## Fibonacci Numbers and $2 \times 2$ matrices R. Anstee

The fibonacci numbers $f_{1}, f_{2}, f_{3}, \ldots$ satify

$$
f_{1}=1, f_{2}=1 f_{i}=f_{i-1}+f_{i-2} \text { for } i=3,4,5, \ldots
$$

yielding the sequence $1,1,2,3,5,8,13,21, \ldots$.
If we let $f_{n}$ denote the $n$th fibonacci number we get a matrix equation:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
f_{i} \\
f_{i-1}
\end{array}\right]=\left[\begin{array}{c}
f_{i+1} \\
f_{i}
\end{array}\right] .
$$

Thus, if we let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, we can compute $f_{n}$ as the top entry of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n-2}\left[\begin{array}{l}1 \\ 1\end{array}\right]=$ $A^{n-2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To compute a high power of $A$, we compute the eigenvalues and eigenvectors. Now $\operatorname{det}\left(\left[\begin{array}{cc}1-k & 1 \\ 1 & 0-k\end{array}\right]\right)=k^{2}-k-1$, which has roots $k=\frac{1+\sqrt{5}}{2}$ and $k=\frac{1-\sqrt{5}}{2}$.

$$
\begin{aligned}
& \text { eigenvalue: } \frac{1+\sqrt{5}}{2} \text {, eigenvector: }\left[\begin{array}{c}
\frac{1+\sqrt{5}}{2} \\
1
\end{array}\right] \\
& \text { eigenvalue: } \frac{1-\sqrt{5}}{2} \text {, eigenvector: }\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right] .
\end{aligned}
$$

Thus if we let

$$
P=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right],
$$

we have $A=P D P^{-1}$ and so $A^{t}=P D P^{-1} P D P^{-1} \cdots P D P^{-1}=P D^{t} P^{-1}$.

$$
\begin{aligned}
& A^{t}=P D^{t} P^{-1}=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{t} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{t}
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{5}}{5} & \frac{5-\sqrt{5}}{10} \\
\frac{-\sqrt{5}}{5} & \frac{5+\sqrt{5}}{10}
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{t+1}-\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{t+1} & \left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{t+1}+\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{t+1} \\
\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{t}-\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{t} & \left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{t}+\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{t}
\end{array}\right] }
\end{aligned}
$$

Now using our formula that $\left[\begin{array}{c}f_{n} \\ f_{n-1}\end{array}\right]=A^{n-2}\left[\begin{array}{l}1 \\ 1\end{array}\right]=A^{n-1}\left[\begin{array}{l}1 \\ 0\end{array}\right]$, we obtain:

$$
f_{n}=\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Given that $\frac{1-\sqrt{5}}{2} \approx-.6$ and so $\lim _{k \rightarrow \infty}\left(\frac{1-\sqrt{5}}{2}\right)^{k}=0$. Thus

$$
f_{n} \text { is the closest integer to }\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

