
MATH 223. Orthogonal Projections and Least Squares. Richard Anstee

Orthogonal Projections
Let U be vector subspace of V . Then dim(U) + dim(U⊥) = dim(V). It is reasonable and

important in many problems to express a vector v ∈ V as a sum v = u + w where u ∈ U and
w ∈ U⊥. But how do you readily compute u,w? Are they unique given a choice v? Note that we
need only compute u since then w is readily computed as w = v − u.

Lemma 0.1 Let X = {x1,x2, . . . ,xn} be an orthonormal basis for V . Then for any v ∈ V ,

v =
n∑
i=1

projxi
v =

n∑
i=1

< xi,v > xi

Proof: Since {x1,x2, . . . ,xn} is a basis for V , then v =
∑n
i=1 aixi. Now

< v,xj >=
n∑
i=1

ai < xi,xj >= aj,

using the orthonormality of the vectors in the basis.

Thus we have a quick way of obtaining the X coordinates of v. Let V = Rn. If M is the
matrix whose columns are {x1,x2, . . . ,xn} written with respect to the standard basis, then M is
an orthogonal matrix (you can check that MTM = I) and so M−1 = MT . Now M represent
the change of basis from X basis to standard basis and so M−1 = MT represents the change of
basis from standard basis to X basis and we see that for v written with respect to standard basis,
M−1v = MTv yields that v =

∑n
i=1 < xi,v > xi.

In R3 we could ask for the orthogonal projection of x onto a plane π (through the origin). You
might correctly solve this as projecting x onto the normal vector n and then subtracting this from
x.

Let u1,u2 be a basis for the plane π. We have various techniques for extending a basis of a
subspace to a basis for the entire vector space. We could consider U = span(u1,u2) and then find
a basis for U⊥. Given that dim(U) + dim(U⊥) = 3 in this case, then dim(U⊥) = 1 and we can find
u3 so that U⊥ = span(u3). Then u1,u2,u3 is a basis for R3. The following is the general result.

Lemma 0.2 Let U be a subspace of Rn and let {u1,u2, . . . ,uk} be a basis for U . Let {v1,v2, . . . ,vn−k}
be a basis for U⊥. Then {u1,u2, . . . ,uk} ∪ {v1,v2, . . . ,vn−k} is a basis for Rn.

Proof: Given that we have n vectors, we need only show that they are linearly independent.
Assume

k∑
i=1

aiui +
n−k∑
j=1

bjvj = 0

Thus we have two vectors u =
∑k
i=1 aiui in U and v =

∑n−k
j=1 bjvj in U⊥ with u + v = 0. But

taking the inner product with u yields < 0,u >=< u + v,u > and < (u + v),u >=< u,u > + <
u,v >=< u,u > using v ∈ U⊥. Also < 0,u >= 0.

Thus < u,u >= 0 which yields u = 0 by the axioms for an inner product. Then by linear
independence of {u1,u2, . . . ,uk} we deduce that a1 = a2 = · · · = ak = 0. Then v = 0 and so (by
the linear independence of {v1,v2, . . . ,vn−k}) we deduce that b1 = b2 = · · · = bn−k = 0. We deduce
that {u1,u2, . . . ,uk} ∪ {v1,v2, . . . ,vn−k} are linearly independent.

Return to our original problem of expressing a vector v ∈ V as a sum v = u + w where u ∈ U
and w ∈ U⊥. We note that u,w are unique given a choice for v since there is a unique way to
express any v ∈ V in terms of the basis. We form an othornormal basis for U as {u1,u2, . . . ,uk}
and an orthonomal basis for U⊥ as {v1,v2, . . . ,vn−k} yielding an orthonormal basis for V . Now
we can compute

u =
k∑
i=1

< v,ui > ui. (1)

We can then compute w = v−u. We often use this as a check that our computations are working
by verifying that < u,w >= 0.

The equation (1) is very powerful in that we can compute u from v (and hence also
compute w) only using an othonormal basis for U and without any explicit reference
to U⊥.

Least squares application.

When an experiment is run one often creates data of the following type. We compute for each
input xi a value yi. Assume we have n values xi, yi. We do the experiment many times. It is often
the case that we want to fit a line to the data believing that y is a linear function of x,

y = ax+ b

Thus we would like to solve for a, b in the matrix equation
1 x1
1 x2
...

...
1 xn


[
b
a

]
=


y1
y2
...
yn


While this may be possible, we expect, given experimental errors, to be unable to solve this equation.
We instead seek a line y = a′x + b′ that is close to given data. We seek to find a′, b′ to minimize
the sum over i of the square error from the predicted valuesyi

min
a′,b′

n∑
i=1

(yi − a′xi − b′)2

which is called the Least Squares solution. Putting this another way, if we define ŷ = (a′x1 +
b′, a′x2 + b′, . . . , a′xn − b′), then

min
a′,b′

n∑
i=1

(yi − a′xi − b′)2 = ||y − ŷ||2

[insert picture here]

A =


1 x1
1 x2
...

...
1 xn

 , x =
[
b
a

]
, y =


y1
y2
...
yn

 , ŷ =


ŷ1
ŷ2
...
ŷn



How do we do this? Geometrically it is clear that we choose ŷ to be the orthogonal projection
of y onto colsp(A). Having chosen a vector ŷ, we solve the following equation for a, b

1 x1
1 x2
...

...
1 xn


[
b
a

]
=


ŷ1
ŷ2
...
ŷn

 ,
to obtain a′, b′.

Does ŷ minimize ||y − ŷ||2? Let ȳ ∈ colsp(A) be another vector and compute

||y − ȳ||2 = ||(y − ŷ) + (ŷ − ȳ)||2.

Using the fact that y − ŷ ∈ colsp(A)⊥ (by our choice of ŷ) and ŷ − ȳ ∈ colsp(A) (since both
ŷ, ȳ ∈ colsp(A)). Thus the two vectors y − ŷ and ŷ − ȳ are orthogonal and so by Pythagorean
Theorem (the vectors for y− ŷ and ŷ− ȳ lie in a plane) or by properties of orthogonal vectors and
inner products in general we obtain that

||y − ȳ||2 = ||(y − ŷ) + (ŷ − ȳ)||2 = ||y − ŷ||2 + ||ŷ − ȳ||2 ≥ ||y − ŷ||2.

It is now immediate that ŷ is the choice to minimize ||y − ȳ||2 over all choices ȳ ∈ colsp(A).

This generalizes to a matrix equation Ax = b where A has more columns, we are unable to

solve for x if b /∈ colsp(A). We seek a vector b̂ ∈ colsp(A) so that ||b − b̂|| =
√∑n

i=1(bi − b̂i)2 is

minimized. As in the simple case of two dimensional column space, we choose b̂ = projcolsp(A)
b.

If we wish to determine ŷ ∈ colsp(A) we can determine ŷ as the orthogonal projection of y onto
the colsp(A) so that y − ŷ ∈ (colsp(A))⊥. First determine an orthonormal basis for colsp(A).

u1 =


1
1
...
1

 ,u2 =


x1
x2
...
xn

 v1 =


1
1
...
1

 ,v2 =


x1
x2
...
xn

− projv1
u2

Using µ = 1
n

∑n
i=1 xi (i.e. the average x value) and σ2 =

∑n
i=1(xi − µ)2 =

∑n
i=1 x

2
i − 1

n
(
∑n
i=1 xi)

2 we
have an othonormal basis for colsp(A):

v1 =


1/
√
n

1/
√
n

...
1/
√
n

 ,v2 =


(x1 − µ)/σ
(x2 − µ)/σ

...
(xn − µ)/σ


We compute the orthogonal projection of y onto colsp(A) as follows

projv1
y =

∑n
i=1 yi√
n


1/
√
n

1/
√
n

...
1/
√
n

 =

∑n
i=1 yi
n


1
1
...
1



projv2
y =

∑n
i=1 yi(xi − µ)

σ


(x1 − µ)/σ
(x2 − µ)/σ

...
(xn − µ)/σ

 =

(
−µ

∑n
i=1 yi(xi − µ)

σ2

)
1
1
...
1

+

∑n
i=1 yi(xi − µ)

σ2


x1
x2
...
xn



Thus we choose

ŷ = projv1
y + projv2

y =

(∑n
i=1 yi
n

− µ
∑n
i=1 yi(xi − µ)

σ2

)
1
1
...
1

+

(∑n
i=1 yi(xi − µ)

σ2

)
x1
x2
...
xn


We can read off the solutions for a′, b′:

a′ =

∑n
i=1 yi(xi − µ)

σ2
, b′ =

∑n
i=1 yi
n

− µ
∑n
i=1 yi(xi − µ)

σ2

These are the formulas you use for fitting lines to data. We would write ŷ = projcolsp(A)
y.

Fourier Coefficients
One lovely application of orthogonal projections that you are likely to see is to take an ar-

bitrary continuous fuction f and project it orthgonally onto the 2n + 1 dimensional space U =
span(1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx)). We use the orthonormal basis

1√
2π
,
sinx√
π
,
cosx√
π
,
sin 2x√

π
,
cos 2x√

π
, . . .

sinnx√
π
,
cosnx√

π
.

Our orthogonal projection is then a linear combination of the 2n+ 1 functions. The inner product
for these functions is

< f, g >=
∫ 2π

0
f(x)g(x)dx

and we can verify that the 2n+ 1 given functions are orthogonal. To do the orthogonal projection
using the inner products, we must remember to normalize the functions.

projUf(x) = a+
n∑
i=1

bi
sin(ix)√

π
+

n∑
i=1

ci
cos(ix)√

π

where we use the orthonormal basis to assist so that

a =
∫ 2π

0

1√
2π
f(x)dx, bi =

∫ 2π

0
f(x)

sin(ix)√
π

dx, ci =
∫ 2π

0
f(x)

cos(ix)√
π

dx.

The numbers a, b1, b2, . . . , cn are called the fourier coefficients. Note how we don’t need to know
about the rest of the vector space to do this orthogonal projection. There are issues with numerical
roundoff errors but these ideas seem to work very well in practice.

