MATH 223: Eigenvalues and Eigenvectors.
Consider a 2×2 matrix A. When a vector \mathbf{v} satisfies

$$
\begin{gathered}
\mathbf{v} \neq \mathbf{0} \\
A \mathbf{v}=\lambda \mathbf{v}
\end{gathered}
$$

then we say that \mathbf{v} is an eigenvector of A of eigenvalue λ. We note

$$
A(k \mathbf{v})=k(A \mathbf{v})=k(\lambda \mathbf{v})=\lambda(k \mathbf{v}),
$$

which says that non zero multiples of eigenvectors yield more eigenvectors of the same eigenvalue. Let us first consider the geometric transformations we previously mentioned. An eigenvector will correspond to a direction that is fixed (or reversed) by the transformation.

$$
D(2,3)=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

will have $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as an eigenvector of eigenvalue 2 and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ as an eigenvector of eigenvalue 3 . The identity matrix I has the property that any non zero vector \mathbf{v} is an eigenvector of eigenvalue 1 .

The rotation matrix $R(\theta)$ has no eigenvectors, by the geometric reasoning that no directions are preserved, unless $\theta=0, \pi$. There will be no (real) roots of the quadratic.

The shear matrix $G_{12}(\gamma)=\left[\begin{array}{ll}1 & \gamma \\ 0 & 1\end{array}\right]$ has $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as an eigenvector of eigenvalue 1 but no other eigenvectors (other than multiples) for $\gamma \neq 0$.

The following analysis is critical in seeking eigenvectors and eigenvalues:

$$
\text { there exists a } \mathbf{v} \text { with } A \mathbf{v}=\lambda \mathbf{v} ; \quad \mathbf{v} \neq \mathbf{0}
$$

if and only if there exists a \mathbf{v} with $A \mathbf{v}=\lambda I \mathbf{v} ; \quad \mathbf{v} \neq \mathbf{0}$ if and only if there exists a \mathbf{v} with $(A-\lambda I) \mathbf{v}=\mathbf{0} ; \quad \mathbf{v} \neq \mathbf{0}$

$$
\text { if and only if } \operatorname{det}(A-\lambda I)=0
$$

Now

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]\right. & =\lambda^{2}-(a+d) \lambda+(a d-b c) \\
& =\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
\end{aligned}
$$

which (for 2×2 matrices) is a quadratic function in λ and whose roots you can seek by standard methods.

Sample computation

$$
\begin{gathered}
A=\operatorname{det}\left(\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\right) \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
.7-\lambda & .3 \\
2 & -\lambda
\end{array}\right]\right)
\end{gathered}
$$

$$
\begin{aligned}
& =(.7-\lambda)(-\lambda)-.3 \times 2 \\
& =\frac{1}{10}\left(10 \lambda^{2}-7 \lambda-6\right) \\
& =\frac{1}{10}(5 \lambda-6)(2 \lambda+1)
\end{aligned}
$$

Thus we have two eigenvalues $\lambda=\frac{6}{5}, \frac{-1}{2}$.
For $\lambda=\frac{6}{5}$, we solve $\left(A-\frac{6}{5} I\right) \mathbf{v}=\mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$
\left(A-\frac{6}{5} I\right) \mathbf{v}=\left[\begin{array}{cc}
-.5 & .3 \\
2 & -1.2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The vector $\mathbf{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ works as an eigenvalue of A of eigenvalue $\frac{6}{5}$. We check

$$
\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
3.6 \\
6
\end{array}\right]=\frac{6}{5}\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

For $\lambda=\frac{-1}{2}$, we solve $\left(A-\frac{-1}{2} I\right) \mathbf{v}=\mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$
\left(A-\frac{-1}{2} I\right) \mathbf{v}=\left[\begin{array}{cc}
1.2 & .3 \\
2 & .5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The vector $\mathbf{v}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$ works as an eigenvalue of A of eigenvalue $\frac{-1}{2}$. We check

$$
\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-.5 \\
2
\end{array}\right]=\frac{-1}{2}\left[\begin{array}{c}
1 \\
-4
\end{array}\right] .
$$

Note that we will always succeed in finding an eigenvector (a non zero vector) assuming our eigenvalue λ has $\operatorname{det}(A-\lambda I)=0$.

The origin of this matrix was a model of bird populations. Let

$$
\begin{gathered}
x_{n}=\text { no. of adults in year } n, \\
y_{n}=\text { no. of juveniles in year } n .
\end{gathered}
$$

We have a matrix equation to represent changes from year to year. We have 30% of the juveniles survive to become adults, 70% of the adults survive a year, and each adult has 2 offspring (juveniles). We have this information summarized in a matrix equation:

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] .
$$

We deduce by induction, that

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] .
$$

