Field Axioms

A field is a set of elements \mathbf{F} which we call scalars when used in a vector space. A quick check verifies that the real numbers \mathbf{R}, the complex numbers \mathbf{C} and the rational numbers \mathbf{Q} all are examples of fields. The integers \mathbf{Z} are not (because no multiplicative inverses). There are other useful examples of fields which we do not use in this course.
In what follows α, β, γ are arbitrary elements of \mathbf{F}
$\forall \alpha, \beta \in \mathbf{F}, \alpha+\beta=\beta+\alpha$ (commutativity)
$\forall \alpha, \beta, \gamma \in \mathbf{F}, \alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$ (associativity)
$\exists 0$ with $\forall \alpha \in \mathbf{F}, \alpha+0=\alpha$
$\forall \alpha \in F, \exists-\alpha \in F$ with $\alpha+(-\alpha)=0$
$\forall \alpha, \beta \in \mathbf{F}, \alpha \beta=\beta \alpha$ (commutativity)
$\forall \alpha, \beta, \gamma \in \mathbf{F}, \alpha(\beta \gamma)=(\alpha \beta) \gamma$ (associativity)
$\exists 1$ with $\forall \alpha \in \mathbf{F}, \alpha 1=\alpha$
$\forall \alpha \in \mathbf{F}$ with $\alpha \neq 0, \exists \alpha^{-1}$ with $\alpha \alpha^{-1}=1$
$\forall \alpha, \beta, \gamma \in \mathbf{F}, \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$

Vector Spaces Axioms

We have as set V of vectors and a field \mathbf{F} (typically \mathbf{R} in this course) of scalars.

In what follows $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are arbitrary elements of V and k, ℓ are arbitrary elements of \mathbf{F}.
$\forall \mathbf{u}, \mathbf{v} \in V, \mathbf{u}+\mathbf{v} \in V$ (closure)
$\forall \mathbf{u} \in V \quad \forall k \in \mathbf{F}, k \mathbf{u} \in V$ (closure)
$\forall \mathbf{u}, \mathbf{v} \in V, \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutativity)
$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V,(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associativity)
$\exists \mathbf{0}$ (that is unique) with $\forall \mathbf{u} \in V, \mathbf{0}+\mathbf{v}=\mathbf{v}$
$\forall k \in \mathbf{F} \forall \mathbf{u}, \mathbf{v} \in V k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ (distributivity)
$\forall k, \ell \in \mathbf{F} \forall \mathbf{u} \in V(k+\ell) \mathbf{u}=k \mathbf{u}+\ell \mathbf{u}$ (distributivity)
$\forall k, \ell \in \mathbf{F} \forall \mathbf{u} \in V \quad k \ell \mathbf{u}=k(\ell \mathbf{u})$
$\forall \mathbf{u} \in V 1 \cdot \mathbf{u}=\mathbf{u}$

