
MATH 223: Extremal Set Theory Richard Anstee
I would like to demonstrate one proof of a result of Sauer, Perles and Shelah, Vapnik and

Chervonenkis from 1971,1972. The proof is due to Smolensky and is from 1997. There are a variety
of proofs, basic induction works fine.

The subject of Extremal Combinatorics considers the maximum number of objects you can find
subect to some conditions (and if that is possible then considers structures you would encounter).
If we consider subsets of {1, 2, . . . ,m}, then there are at most 2m subsets. We will encode a family
of sn ubsets of {1, 2, . . . ,m} as an m × n matrix A = (aij) with entries 0,1 and for which the
jth column of A, which we can denote as Aj, corresponds to the jth subset Aj and we have

aij =

{
1 if i ∈ Aj

0 if i /∈ Aj
We will be asking how many columns n can such a matrix have subject to

some restriction involving submatrices.
First consider the vector space of polynomials. We say a polynomial in variables x1, x2, . . . , xm

is multilinear of it has no expressions containing xt
i for t ≥ 2. Thus it is linear in each variable

(when considering the other variables fixed). The degree of such a polynomial is given by the usual
definition. Define

V = {multilinear polynomials of degree ≤ 2}
Then dim(V ) =

(
m
2

)
+
(
m
1

)
+
(
m
0

)
since we readily find a basis {1, x1, x2, . . . , xm, x1x2, x1x3, . . . , xm−1xm}

of size
(
m
2

)
+
(
m
1

)
+
(
m
0

)
.

Our object of study are so called simple matrices whose entries are either 0 or 1 with the
additional condition that no column is repeated. As we have seen above, these are like families of
subsets of a given set. Thus if A is an m × n simple matrix then it is ‘easy’ to see that n ≤ 2m

because there are only 2m possible columns of 0’s and 1’s. We wish to impose an additional property
on A and obtain a good bound on n as a function of m. Let

K3 =

 0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


We want A not to contain K3 as a configuration, namely there is no 3× 8 submatrix of A which is
a row and column permutation of K3. Alternatively, if we form a 3× 8 matrix by deleting 2 rows
of A and all but 8, then the result should not consist of all possible (0,1)-columns on 3 rows.

The following 5× 16 matrix has the desired property.
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1


This follows because each triple of rows of the above matrix avoids 1

0
1


Since any row and column permutation of K3 would contain this 3× 1 column, we deduce that our
5× 16 matrix avoids K3. There are many ways to create a matrix avoiding K3 and you should not
expect them to be so symmetric. This was just a quick example.



The following theorem has a remarkable number of applications. Google VC-dimension and
you’ll find some references to Learning Theory and other topics. The following does generalize to
Kk but for definiteness we only consider K3.

Theorem 1 (Vapnik and Chervonenkis 1971, Sauer 1972, Perles and Shelah 1972)
Let A be an m×n simple matrix with no configuration K3 (with no 3× 8 submatrix which is a row
and column permutation of K3). Then

n ≤
(
m

2

)
+

(
m

1

)
+

(
m

0

)
.

Proof: To prove this lovely result we need some polynomials, one per column, that are linearly
independent and are multilinear and of degree at most 2. If we achieve this, then we will have
proven the bound. We will only be evaluating these polynomials on the values of columns of A but
that will suffice to have them be linearly independent.

For the ith column Ai of A we create a polynomial as follows. Let Ai = (a1, a2, . . . , am)T . We
form a polynomial in x = (x1, x2, . . . , xm)T

fi(x) =
m∏
j=1

(1− xj − aj)

Thus fi(Ai) 6= 0 while fi(Ak) = 0 for k 6= i. Certainly this means the polynomials are linearly
independent. Also they are multilinear. But unfortunately they have degree m. So we have some
work to do!

We will only be evaluating these polynomials on columns of A so that xi ∈ {0, 1}. As well
ai ∈ {0, 1}. We note that (1 − xi − ai) = 0 for xi 6= ai, (1 − xi − ai) = 1 for xi = ai = 0 and
(1− xi − ai) = −1 for xi = ai = 1.

Now we use the fact that A has no configuration K3. For each triple of rows i, j, k there must
be some column of three elements missing say perhaps

no
i
j
k

 c
d
e


We can form a polynomial

fijk(x) = (1− xi − c)(1− xj − d)(1− xk − e)

which has the property that evaluated at any column y of A, fijk(y) = 0. Now fijk = −xixjxk +
(1− e)(xixj) + (1− d)xixk + (1− c)xjxk − (1− c)(1− d)xk − (1− c)(1− e)xj − (1− d)(1− e)xi +
(1− c)(1− d)(1− e). Using fijk(y) = 0 we can use the identity

xixjxk = (1− e)(xixj) + (1− d)xixk + (1− c)xjxk − (1− c)(1− d)xk

−(1− c)(1− e)xj − (1− d)(1− e)xi + (1− c)(1− d)(1− e),

at least when evaluated on the columns of A.
The right hand side has terms of degree at most 2. We use such an identity on our polynomials f`

for each `, taking any term that contains the product xixjxk and replacing xixjxk by (1−e)(xixj)+
(1−d)xixk +(1−c)xjxk− (1−c)(1−d)xk− (1−c)(1−e)xj− (1−d)(1−e)xi +(1−c)(1−d)(1−e).
Repeat over and over again to get a polynomial f ′`(x) that agrees with f`(x) on columns of A



and has degree at most 2. The n polynomials f ′`(x) are linearly independent and all in V (still
multilinear). Now dim(V ) =

(
m
2

)
+
(
m
1

)
+
(
m
0

)
and so we conclude

n ≤
(
m

2

)
+

(
m

1

)
+

(
m

0

)
.


