Be sure this exam has 3 pages.

## THE UNIVERSITY OF BRITISH COLUMBIA

## Sessional Examination - December 2008

MATH 223: Linear Algebra
Instructor: Dr. R. Anstee, section 101
Special Instructions: No Aids. No calculators or cellphones.
time: 3 hours
You must show your work and explain your answers.

1. [15 marks] Consider the matrix equation $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 2 & 0 & -1 & 1 \\
2 & 3 & 4 & 1 & -1 & 3 \\
1 & 2 & 2 & 1 & 0 & 2 \\
1 & 3 & 2 & 2 & 2 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
2 \\
7 \\
5 \\
9
\end{array}\right]
$$

There is an invertible matrix $M$ so that

$$
M A=\left[\begin{array}{cccccc}
1 & 1 & 2 & 0 & -1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad M \mathbf{b}=\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]
$$

a) [2 marks] What is $\operatorname{rank}(A)$ ?
b) [4 marks] Give the vector parametric form for the set of solutions to $A \mathbf{x}=\mathbf{b}$.
c) [6 marks] Give a basis for the row space of $A$. Give a basis for the column space of $A$. Give a basis for the null space of $A$.
d) [ 2 marks] Let $A^{\prime}$ be the $4 \times 5$ matrix obtained by deleting the 5 th column of $A$ from $A$. What is the rank of $A^{\prime}$ ?
2. [15 marks] Let

$$
A=\left[\begin{array}{lll}
3 & 2 & 2 \\
2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

Determine an orthonormal basis of eigenvectors and hence an orthogonal matrix $Q$ and a diagonal matrix $D$ so that $A=Q D Q^{T}$. You may find it useful to know that 5 is an eigenvalue of $A$.
3. [7 marks] Determine the matrix $A$ corresponding to the linear transformation from $\mathbf{R}^{3}$ to $\mathbf{R}^{3}$ of projection onto the vector $(1,2,3)^{T}$.
4. [8 marks] Consider the $2 \times 2$ matrix $A$ as follows

$$
A=\left[\begin{array}{cc}
-4 & 4 \\
-12 & 10
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right]
$$

Define $a_{n}, b_{n}, c_{n}, d_{n}$ using

$$
A^{n}=\left[\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right]
$$

Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}, \quad \lim _{n \rightarrow \infty} \frac{c_{n}}{d_{n}}
$$

5. [10 marks] You are attempting to solve for $x, y, z$ in the matrix equation $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right]
$$

Find a 'least squares' choice $\hat{\mathbf{b}}$ in the column space of $A$ (and hence with $\|\mathbf{b}-\hat{\mathbf{b}}\|^{2}$ being minimized) and then solve the new system $A \mathbf{x}=\hat{\mathbf{b}}$ for $x, y, z$.
6. [15 marks] The differentiation operator ' $\frac{d}{d x}$ ' maps (differentiable) functions into functions. The operator can be viewed as a linear transformation on the vector space of differentiable functions. Consider the 3 -dimensional vector space $P_{2}$ of all polynomials in $x$ of degree at most 2 . Then two possible bases for $P_{2}$ are $V=\left\{1, x, x^{2}\right\}$ and $U=\left\{1+x, x+x^{2}, x^{2}+1\right\}$.
a) [5 marks] Give the $3 \times 3$ matrix $A$ representing the linear transformation $\frac{d}{d x}$ acting on $P_{2}$ with respect to the basis $V$.
b) [5 marks] Give the matrix $B$ representing $\frac{d}{d x}$ with respect to the basis $U$. You may find it helpful to note that

$$
\begin{array}{cccc}
1 & = & \frac{1}{2}(1+x) & -\frac{1}{2}\left(x+x^{2}\right) \\
x & = & +\frac{1}{2}\left(x^{2}+1\right) \\
x^{2}(1+x) & +\frac{1}{2}\left(x+x^{2}\right) & -\frac{1}{2}\left(x^{2}+1\right) \\
x^{2} & -\frac{1}{2}(1+x) & +\frac{1}{2}\left(x+x^{2}\right) & +\frac{1}{2}\left(x^{2}+1\right)
\end{array}
$$

c) [5 marks] Is matrix $A$ diagonalizable?
7. [10 marks] Let $V$ be a finite dimensional vector space and assume $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is a linearly independent set of $k$ vectors and assume $Y=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}, \mathbf{y}_{k+1}\right\}$ is a linearly independent set of $k+1$ vectors. Then show that there is some vector in $Y$, say $\mathbf{y}_{j}$, so that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{j}\right\}$ is a linearly independent set of $k+1$ vectors.
8. [10 marks] For what values of $k$ is the following matrix diagonalizable?

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
k & 1 & 1 \\
2 & -2 & 4
\end{array}\right]
$$

Hint: determine eigenvalues for $A$. What is required to make $A$ diagonalizable?
9. [10 marks]
a) [4 marks] Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be an orthonormal basis for $\mathbf{R}^{3}$. For any $\mathbf{v} \in \mathbf{R}^{3}$, if $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{2} \mathbf{v}_{3}$ then show that $\mathbf{v}^{T} \mathbf{v}=\|\mathbf{v}\|^{2}=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}$.
b) [6 marks] Let $A$ be a symmetric $3 \times 3$ matrix with eigenvalues $\lambda_{1}>\lambda_{2}>\lambda_{3}$. Show that

$$
\lambda_{1}=\max _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{x}
$$

where the maximum is taken over all vectors $\mathbf{x} \in \mathbf{R}^{3}$ with $\mathbf{x}^{T} \mathbf{x}=1$.

100 Total marks

