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We know that certain matrices are no diagonalizable, even over the complex numbers C. In
the 2 × 2 world we have that det(A − λI) is a quadratic which by the Fundamnetal Theorem of
Algebra, will factor into linear factors possibly with complex roots. The only way for A to be not
diagonalizable (over C) is for there to be a repeated root, say det(A − λI) = (λ − p)2 and have
dim(nullsp(A − pI)) = dim( eigenspace for 2) = 1 < 2. This would mean rank(A − pI) = 1. The
following is an example

A =

[
0 1
−4 4

]
for which det(A− λI) = (λ− 2)2. We note rank(A− 2I) = 1 and so the eigenspace for eigenvalue
2 is just 1-dimensional. So A is not diagonalizable. But there is a matrix S similar to A that is
perhaps easier to manipulate so that for example we can easily compute An. The following works

M =

[
1 1
2 3

]
, S =

[
2 1
0 2

]

with

[
0 1
−4 4

] [
1 1
2 3

]
=

[
1 1
2 3

] [
2 1
0 2

]
But how do we compute M? We first note that (A − 2I)2 = 0 which is perhaps surprising. We
already know that A − 2I has 0 as its only eigenvalue. We note that (A − 2I)2 = 0 using our
Cayley-Hamilton Theorem ! We let the first column of M be an eigenvector u of eigenvalue 2. We
choose the second vector v to be the vector such that (A−2I)v = u. You might ask whether this is
possible since rank(A−2I) = 1 but since (A−2I)2 = 0 we must have that colsp(A−2I) = span{u}.
Now (A− 2I)v = u and so Av = u + 2v. We now compute that AM = MS as desired.

This argument works for any 2× 2 matrix A with det(A− λI) = (λ− p)2 and dim(nullsp(A−
pI)) = 1 (so that A is not diagonalizable) where our target similar matrix is now

S =

[
p 1
0 p

]

How does this generalize to 3 × 3 matrices. Imagine we have 3 × 3 matrix A with det(A − λI) =
−(λ− p)3 and dim(nullsp(A− pI)) = 1 so that rank(A− pI) = 2. Perhaps A is similar to

S =

 p 1 0
0 p 1
0 0 p

?

Now let u be an eigenvector of eigenvalue p. We wish to choose a v so that Av = u + pv and a w
with Aw = v + pw. If we have these three vectors and form M = [uvw], then AM = MS. If M
is invertible, then we are done.

We would proceed as before using the Cayley-Hamilton Theorem that will state (A− pI)3 = 0.
If we write (A− pI)3 = (A− pI)(A− pI)2 = 0, we deduce that every column of (A− pI)2 is in the
eigenspace of A of eigenvalue p and so colsp(A−pI)2 = span(u). Of course dim(colsp(A−pI)) = 2
and contains u since colsp(A− pI)2 = span(u).

Now Av = u + pv yields (A − pI)v = u and Aw = v + pw yields (A − 2I)w = v so that
(A − pI)2w = u. Let us solve for w 6= 0 with knowledge that colsp(A − pI)2 = span(u). Now
let v = (A − pI)w so that (A − pI)v = (A − pI)2w = u. Is it true that u,v,w are linearly



independent? Assume that au + bv + cw = 0. Multiplying on the left by (A − pI)2, we obtain
(A−pI)2(au+bv+cw) = a(A−pI)2u+b(A−pI)2v+c(A−pI)2 = cu = 0 from which we deduce that
c = 0. Now mulitplying on the left by (A−pI) yields (A−pI)(au+bv) = a(A−pI)u+b(A−pI)v =
bu = 0 from which we deduce that b = 0. We now can conclude a = 0 (since u 6= 0). Thus u,v,w
are linearly independent. Thus M is invertible and so we have shown that A is similar to S.

These ideas generalize. Our 2× 2 and 3× 3 matrices S are called Jordan blocks. You can read
up on Jordan canonical form. .


