
MATH 223. Orthonormal bases and Gram-Schmidt process. Richard Anstee

Consider a vector space V with an inner product < , >: V × V → R. We are interested in
finding orthonormal bases for vector spaces. An orthonomal basis {w1,w2, . . . ,wt} is a basis so
that

< wi,wj >=

{
1 if i = j
0 if i 6= j

An orthonomal basis has the basis vectors mutually orthogonal and of unit length.
Let U be a vector subspace of V with U having some basis {u1,u2, . . . ,uk}. We seek a set

of vectors {v1,v2, . . . ,vk} which form an othonormal basis for U . The way we implement Gram-
Schmidt for hand calculation, we do not normalize our vectors until the last step to avoid all the
square roots.

First start with k = 2. Let U be a vector subspace of V with U having some basis {u1,u2}.
We set

v1 = u1.

Then we do the standard projection (if you are familiar with this in Physics),

v2 = u2 − projv1
u2

We readily compute that

< v1,v2 >=< v1,u2 > − < v1, projv1
u2 >=< v1,u2 > −

< u2,v1 >

< v1,v1 >
< v1,v1 >= 0

Also we note that v1,v2 ∈ span(u1,u2) and moreover, we may write the equations as

u1 = v1,

u2 = v2 + projv2
u2.

Thus u1,u2 ∈ span(v1,v2) from which we conclude span(u1,u2) = span(v1,v2). This becomes the
inductive step in our proof.

Example Say we have discovered that span{u1,u2} is a basis for an eigenspace given by the
equation 3x− 2y + z = 0. Then we can obtain an orthonormal basis for that eigenspace. Here the
inner product is the dot product.

u1 =

−1/3
0
1

 ,u2 =

 2/3
1
0


We clear fractions and instead use

u1 =

−1
0
3

 ,u2 =

 2
3
0



v1 = u1 =

−1
0
3

 , v2 = u2 − projv1
u2 =

 2
3
0

−
−1

0
3

 ·
 2

3
0


−1

0
3

 ·
−1

0
3


−1

0
3





=

 2
3
0

− −2

10

−1
0
3

 =


18
10

3
6
10

 could use

 18
30
6

 or

 3
5
1


You may check that v1 · v2 = 0 and of course span(u1,u2) = span(v1,v2). The latter isn’t
immediately obvious until you look at the equation determining v2.

The general Gram-Schmidt algorithm (where we hold off normalizing our vectors until later)
can be written is as follows:

v1 = u1.
v2 = u2 −projv1

u2

v3 = u3 −projv1
u3 −projv2

u3
...

vk = uk −projv1
uk −projv2

uk · · · −projvk−1
uk

Lemma 0.1 span{u1,u2, . . . ,ut} = span{v1,v2, . . . ,vt}

Proof: We do this by induction on t. The result is easy for t = 1, 2 as we have done above. Now
imagine we are defining vt from ut subtracting all the projections namely vt = ut − projv1

ut −
projv2

ut · · · − projvt−1
ut. We immediately have vt ⊆ span{v1,v2, . . . ,vt−1,ut} and so using in-

duction that span{v1,v2, . . . ,vt−1} = span{u1,u2, . . . ,ut−1} we deduce that {v1,v2, . . . ,vt} ⊆
span{u1,u2, . . . ,ut}. In a similar way we have ut = vt + projv1

ut + projv2
ut · · ·+ projvt−1

ut and so
using span{u1,u2, . . . ,ut−1} = span{v1,v2, . . . ,vt−1}, we obtain ut ∈ span{v1,v2, . . . ,vt}. Thus
span{u1,u2, . . . ,ut} ⊆ {v1,v2, . . . ,vt}.

We may conclude span{v1,v2, . . . ,vt} = span{u1,u2, . . . ,ut}.

Lemma 0.2 After we have completed Gram-Schmidt, we have < vi,vj >= 0 for i 6= j.

Proof: Use induction on t so that are induction hypothesis is that < vi,vj >= 0 for 1 ≤ i < j < t.
Assume i < j = t and then

< vi,vt >=< vi,ut > − < vi, projv1
ut > − < vi, projv2

ut > · · · − < vi, projvj−1
ut > .

Using induction that < vi,vj >= 0 for 1 ≤ i < j < t, we can get rid of all the projection terms
except the last so that

< vi,vt >=< vi,ut > − < vi, projvi
ut >=< vi,ut > −

< vi,ut >

< vi,vi >
< vi,vi >= 0

This completes the proof.

Example

u1 =

 1
1
1

 ,u2 =

 1
2
0

 ,u3 =

 2
0
1



v1 = u1 =

 1
1
1

 , v2 = u2 − projv1
u2 =

 1
2
0

− 3

3

 1
1
1

 =

 0
1
−1

 .

v3 = u3 − projv1
u3 − projv2

u3 =

 2
0
1

− 3

3

 1
1
1

− −1

2

 0
1
−1

 =

 1
−1/2
−1/2





Then the following three vectors are an orthogonal basis for Rn.

v1 =

 1
1
1

 , v2 =

 0
1
−1

 , v3 =

 1
−1/2
−1/2


Ther are not orthonomal but you can dvide them by their lengths to obtain an orthonormal basis
for Rn:

v1 =

 1/
√

3
1/
√

3
1/
√

3

 , v2 =

 0
1/
√

2
−1/
√

2

 , v3 =

 2/
√

6
−1/
√

6
−1/
√

6

 (1)

One application is in (2) below.

Example An important example of an orthogonal basis arises for continuous functions when we
define

< f, g >=
∫ 2π

0
f(x)g(x)dx.

One can verify that the 2n+ 1 functions

1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx)

are orthogonal (I can do the first few easily!). To obtain an orthonormal basis we must devide by
length. ∫ 2π

0
1dx = 2π

so

<
1√
2π
,

1√
2π

>= 1.

Similarly ∫ 2π

0
sin2(x)dx = π

and so

<
1√
π

sin(x),
1√
π

sin(x) >= 1.

Orthogonal Matrices
Many interesting thing happens when we have an orthonormal basis {v1,v2, . . . ,vn} in Rn. Let

M be the n× n matrix formed as M = [v1 v2 v3 · · ·vn]. we compute that MTM = I since the i, j
entry of MTM is the dot product vTi vj. Thus MT = M−1.

Definition 0.3 We say an n×n M is an orthogonal matrix if MT = M−1. If M is an orthogonal
matrix then the rows of M form an orthonormal basis for Rn and the columns of M form an
orthonormal basis for Rn.

Example
Using the orthonormal basis from (1), we obtain

M =

 1/
√

3 0 2/
√

6
1/
√

3 1/
√

2 −1/
√

6
1/
√

3 −1/
√

2 −1/
√

6

 (2)


