Let $z=a+b i$ and $w=c+d i$. We defined

$$
z w=(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

There are some interesting observations about this product. It is often the case that complex numbers are viewed as points in the Argand Plane, so that z is placed at the point $(\operatorname{Re}(z), \operatorname{Im}(z))$. We note $z \bar{z}=a^{2}+b^{2}$. In the argand plane it is natural to define the modulus of z

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

which is the same as $z \bar{z}=|z|^{2}$ (which you shall see in the context of inner product spaces). We check

$$
|z||w|=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}
$$

and with $z w=(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$, we have
$|z w|=(a c-b d)^{2}+(a d+b c)^{2}=a^{2} c^{2}+b^{2} d^{2}-2 a b c d+a^{2} d^{2}+b^{2} c^{2}+2 a b c d=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}=|z||w|$
This is quite surprising. Now we also can think of an angle θ associated with z in the argand plane namely the angle between the $R e$ axis and the vector (2-tuple) joining the origin $(0+0 \mathrm{i})$ with the point z. So

$$
z=|z|(\cos (\theta)+i \sin (\theta))=|z| e^{i \theta}
$$

where

$$
\cos (\theta)=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad \sin (\theta)=\frac{b}{\sqrt{a^{2}+b^{2}}}
$$

With this notation we say that the argument of z is

$$
\arg (z)=\theta
$$

Now what about $\arg (z w)$? Assume $\arg (w)=\phi$. We could write $z=|z| e^{i \theta}$ and $w=|w| e^{i \phi}$ and so

$$
z w=|z||w| e^{i(\theta+\phi)}
$$

which yields $\arg (z w)=\theta+\phi$. Thus multiplying two complex numbers multiplies their moduli and adds their arguments.

Alternatively

$$
\cos (\theta)=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad \sin (\theta)=\frac{b}{\sqrt{a^{2}+b^{2}}}, \quad \cos (\phi)=\frac{c}{\sqrt{c^{2}+d^{2}}}, \quad \sin (\phi)=\frac{d}{\sqrt{c^{2}+d^{2}}}
$$

We have by our angle sum formulas (from the first assignment!)

$$
\cos (\theta+\phi)=\frac{a c-b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}, \sin (\theta+\phi)=\frac{a d+b c}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}
$$

Thus $\theta+\phi=\arg (z w)$.
This has some interesting consequences. Note that if $\arg (z)=t$ and $|z|=1$, then the $\operatorname{Re}\left(z^{n}\right)$, $\operatorname{Im}\left(z^{n}\right)$ traces out repeated rotation by t.

