MATH 223 Complex Numbers

When solving a quadratic (over R) you may find there are no roots but you notice that you get
expressions involving v/—1. Rather than interpret v/—1 as a number, we can proceed as follows.
We define

C={a+0bi:abeR}

and show that with a suitable multiplication, that this is a field. Let z = a 4+ bt and w = ¢ + di.
Define
2w = (a+ bi)(c+ di) = (ac — bd) + (ad + bc)i

This is most naturally interpreted as saying i> = —1 although the formula could be viewed as an
abstract operation. We could interpret elements of C as 2-tuples and define a multiplication of

2-tuples as

a c| | ac—bd

b| | d]| | ad+be
We then have to verify that this operation combined with the standard addition yields a field. I
don’t think that this is so helpful, it is easiest to think of i = v/—1, but there are always different
points of view.

We define the real part of z as Re(z) = a and the imaginary part of z as I'm(z) = b. Here we
are using the interpretation i = v/—1 which we view as imaginary. We say z € R when Im(z) =0
although you might say this is an abuse of notation. We have always done the same with rationals
Q and R and interpret Q C R C C.

Define in the natural way

z+w=(a+c)+ (b+d)i

To check field axioms we need 0 = 0 + 0¢ and 1 = 1 4 0z and we need multiplicative inverses

-1 a — bi a b

a2+ b2 _a2+b2_a2+b22

Thus 27! exists if z # 0. But doing this computaion by hand is some work. (1/2 + 2¢)~! =?
One useful operation on complex numbers is complex conjugation. Define

z=a+ bi, Z=a—W

We note that 2z = a? 4 b%, which you can see is yielding the multiplicative inverses. Moreover
2z € R. You should also note that z+7Z € R which we use repeatedly. We can check that zZw = zw
since

zw = (ac — bd) — (ad + be)i and Zw = (a — bi)(c — di) = (ac — bd) — (ad + bc)i
It is somewhat simpler to note that z +w = Z 4+ w. Then we obtain very useful formulas. Assume
Ax = Ax where we have A € C"*" x € C" and A € C. Then

Ax = \x becomes AX = \X

If A e RY™™", then A = A. Thus if we have an eigenvector x of eigenvalue A for A, then X is an
eigenvector of eigenvalue A for A.
Example

A:[_Ol (1)] det(A— M) = 2 +1=(A—i)(A+1i)



For eigenvalue A = ¢ we find the eigenvector

-1

Our previous remark gives us an eigenvector of eigenvalue —i:

BRI IR H R

This a lovely example of two for the price of one.
Perhaps the most amazing fact is the formula for e* = e We note e
expression e? is easy since a € R. For e” we try our usual formula for the exponential

a+bi at+bi _

e%e?. The

; R R L, L, L, L,
eb’:1—|—(bz)+§(bz)2+§(bz)3+5(bz)4+a(bz)5+a(bz)6+---

+i(o- ;(b)3+51!(b)5+~~)

= cosb + (sinb)i.

This is amazing in that it relates the exponential function to the sine and cosine functions which
may come as quite a surprise. They are not usually spoken of together in your earlier courses.
A DE system that relates to this is the following

G u(t) = ()

This is a second order DE. But by introducing the derivative y/(t) = 4y(t) we have
dly) | _| 0 1 1]y
dt | y¥'(t) -1 0] y@®

In analogy to our previous solutions of DE’s, we obtain a general solution

[ 5((?) ] . [ A ] +epe [ ! ] — ¢1(cos(t) + isin(t)) [ ! ] + ex(cos(t) — isin()) [ ! ]

You should be slightly worried that we are writing what looks like complex functions for a problem
which is surely restricted to reals. If we start with the initial conditions y(0) = 1 and 3/(0) = 0 we
can solve for ¢y, co and hopefully real solutions result.

So
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We compute

—1

l ;/(é)) ] _ ;z - (cos(t) + i sin()) l 1 ] + —;i (con(t) —isin(t) | ! ]

_ l %(cos(t) +isin(t)) + %(Cos(t) —isin(t)) 1 _ l cos(t)
(sin(t) + i cos(t)) + 3(—sin(t) — i cos(t)) —sin(t) |

which is easily checked as the solution to the differential equations and satisfies the initial conditions.
You may note that ¢ = ¢y, e = e ¥, and the eigenvectors are conjugates and so the result
must be real!



