MATH 223: Linear Transformations and 2×2 matrices.
Richard Anstee
If we write

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[A^{(1)} A^{(2)}\right]
$$

then

$$
A \mathbf{x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=x A^{(1)}+y A^{(2)}
$$

We can consider functions

$$
f(\mathbf{x})=A \mathbf{x}, \quad f: \mathbf{x} \longrightarrow A \mathbf{x}
$$

We note that $A \mathbf{x}$ is a linear combination of the columns of A.
Later in the course the notation may be seen to be more sensible, but we write \mathbf{R} to denote the Real numbers and \mathbf{R}^{2} to denote 2-tuples of Real numbers, two coordinate vectors such as vectors in the plane.

A transformation $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ is linear if it satisfies

$$
\begin{gathered}
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \\
T(\alpha \mathbf{v})=\alpha T(\mathbf{v})
\end{gathered}
$$

This is sometimes written as a single rule that $T(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v})$.
One can verify that the function $T(\mathbf{x})=A \mathbf{x}$ is a linear transformation by verifying the linearity properties for matrix multiplication:

$$
A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v} ; \quad A(\alpha \mathbf{v})=\alpha A \mathbf{v} .
$$

The first is seen as a consequence of the distributive laws, the second yields a matrix rule that $A(\alpha B)=\alpha A B$.

Assume we have a linear transformation T, we can determine a matrix A as follows. Given a transformation T that can be represented as $T(\mathbf{x})=A \mathbf{x}$ for $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we see that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
a \\
c
\end{array}\right]=A^{(1)}, \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
b \\
d
\end{array}\right]=A^{(2)}
$$

Thus the two columns of A are determined as the images of $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ under the transformation. We can determine A completely by $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right), \quad T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.

Thus we have shown that linear transformations $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ correspond to 2×2 matrices with each linear transformation T having an associated matrix A to represent it; namely there is a 2×2 matrix A with $T(\mathbf{x})=A \mathbf{x}$. Also, the reverse is true; namely if A is a 2×2 matrix, then we can obtain a linear transformation $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ by setting $T(\mathbf{x})=A \mathbf{x}$.

Some geometric transformations can be represented by matrices (obviously they need to be linear transformations).

Dilations
These are the transformations stretching by various factors in different directions. Let

$$
D\left(d_{1}, d_{2}\right)=\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right]
$$

then the transformation $T(\mathbf{x})=D\left(d_{1}, d_{2}\right) \mathbf{x}$ stretches by a factor d_{1} in the x direction and a factor d_{2} in the y direction.

Rotations

These are the most beautiful 2×2 examples. Let $R(\theta)$ be the matrix corresponding to rotation by θ in the counterclockwise direction. We note that

$$
R(\theta)\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right], \quad R(\theta)\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

This yields the matrix which represents the transformation (assuming rotation is linear; which you can show)

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Shears
These transformations seem a little more unusual and are less commonly mentioned. Let

$$
G_{12}(\gamma)=\left[\begin{array}{ll}
1 & \gamma \\
0 & 1
\end{array}\right] .
$$

This is seen to be the shear by a factor γ in the x direction.
The following wonderful thing happens as a consequence of our associating functions with matrices. Function composition becomes matrix multiplication.

Let $T_{1}(\mathbf{x})=A_{1} \mathbf{x}$ and $T_{2}(\mathbf{x})=A_{2} \mathbf{x}$ where

$$
A_{1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] .
$$

Then we consider the composition $T_{1} \circ T_{2}$. We have

$$
T_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
a \\
c
\end{array}\right], \quad T_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
b \\
d
\end{array}\right], \quad T_{2}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
e \\
g
\end{array}\right], \quad T_{2}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
f \\
h
\end{array}\right] .
$$

Now

$$
T_{1} \circ T_{2}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=T_{1}\left(\left[\begin{array}{l}
e \\
g
\end{array}\right]\right)=e T_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+g T_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
a e \\
c e
\end{array}\right]+\left[\begin{array}{l}
b g \\
d g
\end{array}\right]=\left[\begin{array}{l}
a e+b g \\
c e+d g
\end{array}\right]
$$

and similarily

$$
T_{1} \circ T_{2}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=T_{1}\left(\left[\begin{array}{l}
f \\
h
\end{array}\right]\right)=f T_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+h T_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
a f \\
c f
\end{array}\right]+\left[\begin{array}{l}
b h \\
d h
\end{array}\right]=\left[\begin{array}{l}
a f+b h \\
c f+d h
\end{array}\right] .
$$

Putting this together, we obtain that the matrix for $T_{1} \circ T_{2}$ is

$$
\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

which is the matrix product $A_{1} A_{2}$. Thus function composition corresponds to matrix multiplication. You can imagine that the rules for matrix multiplication came from a desire to have this hold.

Function composition is well known to be associative namely

$$
T_{1} \circ\left(T_{2} \circ T_{3}\right)=\left(T_{1} \circ T_{2}\right) \circ T_{3} .
$$

This follows from computing that $\left(T_{1} \circ\left(T_{2} \circ T_{3}\right)\right)(\mathbf{x})=T_{1}\left(T_{2}\left(T_{3}(\mathbf{x})\right)\right)=\left(\left(T_{1} \circ T_{2}\right) \circ T_{3}\right)(\mathbf{x})$ and so

$$
A_{1}\left(A_{2} A_{3}\right)=\left(A_{1} A_{2}\right) A_{3}
$$

A beautiful consequence of this is the associativity of matrix multiplication follows from the associativity of function composition.

Please note the order of the operations. The transformation $T_{1} \circ T_{2} \circ T_{3}$ acts as first T_{3}, then T_{2}, then T_{1}. Since the order of matrix multiplication is important, you must check this carefully in problems.

In this vein, we see that a matrix inverse is related to the compositional inverse of linear functions. The uniqueness is easily understood in the function context as well as the fact that the inverse matrix commutes with the original matrix; namely $A A^{-1}=A^{-1} A$.

