When solving a quadratic (over \mathbf{R}) you may find there are no roots but you notice that you get expressions involving $\sqrt{-1}$. Rather than interpret $\sqrt{-1}$ as a number, we can proceed as follows. We define

$$
\mathbf{C}=\{a+b i: a, b \in \mathbf{R}\}
$$

and show that with a suitable multiplication, that this is a field. Let $z=a+b i$ and $w=c+d i$. Define

$$
z w=(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

This is most naturally interpreted as saying $i^{2}=-1$ although the formula could be viewed as an abstract operation. We could interpret elements of \mathbf{C} as 2-tuples and define a multiplication of 2-tuples as

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a c-b d \\
a d+b c
\end{array}\right]
$$

We then have to verify that this operation combined with the standard addition yields a field. I don't think that this is so helpful, it is easiest to think of $i=\sqrt{-1}$, but there are always different points of view.

We define the real part of z as $\operatorname{Re}(z)=a$ and the imaginary part of z as $\operatorname{Im}(z)=b$. Here we are using the interpretation $i=\sqrt{-1}$ which we view as imaginary. We say $z \in \mathbf{R}$ when $\operatorname{Im}(z)=0$ although you might say this is an abuse of notation. We have always done the same with rationals \mathbf{Q} and \mathbf{R} and interpret $\mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$.

Define in the natural way

$$
z+w=(a+c)+(b+d) i
$$

To check field axioms we need $0=0+0 i$ and $1=1+0 i$ and we need multiplicative inverses

$$
z^{-1}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

Thus z^{-1} exists if $z \neq 0$. But doing this computaion by hand is some work. $(1 / 2+2 i)^{-1}=$?
One useful operation on complex numbers is complex conjugation. Define

$$
z=a+b i, \quad \bar{z}=a-b i
$$

We note that $z \bar{z}=a^{2}+b^{2}$, which you can see is yielding the multiplicative inverses. Moreover $z \bar{z} \in \mathbf{R}$. You should also note that $z+\bar{z} \in \mathbf{R}$ which we use repeatedly. We can check that $\overline{z w}=\bar{z} \bar{w}$ since

$$
\overline{z w}=(a c-b d)-(a d+b c) i \text { and } \bar{z} \bar{w}=(a-b i)(c-d i)=(a c-b d)-(a d+b c) i
$$

It is somewhat simpler to note that $\overline{z+w}=\bar{z}+\bar{w}$. Then we obtain very useful formulas. Assume $A \mathbf{x}=\lambda \mathbf{x}$ where we have $A \in \mathbf{C}^{n \times n}, \mathbf{x} \in \mathbf{C}^{n}$ and $\lambda \in \mathbf{C}$. Then

$$
\overline{A \mathbf{x}}=\overline{\lambda \mathbf{x}} \text { becomes } \bar{A} \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}
$$

If $A \in \mathbf{R}^{n \times n}$, then $\bar{A}=A$. Thus if we have an eigenvector \mathbf{x} of eigenvalue λ for A, then $\overline{\mathbf{x}}$ is an eigenvector of eigenvalue $\bar{\lambda}$ for A.

Example

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \operatorname{det}(A-\lambda I)=\lambda^{2}+1=(\lambda-i)(\lambda+i)
$$

For eigenvalue $\lambda=i$ we find the eigenvector

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
-i \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right] \cdot i
$$

Our previous remark gives us an eigenvector of eigenvalue $-i$:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right] \cdot(-i)
$$

This a lovely example of two for the price of one.
Perhaps the most amazing fact is the formula for $e^{z}=e^{a+b i}$. We note $e^{a+b i}=e^{a} e^{b i}$. The expression e^{a} is easy since $a \in \mathbf{R}$. For $e^{b i}$ we try our usual formula for the exponential

$$
\begin{gathered}
e^{b i}=1+(b i)+\frac{1}{2!}(b i)^{2}+\frac{1}{3!}(b i)^{3}+\frac{1}{4!}(b i)^{4}+\frac{1}{5!}(b i)^{5}+\frac{1}{6!}(b i)^{6}+\cdots \\
=1-\frac{1}{2!}(b)^{2}+\frac{1}{4!}(b)^{4}-\frac{1}{6!}(b)^{6}+\cdots \\
+i\left(b-\frac{1}{3!}(b)^{3}+\frac{1}{5!}(b)^{5}+\cdots\right) \\
=\cos b+(\sin b) i
\end{gathered}
$$

This is amazing in that it relates the exponential function to the sine and cosine functions which may come as quite a surprise. They are not usually spoken of together in your earlier courses.

A DE system that relates to this is the following

$$
\frac{d}{d t} \frac{d}{d t} y(t)=-y(t)
$$

This is a second order DE. But by introducing the derivative $y^{\prime}(t)=\frac{d}{d t} y(t)$ we have

$$
\frac{d}{d t}\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]
$$

In analogy to our previous solutions of DE's, we obtain a general solution

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=c_{1} e^{i t}\left[\begin{array}{c}
-i \\
1
\end{array}\right]+c_{2} e^{-i t}\left[\begin{array}{l}
i \\
1
\end{array}\right]=c_{1}(\cos (t)+i \sin (t))\left[\begin{array}{c}
-i \\
1
\end{array}\right]+c_{2}(\cos (t)-i \sin (t))\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

You should be slightly worried that we are writing what looks like complex functions for a problem which is surely restricted to reals. If we start with the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$ we can solve for c_{1}, c_{2} and hopefully real solutions result.

$$
\begin{aligned}
{\left[\begin{array}{c}
y(0) \\
y^{\prime}(0)
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
i \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

So

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} i & \frac{1}{2} \\
-\frac{1}{2} i & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} i \\
-\frac{1}{2} i
\end{array}\right]
$$

We compute

$$
\begin{aligned}
& {\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=\frac{1}{2} i \cdot(\cos (t)+i \sin (t))\left[\begin{array}{c}
-i \\
1
\end{array}\right]+-\frac{1}{2} i \cdot(\cos (t)-i \sin (t))\left[\begin{array}{l}
i \\
1
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
\frac{1}{2}(\cos (t)+i \sin (t))+\frac{1}{2}(\cos (t)-i \sin (t)) \\
\frac{1}{2}(\sin (t)+i \cos (t))+\frac{1}{2}(-\sin (t)-i \cos (t))
\end{array}\right]=\left[\begin{array}{c}
\cos (t) \\
-\sin (t)
\end{array}\right]
\end{aligned}
$$

which is easily checked as the solution to the differential equations and satisfies the initial conditions.
You may note that $\overline{c_{1}}=c_{2}, \overline{e^{i t}}=e^{-i t}$, and the eigenvectors are conjugates and so the result must be real!

