
MATH 223: Vector Spaces.

One of the big new concepts in MATH 223 is that of a vector space. This concept, as well as the
concept of linear independence (or linear dependence), is initially quite challenging for students.
Part of the problem is that the language can be a bit confusing. We use vectors to mean two
different things. First, we are familiar with a vector as a t-tuple, forming entries in Rt. This is not
the generic vector of vector spaces although it is an example of a vector. Second, a vector is an
object in a vector space ( a vector space is a set of vectors) which supports operations of addition
and scalar multiplication. The scalars must form a Field such as R (the real numbers), C (the
complex numbers) and Q (the rational numbers). The vector addition and scalar multiplication
must satisfy a list of axioms such as distributivity laws (e.g. k(u+v) = ku+kv, (k+l)u = ku+lu).

Much as linear transformations are a more general framework than matrix multiplication, vector
spaces and the vectors they contain generalize objects we know including the notion of Rn. When
I was first introduced to vector spaces, the instructor Harry Davis suggested we think of vectors as
apples and oranges for which we have defined the appropriate operations. Thus 3.5apple− 2orange
is a typical vector in that vector space.

When we come to t-tuples as vectors we must think of the underlying vector and not the
particular coordinate system we are using. We have already seen an example of this with white and
blue coordinates in R2 where the underlying vector has an existence apart from its representation.
This leads to the following which is written in a provocative way:

A vector

 2
2
3

 is not a vector but merely a representation of a vector

One person pointed out that even the vector given could be viewed as an ‘apple’ in a vector
space so in that case I guess it could be a vector but it is not a vector in the way you usually think
of the 3-tuple.

We have three main examples of vectors we consider. We have set of t-tuples in Rt with the
usual vector addition and scalar multiplication. We have sets of functions with the usual addition
and scalar multiplication of functions. We also have sets of k × k matrices Rk×k under the usual
matrix addition and scalar multiplication. These are not the only possibilities. Moreover, given the
same set of objects we wish to consider as vectors, we may have alternate definitions of addition
or scalar multiplication yielding alternate vector spaces. Note how multiplication of vectors is not
being considered.

For V to be a vector space, we must also have the closure properties that for u,v ∈ V , we have
u+v ∈ V , and for u ∈ V and k a scalar, we have ku ∈ V . Note that 0u = 0 and so 0 ∈ V . Roughly
speaking, the operations of addition and scalar multiplication have to be well defined within the
vector space.

We have also discussed a subspace U of a vector space V , which is a set of vectors U ⊆ V which
is at the same time a vector space (we need only verify closure for U since the other axioms are
inherited from V ).

Now the dimension of a vector space is the cardinality of a basis (we assume this is finite, we do
not dwell on infinite dimensional vector spaces). We do not imagine that a set U of t-tuples which
is a vector space has dimension t although it is true that dimension of Rt is t since we can identify
a basis of Rt as {e1, e2, . . . , et}. A set U of t-tuples which is a vector space has some dimension
which we can verify is at most t but it could be less. (How should you show that the dimension is at
most t? Assume you have t + 1 linear independent vectors in U and derive a contradiction). Thus
dimension is being used as a piece of mathematical terminology for vector spaces in the context of



bases and does not refer some English meaning of dimension. Maybe we would have been better
to have a separate term but this is not standard.

The following are important theorems in identifying a vector space after we have identified
the main examples of vector spaces such as n-dimensional Real space Rn, m × n matrices Mmn,
polynomials of degree at most k in a variable x Pk(x), continuous functions on the interval (0, 1)
C(0, 1)

Theorem. Let T = {v1,v2, . . . ,vp} be a finite set of vectors in a vector space V . Then

span(T ) = {
p∑

i=1

aivi : ai ∈ R for i = 1, 2, . . . , p}

is a vector space, a subspace of V .

Proof: We need to consider closure under addition and scalar multiplication. Let x,y ∈ span(T ).
Say x =

∑p
i=1 xivi and y =

∑p
i=1 yivi. Then x + y =

∑p
i=1 xivi +

∑p
i=1 yivi =

∑p
i=1 xivi + yivi,

using the commutavity axiom for vector addition repeatedly, Then x + y =
∑p

i=1(xi + yi)vi using
distributivity axiom for scalar multiplication. But then x+ y ∈ span(T ). Similarly we obtain that
t · x ∈ span(T ) for t ∈ R.

Theorem. {x : Ax = 0} is a vector space and in fact in view of our results in Gaussian
elimination either there in only one solution x = 0 or the set of solutions is the span of a set of
vectors whose cardinality is the number of free variables.

Theorem. If we have a subset U of a vector space V , then U is a vector space, under the
operations of vector addition and scalar multiplication of V , if and only if U satisfies closure:

for any x,y ∈ U and c ∈ R, then x + y ∈ U and cx ∈ U.

For example the vector 0 ∈ V must also be in U for U to be a vector space.


