We know that certain matrices are no diagonalizable, even over the complex numbers \mathbf{C}. In the 2×2 world we have that $\operatorname{det}(A-\lambda I)$ is a quadratic which by the Fundamnetal Theorem of Algebra, will factor into linear factors possibly with complex roots. The only way for A to be not diagonalizable (over \mathbf{C}) is for there to be a repeated root, say $\operatorname{det}(A-\lambda I)=(\lambda-p)^{2}$ and have $\operatorname{dim}(\operatorname{nullsp}(A-p I))=\operatorname{dim}($ eigenspace for 2$)=1<2$. This would mean $\operatorname{rank}(A-p I)=1$. The following is an example

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right]
$$

for which $\operatorname{det}(A-\lambda I)=(\lambda-2)^{2}$. We note $\operatorname{rank}(A-2 I)=1$ and so the eigenspace for eigenvalue 2 is just 1-dimensional. So A is not diagonalizable. But there is a matrix S similar to A that is perhaps easier to manipulate so that for example we can easily compute A^{n}. The following works

$$
\begin{gathered}
M=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right], \quad S=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] \\
\text { with }\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
\end{gathered}
$$

But how do we compute M ? We first note that $(A-2 I)^{2}=0$ which is perhaps surprising. We already know that $A-2 I$ has 0 as its only eigenvalue. We note that $(A-2 I)^{2}=0$ using our Cayley-Hamilton Theorem! We let the first column of M be an eigenvector \mathbf{u} of eigenvalue 2. We choose the second vector \mathbf{v} to be the vector such that $(A-2 I) \mathbf{v}=\mathbf{u}$. You might ask whether this is possible since $\operatorname{rank}(A-2 I)=1$ but since $(A-2 I)^{2}=0$ we must have that $\operatorname{colsp}(A-2 I)=\operatorname{span}\{\mathbf{u}\}$. Now $(A-2 I) \mathbf{v}=\mathbf{u}$ and so $A \mathbf{v}=\mathbf{u}+2 \mathbf{v}$. We now compute that $A M=M S$ as desired.

This argument works for any 2×2 matrix A with $\operatorname{det}(A-\lambda I)=(\lambda-p)^{2}$ and $\operatorname{dim}($ nullsp $(A-$ $p I))=1$ (so that A is not diagonalizable) where our target similar matrix is now

$$
S=\left[\begin{array}{ll}
p & 1 \\
0 & p
\end{array}\right]
$$

How does this generalize to 3×3 matrices. Imagine we have 3×3 matrix A with $\operatorname{det}(A-\lambda I)=$ $-(\lambda-p)^{3}$ and $\operatorname{dim}($ nullsp $(A-p I))=1$ so that $\operatorname{rank}(A-p I)=2$. Perhaps A is similar to

$$
S=\left[\begin{array}{lll}
p & 1 & 0 \\
0 & p & 1 \\
0 & 0 & p
\end{array}\right] ?
$$

Now let \mathbf{u} be an eigenvector of eigenvalue p. We wish to choose a \mathbf{v} so that $A \mathbf{v}=\mathbf{u}+p \mathbf{v}$ and a \mathbf{w} with $A \mathbf{w}=\mathbf{v}+p \mathbf{w}$. If we have these three vectors and form $M=[\mathbf{u} \mathbf{v} \mathbf{w}]$, then $A M=M S$. If M is invertible, then we are done.

We would proceed as before using the Cayley-Hamilton Theorem that will state $(A-p I)^{3}=0$. If we write $(A-p I)^{3}=(A-p I)(A-p I)^{2}=0$, we deduce that every column of $(A-p I)^{2}$ is in the eigenspace of A of eigenvalue p and so $\operatorname{colsp}(A-p I)^{2}=\operatorname{span}(\mathbf{u})$. Of course $\operatorname{dim}(\operatorname{colsp}(A-p I))=2$ and contains \mathbf{u} since $\operatorname{colsp}(A-p I)^{2}=\operatorname{span}(\mathbf{u})$.

Now $A \mathbf{v}=\mathbf{u}+p \mathbf{v}$ yields $(A-p I) \mathbf{v}=\mathbf{u}$ and $A \mathbf{w}=\mathbf{v}+p \mathbf{w}$ yields $(A-2 I) \mathbf{w}=\mathbf{v}$ so that $(A-p I)^{2} \mathbf{w}=\mathbf{u}$. Let us solve for $\mathbf{w} \neq \mathbf{0}$ with knowledge that $\operatorname{colsp}(A-p I)^{2}=\operatorname{span}(\mathbf{u})$. Now let $\mathbf{v}=(A-p I) \mathbf{w}$ so that $(A-p I) \mathbf{v}=(A-p I)^{2} \mathbf{w}=\mathbf{u}$. Is it true that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly
independent? Assume that $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}$. Multiplying on the left by $(A-p I)^{2}$, we obtain $(A-p I)^{2}(a \mathbf{u}+b \mathbf{v}+c \mathbf{w})=a(A-p I)^{2} \mathbf{u}+b(A-p I)^{2} \mathbf{v}+c(A-p I)^{2}=c \mathbf{u}=\mathbf{0}$ from which we deduce that $c=0$. Now mulitplying on the left by $(A-p I)$ yields $(A-p I)(a \mathbf{u}+b \mathbf{v})=a(A-p I) \mathbf{u}+b(A-p I) \mathbf{v}=$ $b \mathbf{u}=\mathbf{0}$ from which we deduce that $b=0$. We now can conclude $a=0$ (since $\mathbf{u} \neq \mathbf{0}$). Thus $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Thus M is invertible and so we have shown that A is similar to S.

These ideas generalize. Our 2×2 and 3×3 matrices S are called Jordan blocks. You can read up on Jordan canonical form. .

