:

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 3 \\
0 & 1 & 4 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Thus the set of solutions are

$$
\left\{s\left[\begin{array}{c}
7 \\
-4 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
5 \\
-4 \\
0 \\
1
\end{array}\right]: s, t \in \mathbf{R}\right\}
$$

We deduce that $7 \mathbf{v}_{1}-4 \mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}$ and $5 \mathbf{v}_{1}-4 \mathbf{v}_{2}+\mathbf{v}_{4}=\mathbf{0}$ from which we have $\mathbf{v}_{3}=-7 \mathbf{v}_{1}+4 \mathbf{v}_{2}$ and $\mathbf{v}_{4}=-5 \mathbf{v}_{1}+4 \mathbf{v}_{2}$ and so

$$
V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}
$$

Noting that $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent, we have that $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a minimal spanning set for V.
Determining whether functions on a domain D are linearly independent is a bit complicated. We can think of a function f as a tuple with number of entries equal to $|D|$. The entries $f(a), f(b), f(c), \ldots$ would be hopeless to list since typically D is infinite (and likely uncountable). But it does indicate a way to show that $f_{1}, f_{2}, \ldots, f_{k}$ are linearly independent by choosing (carefully) k elements $a_{1}, a_{2}, \ldots, a_{k} \in D$ and showing that the k vectors

$$
\left[\begin{array}{c}
f_{1}\left(a_{1}\right) \\
f_{1}\left(a_{2}\right) \\
\vdots \\
f_{1}\left(a_{k}\right)
\end{array}\right], \quad\left[\begin{array}{c}
f_{2}\left(a_{1}\right) \\
f_{2}\left(a_{2}\right) \\
\vdots \\
f_{2}\left(a_{k}\right)
\end{array}\right], \quad \cdots,\left[\begin{array}{c}
f_{k}\left(a_{1}\right) \\
f_{k}\left(a_{2}\right) \\
\vdots \\
f_{k}\left(a_{k}\right)
\end{array}\right]
$$

are linearly independent. The reverse of showing the k vectors are linearly dependent does not show that $f_{1}, f_{2}, \ldots, f_{k}$ are linearly dependent but it might suggest a dependency to try out. Verifying a linear dependency for functions involves checking equality for all elements of the Domain and so typically involves using properties of the functions. Note that showing that $\sum_{i=1}^{k} x_{i} f_{i}=\mathbf{0}$ for some choice of multipliers $x_{1}, x_{2}, \ldots, x_{k}$, requires showing that $\sum_{i=1}^{k} x_{1} f_{i}(x)=0$ for all $x \in D$. Verifying a linear dependency for functions involves checking equality for all elements of the Domain and so typically involves using properties of the functions.

It makes some sense to choose a minimal subset $S^{\prime} \subseteq S$ with $\operatorname{span}\left(S^{\prime}\right)=\operatorname{span}(S)$. Then S^{\prime} must be linearly independent. You might note that the span of the empty set is naturally defined to be $\{\mathbf{0}\}$. Such boundary cases can be a bit awkward.

Definition For a vector space V, a basis is a linearly independent set of vectors S so that $\operatorname{span}(S)=V$.

There would be two ways to find a basis. Either begin with a spanning set, and reduce if there are any dependencies. Alternatively build the basis from the ground up as a linearly independent set contained in V

