
MATH 223: Quick primer on Determinants. Richard Anstee

We have a determinant function det : Rn×n → R that satisfies various natural properties.
• det I = 1
• If B is obtained by multiplying row i of A by t then det(B) = t · det(A)
• If B is obtained from A by interchanging row i and row j then det(B) = − det(A)
• If B is obtained from A by adding a multiple of row i to row j then det(B) = det(A)
• det(AB) = det(A) det(B)
• det(A) 6= 0 if and only if A has an inverse if and only if there exists an x 6= 0 with Ax = 0.
• det(AT ) = det(A)
• det(A) measures some volume: | det(A)| is the volume of the parallelepiped formed by the

column vectors of A

The idea is to give a specific function and then verify that it has the desired properties (will
take several lectures). For convenience, use the notation Mij to denote the matrix obtained from
A by deleting row i and column j. We define

det(A) = (−1)1+1a11 det(M11) + (−1)1+2a12 det(M12) + · · ·+ (−1)1+na1n det(M1n) (1)

This is called expansion about the first row. One of our goals is to show that the following formulas
are equivalent the first being expansion about rowi:

det(A) = (−1)i+1ai1 det(Mi1) + (−1)i+2ai2 det(Mi2) + · · ·+ (−1)i+nain det(Min) (2)

and the second being expansion about the jth column:

det(A) = (−1)1+ja1j det(M2j) + (−1)2+ja2j det(M2j) + · · ·+ (−1)n+janj det(Mnj) (3)

You might check that this formula works well for 2×2 matrices and is the same as our previously
given formula.

Computations:

A =

 1 2 3
4 5 6
7 8 9

 M11 =

 . . .
. 5 6
. 8 9

 M12 =

 . . .
4 . 6
7 . 9

 M13 =

 . . .
4 5 .
7 8 .


det(A) = (−1)1+1a11 det(M11) + (−1)1+2a12 det(M12) + (−1)1+3a13 det(M13)

= det(

[
5 6
8 9

]
)− 2 det(

[
4 6
7 9

]
) + 3 det(

[
4 5
7 8

]
) =

= (1×−3) + (−2×−6) + (3×−3) = 0

Or perhaps you prefer expansion about second column

M12 =

 . . .
4 . 6
7 . 9

 M22 =

 1 . 3
. . .
7 . 9

 M32 =

 1 . 3
4 . 6
. . .


det(A) = (−1)1+2a12 det(M12) + (−1)2+2a22 det(M22) + (−1)3+2a32 det(M32)



= (−2) det(

[
4 6
7 9

]
) + 5 det(

[
1 3
7 9

]
) + (−8) det(

[
1 3
4 6

]
) =

= (−2×−6) + (5×−12) + (−8×−6) = 0

All that work for nothing ? ! You could practice using expansion about second row and (hopefully)
obtain the same result.

You should practice an example det(A − λI) to look for eigenvalues/eigenvectors. We later
discover that Gaussian Elimination can help us compute determinants, but this does not work well
with variables such as λ for which inadvertent division by zero might occur.

Here is an example of a surprising formula for the inverse using determinants. For a matrix A,
we say the i, j cofactor is (−1)i+j det(Mij).

A =

 1 0 2
0 1 1
1 1 1

 , A−1 =

 0 −1 1
−1/2 1/2 1/2
1/2 1/2 −1/2


A formula for the inverse involves determining the transpose of the matrix of cofactors

A∗ =

 (−1)1+1 det(M11) (−1)2+1 det(M21) (−1)3+1 det(M31)
(−1)1+2 det(M12) (−1)2+2 det(M22) (−1)3+2 det(M32)
(−1)1+3 det(M13) (−1)2+3 det(M23) (−1)3+3 det(M33)



=


det(

[
1 1
1 1

]
) − det(

[
0 2
1 1

]
) det(

[
0 2
1 1

]
)

− det(

[
0 1
1 1

]
) det(

[
1 2
1 1

]
) − det(

[
1 2
0 1

]
)

det(

[
0 1
1 1

]
) − det(

[
1 0
1 1

]
) det(

[
1 0
0 1

]
)


=

 0 2 −2
1 −1 −1
−1 −1 1


Now divide by det(A) = −2 to get the inverse! I would point out that the diagonal entries of AA∗

are all det(A) but a little more work is needed to see the off diagonals to be 0. This is not an
efficient formula but useful in understanding the inverse. This part of Cramer’s Rule.


