Math 184: Some notes on two differentiation rules.

Motivation for Chain Rule

We wish to motivate the formula

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

We first assert that

$$
(f(c x+d))^{\prime}=c f^{\prime}(c x+d) .
$$

This follows from noting that the curve $y=f(c x+d)$ is the curve of $y=f(c x)$ shifted d units to the left. Then we note that the curve $y=f(c x)$ runs through the x values at a factor of c faster that does the curve $y=f(x)$ and hence the slopes are c times as big. You could verify this easily using the limit definition of derivative. We need $c \neq 0$ so that $c h \rightarrow 0$ as $h \rightarrow 0$.

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(c(x+h)+d)-f(c x+d)}{h}=\lim _{h \rightarrow 0} c \frac{f(c x+d+c h)-f(c x+d)}{c h} \\
=c \lim _{c h \rightarrow 0} \frac{f(c x+d+c h)-f(c x+d)}{c h}=c f^{\prime}(c x+d)
\end{gathered}
$$

Consider a specific point x_{0}. We will verify/justify the chain rule at x_{0}; namely $\left(f(g(x))^{\prime}\right.$ at $x=x_{0}$ is

$$
f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right) .
$$

Near x_{0} we can approximate $g(x)$ by the linear approximation $m x+b$ where $m=g^{\prime}\left(x_{0}\right)$ and b is chosen so that $m x_{0}+b=g\left(x_{0}\right)$. Thus $g(x) \approx m x+b$ for x near x_{0}. Now we assert that $f(g(x)) \approx f(m x+b)$ (using the continuity of f, to be precise). We already note that $(f(m x+b))^{\prime}=$ $m f^{\prime}(m x+b)=g^{\prime}\left(x_{0}\right) f^{\prime}(m x+b)$ and so $(f(g(x)))^{\prime}$ at $x=x_{0}$ is approximately $g^{\prime}\left(x_{0}\right) f^{\prime}\left(g\left(x_{0}\right)\right)$ (using $\left.m x_{0}+b=g\left(x_{0}\right)\right)$. This is the Chain Rule!

Motivation for the Product Rule
We wish to motivate the Product Rule

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

We use the same ideas as above. Consider a specific point x_{0}. We will verify/justify the product rule at x_{0}; namely $(f(x) g(x))^{\prime}$ at $x=x_{0}$ is $f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)$.

Near x_{0} we can approximate $f(x)$ by a linear function, the tangent line at x_{0}, say $m_{f} x+b_{f}$. We have $m_{f}=f^{\prime}\left(x_{0}\right)$ and $f\left(x_{0}\right)=m_{f} x_{0}+b_{f}$. Similarly we can approximate $g(x)$ by a linear function, the tangent line at x_{0}, say $m_{g} x+b_{g}$. We have $m_{g}=g^{\prime}\left(x_{0}\right)$ and $g\left(x_{0}\right)=m_{g} x_{0}+b_{g}$. Thus, for x near x_{0} we have $f(x) \approx m_{f} x+b_{f}$ and $g(x) \approx m_{g} x+b_{g}$. Thus, for x near x_{0} we have

$$
\left.\begin{array}{rl}
f(x) g(x) \approx\left(m_{f} x+b_{f}\right)\left(m_{g} x+b_{g}\right) & =m_{f} m_{g} x^{2}+\left(m_{f} b_{g}+m_{g} b_{f}\right) x+b_{f} b_{g} . \\
\text { Thus } & (f(x) g(x))^{\prime} \\
\text { Hence }(f(x) g(x))^{\prime} \text { at } x=x_{0} & \approx \\
& \approx 2 m_{f} m_{g} x+\left(m_{f} b_{g}+m_{g} b_{f}\right) \\
& =m_{f}\left(m_{g} m_{g} x_{0}+b_{g}\right)+m_{f} b_{g}\left(m_{g} b_{f}\right) \\
& =
\end{array} f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+b_{f}^{\prime}\left(x_{0}\right) f\left(x_{0}\right)\right) .
$$

This is the product rule. Interestingly, this is perhaps harder than the proof given in class.
Neither of these motivations is a proof, but can be made into a proof using the formal definition for limits and derivatives.

