MATH 223: Quick primer on Determinants. Richard Anstee

We have a determinant function det : R"*" — R that satisfies various natural properties.

edet/ =1

e If B is obtained by multiplying row i of A by ¢ then det(B) =t - det(A)

e If B is obtained from A by interchanging row ¢ and row j then det(B) = — det(A)

e If B is obtained from A by adding a multiple of row i to row j then det(B) = det(A)

e det(AB) = det(A) det(B)

e det(A) # 0 if and only if A has an inverse if and only if there exists an x # 0 with Ax = 0.

o det(AT) = det(A)

e det(A) measures some volume: |det(A)| is the volume of the parallelepiped formed by the
column vectors of A

The idea is to give a specific function and then verify that it has the desired properties (will
take several lectures). For convenience, use the notation M;; to denote the matrix obtained from
A by deleting row ¢ and column j. We define

det(A) = (—=1)"ay; det(Myy) + (=1)"2arp det(Myy) + - - - + (—=1)"1"ay, det(My,) (1)

This is called expansion about the first row. One of our goals is to show that the following formulas
are equivalent the first being expansion about rows:

det(A) = (—1)”1%1 det(]\/[zl) + (—1)”2@7;2 det(MQ) + e+ (—1)””am det(Mm) (2)
and the second being expansion about the jth column:

det(A) = (=1)"*ay; det(My;) + (=1)*P ag; det(My;) + - - + (=1)" a,; det(M,,) (3)

You might check that this formula works well for 2 x 2 matrices and is the same as our previously
given formula.

Computations:
1 2 3 S .o
A = 4 5 6 Mll - 5 6 M12 - 4 . 6 M13 - 4 5
789 8 9 7 .9 7 8

det(A) = (—1)1+1a11 det(MH) + (—1)1+2&12 det(Mlz) + (—1)1+3a13 det(Mlg)

:det([g S])—2det([;l g})—i—?)det([? Z]):

=(1x=3)+(-2%x—6)+(3x=3)=0

Or perhaps you prefer expansion about second column

S 1 .3 1 .3
Myo=14 .6 Myp=1| . . . Mspy=14 . 6
7.9 7T .9

det(A) = (—1)1+2a12 det(Mlg) + (—1)2+2a22 det(MQQ) + (—1)3+26L32 det(Mgg)



:(—2)det([;l g})—h’)det([; g})+(—8)det([4 6]):

= (=2 x —=6) + (5 x —12) + (=8 x —6) =0

All that work for nothing ? ! You could practice using expansion about second row and (hopefully)
obtain the same result.

You should practice an example det(A — AI) to look for eigenvalues/eigenvectors. We later
discover that Gaussian Elimination can help us compute determinants, but this does not work well
with variables such as A for which inadvertent division by zero might occur.

Here is an example of a surprising formula for the inverse using determinants. For a matrix A,
we say the i, j cofactor is (—1)"*7 det(M,;).

10 2 0o -1 1
A=101 1|, A't=|-1/2 1/2 1/2
111 /2 1/2 —1/2

A formula for the inverse involves determining the transpose of the matrix of cofactors

(—1)1+1 det(Mu) (—1)2+1 det(Mgl) (—1)3+1 det(Mgl)
A* = (—1)1+2 det(Mlg) (—1)2+2 det(MQQ) (—1)3+2 det(Mgg)
(=) 3 det(My3) (—1)*3det(Moz) (—1)3T3 det(Mss)

det(_} }_) — det( ) det(
_ _det(_[‘lj ”) det(“ ?]) —det([(l) ﬂ)

[0 2] [0 2]
11 11

[0 1] (1 0] 10
_ det(_1 1_) —det(_1 1_) det(_o 1_) |
0 2 =2
= 1 -1 -1
-1 -1 1

Now divide by det(A) = —2 to get the inverse! T would point out that the diagonal entries of AA*
are all det(A) but a little more work is needed to see the off diagonals to be 0. This is not an
efficient formula but useful in understanding the inverse. This part of Cramer’s Rule.



