
MATH 223 Complex Numbers

When solving a quadratic (over R) you may find there are no roots but you notice that you get
expressions involving

√
−1. Rather than interpret

√
−1 as a number, we can proceed as follows.

We define
C = {a+ bi : a, b ∈ R}

and show that with a suitable multiplication, that this is a field. Let z = a + bi and w = c + di.
Define

zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

This is most naturally interpreted as saying i2 = −1 although the formula could be viewed as an
abstract operation. We could interpret elements of C as 2-tuples and define a multiplication of
2-tuples as [

a
b

]
·
[
c
d

]
=

[
ac− bd
ad+ bc

]
We then have to verify that this operation combined with the standard addition yields a field. I
don’t think that this is so helpful, it is easiest to think of i =

√
−1, but there are always different

points of view.
We define the real part of z as Re(z) = a and the imaginary part of z as Im(z) = b. Here we

are using the interpretation i =
√
−1 which we view as imaginary. We say z ∈ R when Im(z) = 0

although you might say this is an abuse of notation. We have always done the same with rationals
Q and R and interpret Q ⊂ R ⊂ C.

Define in the natural way
z + w = (a+ c) + (b+ d)i

To check field axioms we need 0 = 0 + 0i and 1 = 1 + 0i and we need multiplicative inverses

z−1 =
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i

Thus z−1 exists if z 6= 0. But doing this computaion by hand is some work. (1/2 + 2i)−1 =?
One useful operation on complex numbers is complex conjugation. Define

z = a+ bi, z = a− bi

We note that zz = a2 + b2, which you can see is yielding the multiplicative inverses. Moreover
zz ∈ R. You should also note that z+z ∈ R which we use repeatedly. We can check that zw = z w
since

zw = (ac− bd)− (ad+ bc)i and z w = (a− bi)(c− di) = (ac− bd)− (ad+ bc)i

It is somewhat simpler to note that z + w = z +w. Then we obtain very useful formulas. Assume
Ax = λx where we have A ∈ Cn×n, x ∈ Cn and λ ∈ C. Then

Ax = λx becomes Ax = λx

If A ∈ Rn×n, then A = A. Thus if we have an eigenvector x of eigenvalue λ for A, then x is an
eigenvector of eigenvalue λ for A.

Example

A =

[
0 1
−1 0

]
, det(A− λI) = λ2 + 1 = (λ− i)(λ+ i)



For eigenvalue λ = i we find the eigenvector[
0 1
−1 0

] [
−i
1

]
=

[
1
i

]
=

[
−i
1

]
· i

Our previous remark gives us an eigenvector of eigenvalue −i:[
0 1
−1 0

] [
i
1

]
=

[
1
−i

]
=

[
i
1

]
· (−i)

This a lovely example of two for the price of one.
Perhaps the most amazing fact is the formula for ez = ea+bi. We note ea+bi = eaebi. The

expression ea is easy since a ∈ R. For ebi we try our usual formula for the exponential

ebi = 1 + (bi) +
1

2!
(bi)2 +

1

3!
(bi)3 +

1

4!
(bi)4 +

1

5!
(bi)5 +

1

6!
(bi)6 + · · ·

= 1− 1

2!
(b)2 +

1

4!
(b)4 − 1

6!
(b)6 + · · ·

+i
(
b− 1

3!
(b)3 +

1

5!
(b)5 + · · ·

)
= cos b+ (sin b)i.

This is amazing in that it relates the exponential function to the sine and cosine functions which
may come as quite a surprise. They are not usually spoken of together in your earlier courses.

A DE system that relates to this is the following

d

dt

d

dt
y(t) = −y(t)

This is a second order DE. But by introducing the derivative y′(t) = d
dt
y(t) we have

d

dt

[
y(t)
y′(t)

]
=

[
0 1
−1 0

] [
y(t)
y′(t)

]

In analogy to our previous solutions of DE’s, we obtain a general solution[
y(t)
y′(t)

]
= c1e

it

[
−i
1

]
+ c2e

−it
[
i
1

]
= c1(cos(t) + i sin(t))

[
−i
1

]
+ c2(cos(t)− i sin(t))

[
i
1

]

You should be slightly worried that we are writing what looks like complex functions for a problem
which is surely restricted to reals. If we start with the initial conditions y(0) = 1 and y′(0) = 0 we
can solve for c1, c2 and hopefully real solutions result.[

y(0)
y′(0)

]
=

[
1
0

]
= c1

[
−i
1

]
+ c2

[
i
1

]

=

[
−i i
1 1

] [
c1
c2

]
So [

c1
c2

]
=

[
−i i
1 1

]−1 [
1
0

]
=

[
1
2
i 1

2

−1
2
i 1

2

] [
1
0

]
=

[
1
2
i
−1

2
i

]



We compute [
y(t)
y′(t)

]
=

1

2
i · (cos(t) + i sin(t))

[
−i
1

]
+−1

2
i · (cos(t)− i sin(t))

[
i
1

]

=

[
1
2
(cos(t) + i sin(t)) + 1

2
(cos(t)− i sin(t))

1
2
(sin(t) + i cos(t)) + 1

2
(− sin(t)− i cos(t))

]
=

[
cos(t)
− sin(t)

]
which is easily checked as the solution to the differential equations and satisfies the initial conditions.

You may note that c1 = c2, eit = e−it, and the eigenvectors are conjugates and so the result
must be real!


