THE UNIVERSITY OF BRITISH COLUMBIA
 Sessional Examination - December 2009
 MATH 223: Linear Algebra
 Instructor: Dr. R. Anstee, section 102

Special Instructions: No Aids. No calculators or cellphones.
time: 3 hours
You must show your work and explain your answers.

1. (15 marks) Consider the matrix equation $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & 3 & 3 & 1 & 1 \\
2 & 1 & 4 & 5 & 2 & 2 \\
3 & -1 & 1 & 5 & 3 & 3 \\
1 & -1 & -1 & 1 & 2 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
9 \\
15 \\
15 \\
5
\end{array}\right]
$$

There is an invertible matrix M so that

$$
M A=\left[\begin{array}{cccccc}
1 & 0 & 1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad M \mathbf{b}=\left[\begin{array}{l}
6 \\
3 \\
2 \\
0
\end{array}\right]
$$

a) (2 marks) What is $\operatorname{rank}(A)$?
b) (1 marks) What is $\operatorname{rank}(M)$?
c) (4 marks) Give a vector parametric form for the set of solutions to $A \mathbf{x}=\mathbf{b}$.
d) (6 marks) Give a basis for the row space of A. Give a basis for the column space of A. Give a basis for the null space of A.
e) (2 marks) How many columns would be required to add to A so that the resulting matrix has full rank; namely rank 4 . Would adding \mathbf{b} to A be any help?
2. (15 marks) Let

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

Determine an orthonormal basis of eigenvectors and hence an orthogonal matrix Q and a diagonal matrix D so that $A Q=Q D$. You may find it useful to know that 0 is an eigenvalue of A.
3. (5 marks) Determine an equation of the plane through the origin whose set of vectors is the vector space spanned by $(1,2,3)^{T}$ and $(2,3,4)^{T}$.
4. (10 marks) a) (3 marks) Let Z denote the 3×3 matrix of all zeroes. Give an orthogonal diagonalizing matrix for Z.
b) (3 marks) Compute $\left\|\frac{4}{223}(3,2,1)^{T}\right\|$.
c) (4 marks) Compute the matrix representing the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ (with respect to the standard basis) with T defined as

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=2\left[\begin{array}{l}
x \\
y
\end{array}\right]-(x+2 y)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

5. (10 marks) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a basis for \mathbf{R}^{2} and let T be the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that

$$
T\left(\mathbf{v}_{1}\right)=2 \mathbf{v}_{1}+\mathbf{v}_{2}, \quad T\left(\mathbf{v}_{2}\right)=\mathbf{v}_{2}
$$

a) (5 marks) Find the matrix representing T with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
b) (5 marks) Find the matrix representing T with respect to the standard basis when we are given that

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

6. (5 marks) Let U, V be bases for \mathbf{R}^{3} and let E be the standard basis. Let A be the change of basis matrix going from U coordinates to E coordinates, let B be the change of basis matrix going from V coordinates to E coordinates, and let C be the matrix going from U coordinates to V coordinates. Also let D be the matrix corresponding to the linear transformation T written with respect to the basis U. Please give a simple interpretation (as simple as possible) for the matrix F, given below:

$$
F=B C D A^{-1}
$$

7. (10 marks)

$$
\text { Let } S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
-3 \\
-4 \\
-2 \\
-5
\end{array}\right]\right\}
$$

a) (5 marks) Find an orthogonal basis for S.
b) (5 marks) Project the vector $(10,10,0,0)^{T}$ onto the vector space S. (The numbers should work out nicely). You can check your work by subtracting the projection from (10, 10, 0, 0) ${ }^{T}$ and seeing if the resulting vector is in S^{\perp}. Indicate (without having to solve) the system of equations you would have to solve in order to find the 'least squares' estimate for $(x, y, z)^{T}$ in the 'equation'

$$
\left[\begin{array}{ccc}
1 & -1 & -3 \\
2 & 3 & -4 \\
2 & 3 & -2 \\
1 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
10 \\
0 \\
0
\end{array}\right]
$$

8. (10 marks) Assume A is a symmetric 3×3 matrix with $\operatorname{det}(A-\lambda I)=-(\lambda-2)(\lambda-3)^{2}$. Assume A has $(1,1,2)^{T}$ as an eigenvector of eigenvalue 2 . Give a vector parametric form for the eigenspace of eigenvalue 3 .
9. (10 marks) Assume A is a 3×3 matrix with eigenvalues $1, \frac{1}{2},-\frac{1}{2}$ with associated eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Let a, b, c be given and let $\mathbf{x}_{0}=a \mathbf{v}_{1}+b \mathbf{v}_{2}+c \mathbf{v}_{3}$. Then we may generate a sequence $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ using the recursion $\mathbf{x}_{i+1}=A \mathbf{x}_{i}$ for $i \geq 0$. Show that

$$
\lim _{n \rightarrow \infty} \mathbf{x}_{n}=a \mathbf{v}_{1}
$$

10. (10 marks) Let Q be an orthogonal matrix. Given two vectors \mathbf{x}, \mathbf{y}, we can define the distance between \mathbf{x} and \mathbf{y} as $\|\mathbf{x}-\mathbf{y}\|$. Show that

$$
\|\mathbf{x}-\mathbf{y}\|=\|Q \mathbf{x}-Q \mathbf{y}\|
$$

(we may interpret this as saying that the linear transformation corresponding to an orthogonal matrix will preserve distances).

100 Total marks

