MATH 223. Orthonormal bases and Gram-Schmidt process.
Richard Anstee
Consider a vector space V with an inner product $<,>: V \times V \rightarrow \mathbf{R}$. We are interested in finding orthonormal bases for vector spaces. An orthonomal basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{t}\right\}$ is a basis so that

$$
<\mathbf{w}_{i}, \mathbf{w}_{j}>= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

An orthonomal basis has the basis vectors mutually orthogonal and of unit length.
Let U be a vector subspace of V with U having some basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$. We seek a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ which form an othonormal basis for U. The way we implement GramSchmidt for hand calculation, we do not normalize our vectors until the last step to avoid all the square roots.

First start with $k=2$. Let U be a vector subspace of V with U having some basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. We set

$$
\mathbf{v}_{1}=\mathbf{u}_{1} .
$$

Then we do the standard projection (if you are familiar with this in Physics),

$$
\mathbf{v}_{2}=\mathbf{u}_{2}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2}
$$

We readily compute that

$$
<\mathbf{v}_{1}, \mathbf{v}_{2}>=<\mathbf{v}_{1}, \mathbf{u}_{2}>-<\mathbf{v}_{1}, \operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2}>=<\mathbf{v}_{1}, \mathbf{u}_{2}>-\frac{<\mathbf{u}_{2}, \mathbf{v}_{1}>}{<\mathbf{v}_{1}, \mathbf{v}_{1}>}<\mathbf{v}_{1}, \mathbf{v}_{1}>=0
$$

Also we note that $\mathbf{v}_{1}, \mathbf{v}_{2} \in \operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ and moreover, we may write the equations as

$$
\begin{gathered}
\mathbf{u}_{1}=\mathbf{v}_{1} \\
\mathbf{u}_{2}=\mathbf{v}_{2}+\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{2}
\end{gathered}
$$

Thus $\mathbf{u}_{1}, \mathbf{u}_{2} \in \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ from which we conclude $\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. This becomes the inductive step in our proof.

Example Say we have discovered that $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis for an eigenspace given by the equation $3 x-2 y+z=0$. Then we can obtain an orthonormal basis for that eigenspace. Here the inner product is the dot product.

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 / 3 \\
0 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
2 / 3 \\
1 \\
0
\end{array}\right]
$$

We clear fractions and instead use

$$
\begin{gathered}
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right] \\
\mathbf{v}_{1}=\mathbf{u}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\mathbf{u}_{2}-\operatorname{proj}_{\mathbf{v}_{\mathbf{1}}} \mathbf{u}_{2}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]-\frac{\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
3 \\
0
\end{array}\right]}{\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]
\end{gathered}
$$

$$
=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]-\frac{-2}{10}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{18}{10} \\
3 \\
\frac{6}{10}
\end{array}\right] \text { could use }\left[\begin{array}{c}
18 \\
30 \\
6
\end{array}\right] \text { or }\left[\begin{array}{l}
3 \\
5 \\
1
\end{array}\right]
$$

You may check that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ and of course $\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. The latter isn't immediately obvious until you look at the equation determining \mathbf{v}_{2}.

The general Gram-Schmidt algorithm (where we hold off normalizing our vectors until later) can be written is as follows:

$$
\begin{array}{rlll}
\mathbf{v}_{1} & =\mathbf{u}_{1} . \\
\mathbf{v}_{2} & =\mathbf{u}_{2} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2} & \\
\mathbf{v}_{3} & =\mathbf{u}_{3} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{3} & -\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{3} \\
& \vdots \\
\mathbf{v}_{k} & =\mathbf{u}_{k} & -\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{k} & -\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{k} \\
\cdots & -\operatorname{proj}_{\mathbf{v}_{k-1}} \mathbf{u}_{k}
\end{array}
$$

Lemma $0.1 \operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}\right\}$
Proof: We do this by induction on t. The result is easy for $t=1,2$ as we have done above. Now imagine we are defining \mathbf{v}_{t} from \mathbf{u}_{t} subtracting all the projections namely $\mathbf{v}_{t}=\mathbf{u}_{t}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{t}-$ $\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{t} \cdots-\operatorname{proj}_{v_{t-1}} \mathbf{u}_{t}$. We immediately have $\mathbf{v}_{t} \subseteq \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t-1}, \mathbf{u}_{t}\right\}$ and so using induction that $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t-1}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t-1}\right\}$ we deduce that $\left\{v_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}\right\} \subseteq$ $\operatorname{span}\left\{u_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t}\right\}$. In a similar way we have $\mathbf{u}_{t}=\mathbf{v}_{t}+\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{t}+\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{t} \cdots+\operatorname{proj}_{v_{t-1}} \mathbf{u}_{t}$ and so using $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t-1}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t-1}\right\}$, we obtain $u_{t} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}\right\}$. Thus $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t}\right\} \subseteq\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}\right\}$.

We may conclude $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t}\right\}$.
Lemma 0.2 After we have completed Gram-Schmidt, we have $<\mathbf{v}_{i}, \mathbf{v}_{j}>=0$ for $i \neq j$.
Proof: Use induction on t so that are induction hypothesis is that $<\mathbf{v}_{i}, \mathbf{v}_{j}>=0$ for $1 \leq i<j<t$. Assume $i<j=t$ and then

$$
<\mathbf{v}_{i}, \mathbf{v}_{t}>=<\mathbf{v}_{i}, \mathbf{u}_{t}>-<\mathbf{v}_{i}, \operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{t}>-<\mathbf{v}_{i}, \operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{t}>\cdots-<\mathbf{v}_{i}, \operatorname{proj}_{\mathbf{v}_{j-1}} \mathbf{u}_{t}>
$$

Using induction that $<\mathbf{v}_{i}, \mathbf{v}_{j}>=0$ for $1 \leq i<j<t$, we can get rid of all the projection terms except the last so that

$$
<\mathbf{v}_{i}, \mathbf{v}_{t}>=<\mathbf{v}_{i}, \mathbf{u}_{t}>-<\mathbf{v}_{i}, \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{u}_{t}>=<\mathbf{v}_{i}, \mathbf{u}_{t}>-\frac{<\mathbf{v}_{i}, \mathbf{u}_{t}>}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle}<\mathbf{v}_{i}, \mathbf{v}_{i}>=0
$$

This completes the proof.

Example

$$
\begin{gathered}
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\mathbf{v}_{1}=\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\mathbf{u}_{2}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-\frac{3}{3}\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] . \\
\mathbf{v}_{3}=\mathbf{u}_{3}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{3}-\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]-\frac{3}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{-1}{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 / 2 \\
-1 / 2
\end{array}\right]
\end{gathered}
$$

Then the following three vectors are an orthogonal basis for \mathbf{R}^{n}.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
-1 / 2 \\
-1 / 2
\end{array}\right]
$$

Ther are not orthonomal but you can dvide them by their lengths to obtain an orthonormal basis for \mathbf{R}^{n} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{3} \tag{1}\\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
2 / \sqrt{6} \\
-1 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right]
$$

One application is in (2) below.
Example An important example of an orthogonal basis arises for continuous functions when we define

$$
<f, g>=\int_{0}^{2 \pi} f(x) g(x) d x
$$

One can verify that the $2 n+1$ functions

$$
1, \sin (x), \cos (x), \sin (2 x), \cos (2 x), \ldots, \sin (n x), \cos (n x)
$$

are orthogonal (I can do the first few easily!). To obtain an orthonormal basis we must devide by length.

$$
\int_{0}^{2 \pi} 1 d x=2 \pi
$$

so

$$
<\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{2 \pi}}>=1
$$

Similarly

$$
\int_{0}^{2 \pi} \sin ^{2}(x) d x=\pi
$$

and so

$$
<\frac{1}{\sqrt{\pi}} \sin (x), \frac{1}{\sqrt{\pi}} \sin (x)>=1
$$

Orthogonal Matrices

Many interesting thing happens when we have an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in \mathbf{R}^{n}. Let M be the $n \times n$ matrix formed as $M=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \cdots \mathbf{v}_{n}\right]$. we compute that $M^{T} M=I$ since the i, j entry of $M^{T} M$ is the dot product $\mathbf{v}_{i}^{T} \mathbf{v}_{j}$. Thus $M^{T}=M^{-1}$.

Definition 0.3 We say an $n \times n M$ is an orthogonal matrix if $M^{T}=M^{-1}$. If M is an orthogonal matrix then the rows of M form an orthonormal basis for \mathbf{R}^{n} and the columns of M form an orthonormal basis for \mathbf{R}^{n}.

Example

Using the orthonormal basis from (1), we obtain

$$
M=\left[\begin{array}{ccc}
1 / \sqrt{3} & 0 & 2 / \sqrt{6} \tag{2}\\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6}
\end{array}\right]
$$

