Solutions to Problems
on the Newton-Raphson Method

These solutions are not as brief as they should be: it takes work to
be brief. There will, almost inevitably, be some numerical errors. Please
inform me of them at adler@math.ubc.ca. We will be excessively casual in
our notation. For example, x3 = 3.141592654 will mean that the calculator
gave this result. It does not imply that x3 is exactly equal to 3.141592654.

We should always treat at least the final digit of a calculator answer
with some skepticism. Indeed different calculators can give (mildly) different
answers. In applied work, we need to pay heed to the fact that the standard
tools, such as calculators and computer programs, work only to limited
precision. In a complex calculation, minor inaccuracies may result in a
significant error.

1. Use the Newton-Raphson method, with 3 as starting point, to find a
fraction that is within 1078 of v/10. Show (without using the square
root button) that your answer is indeed within 1078 of the truth.

Solution: The number /10 is the unique positive solution of the equa-
tion f(x) = 0 where f(z) = 22 — 10. We use the Newton Method to
approximate a solution of this equation.

Let zg be our initial estimate of the root, and let x, be the n-th
improved estimate. Note that f’(z) = 2z. The Newton Method re-
currence is therefore
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To make the expression on the right more beautiful, and calculations
easier, it is useful to manipulate it a bit. We get
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Compute, starting with z9 = 3. Then =1 = (1/2)(zo + 10/x9) =
(1/2)(3 +10/3) = 19/6. And zo = (1/2)(19/6 + 60/19) = 721/228.
We could go on calculating with fractions—and there is interesting
mathematics involved—but from here on we switch to the calculator.

If we allow the = sign to be used sloppily, we get x1 = 3.166666667.
Then xo = (1/2)(z1 + 10/21) = 3.162280702, and z3 = 3.16227766,
and x4 = 3.16227766.

The calculator says that z3 = x4 to 8 decimal places. We can therefore
dare hope that 3.16227766 is close enough. One way of checking is to
let a = 3.16227765 and b = 3.16227767. A quick calculation shows—if
the squaring button can be trusted, and it is one of the ones that can
be—that f(a) < 0 while f(b) > 0.

Thus the function f(z) changes sign as x goes from a to b. It follows by
the Intermediate Value Theorem that f(x) = 0 has a solution (namely
v/10) between a and b. Since v/10 lies in the interval (a,b), and the
distance from 3.16227766 to either a or b is 1078, it follows that the
distance from 3.16227766 to /10 is less than 1075,

. Let f(z) = 2% — a. Show that the Newton Method leads to the recur-

rence
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Heron of Alexandria (60 CE?) used a pre-algebra version of the above
recurrence. It is still at the heart of computer algorithms for finding
square roots.

Solution: We have f(x) = 2x. The Newton Method therefore leads to
the recurrence
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Bring the expression on the right hand side to the common denomi-
nator 2z,,. We get
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. Newton’s equation y3 — 2y — 5 = 0 has a root near y = 2. Starting
with yo = 2, compute y1, y2, and ys3, the next three Newton-Raphson
estimates for the root.



Solution: Let f(y) = y3 — 2y — 5. Then f'(y) = 3y? — 2, and the
Newton Method produces the recurrence
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(there was no good case for simplification here). Start with the esti-
mate yo = 2. Then y; = 21/10 = 2.1. It follows that (to calculator
accuracy) yo = 2.094568121 and y3 = 2.094551482. These are almost
the numbers that Newton obtained (see the notes). But Newton in
effect used a rounded version of yo, namely 2.0946.

. Find all solutions of €** = x + 6, correct to 4 decimal places; use the
Newton Method.

Solution: Let f(x) = e** —x — 6. We want to find where f(z) = 0.
Note that f/(z) = 2¢2* — 1, so the Newton Method iteration is
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We need to choose an initial estimate xg. This can be done in various
ways. We can (if we are rich) use a graphing calculator or a graphing
program to graph y = f(x) and eyeball where the graph crosses the
z-axis. Or else, if (like the writer) we are poor, we can play around
with a cheap calculator, a slide rule, an abacus, or scrap paper and a
dull pencil.

It is easy to verify that f(1) is about 0.389, and that f(0.95) is about
—0.2641, so by the Intermediate Value Theorem there is a root between
0.95 and 1. And since f(0.95) is closer to 0 than is f(1), maybe the root
is closer to 0.95 than to 1. Let’s make the initial estimate xq = 0.97.

The calculator then gives x1 = 0.970870836, and then xo = 0.97087002.
Since these two agree to 5 decimal places, we can perhaps conclude
with some (but not complete) assurance that the root, to 4 deci-
mal places, is 0.9709. If we want greater assurance, we can compute
£(0.97085) and f(0.97095) and hope for a sign change, which shows
that there is a root between 0.97085 and 0.97095. There is indeed
such a sign change: f(0.97085) is about —2.6 x 10~% while f(0.97095)
is about 1073.

But the problem asked for all the solutions. Are there any others?



Draw the graphs of y = €?* and y = = + 6. The solutions of our
equation are the x-coordinates of all places where the two curves meet.
Even a rough picture makes it clear that the curves meet at some
negative x. Since e?* decays quite rapidly as x decreases through
negative values, it seems reasonable that there will be a single negative
root, barely larger than —6. Certainly it cannot be smaller, since to
the left of —6, = + 6 is negative but e?* is not. And it seems plausible
that the positive root we found is the only one.

We first estimate the negative root. It is reasonable to start with
g = —6. Then z; = —5.999993856. We can guess that the root is
indeed —6 to 4 decimal places. For certainty, we should check that
f(x) has different signs at —6 and —5.9999. It does.

Let’s check that there are no more roots. Note that f/(z) = 2e2* — 1.
Thus f'(z) > 1 when 2 > 0, and in particular f is increasing from
0 on, indeed it starts increasing at z = —(1/2)1In(2). Note also that
f(0) < 0, and that, for example, f(1) > 0. So there is at least one root
r between 0 and 1. But there can only be one root there. For f(x) is
increasing in the first quadrant, so can cross the z-axis only once.

A similar argument shows that there is a single negative root. For
since f(x) is negative in the interval (—oo, (1/2)1n2), the function f
is decreasing in this interval, so can cross the z-axis at most once in
this interval. We saw already that it crosses the z-axis near x = —6.

Note. There are many other ways of solving the problem. For example
our equation is equivalent to 2z = In(z + 6), and we could apply the
Newton Method to 2z — In(z + 6). Or we can use basically the same
approach as above, but let y = 22. We end up solving ¢¥ = y/2 + 6.
If we are doing the calculations by hand, this saves some arithmetic.

. Find all solutions of 5x + Inz = 10000, correct to 4 decimal places;
use the Newton Method.

Solution: Let f(x) = 5x 4+ Inz — 10000. We need to approximate
the root(s) of the equation f(x) = 0. The function f is only defined
for positive x. Note that the function is steadily increasing, since
f'(x) =5+ 1/x > 0 for all positive x. It follows that the function
can be 0 for at most one value of z. It is easy to verify that f(1) <0
and f(2000) > 0, and therefore the equation has a root in the interval
(1,2000).



The Newton Method iteration is easy to set up. We get

52, + Inz,, — 10000
5+1/x, '

Tp41 = Tn —

We could simplify the right hand side somewhat. This is probably not
worthwhile.

Now we need to choose zg. The idea is that even when z is large, Inx
is by comparison quite small. So as a first approximation we can forget
about the Inx term, and decide that f(z) is approximately 52 — 10000.
Thus the root of our original equation must be near « = 2000.

Shall we choose g = 20007 It is sensible to do so. But we can
do better. Note that In(2000) is about 7.6. So we can take 5xg =
10000 — 7.6. Let xg = 1998.48.

A quick computation gives x1 = 1998.479972. This agrees with xg to
4 decimal places, so the answer, correct to 4 decimal places, should be
1998.4800. If we feel like it, we can show by the usual “sign change”
procedure that this answer is indeed correct to 4 places.

Note. If we start with xg = 2000, it turns out that ;1 = 1998.479972,
so perhaps the extra thinking that went into starting with 1998.48 was
unnecessary. But it illustrates the fact that in some cases we can get
an extremely accurate estimate of a root without bringing out heavy
machinery.

. A calculator is defective: it can only add, subtract, and multiply.
Use the equation 1/z = 1.37, the Newton Method, and the defective
calculator to find 1/1.37 correct to 8 decimal places.

Solution: For convenience we write a instead of 1.37. Then 1/a is the
root of the equation

f(x)=0 where f(z)=a— é

We have f'(z) = 1/22, and therefore the Newton Method yields the
iteration

a—1/x,

1722 =z, — x%(a —1/zp) = 2, (2 — axy,).
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Note that the expression x,,(2—az;,,) can be evaluated on our defective
calculator, since it only involves multiplication and subtraction.



Pick z( reasonably close to 1/1.37. The choice zy = 1 would work out
fine, but I will start off a little closer, maybe by noting that 1.37 is
about 4/3 so its reciprocal is about 3/4. Choose z¢ = 0.75. We will
report answers as they come out of the calculator.

We get x1 = 29(2 — 1.37z¢) = 0.729375. Thus x2 = 0.729926589, and
r3 = 0.729927007. And it turns out that x4 = x3 to the 9 decimal
places that my calculator shows. So we can be reasonably confident
that 1/1.37 is equal to 0.72992701 to 8 decimal places.

I went out and spent almost $9 on a calculator with a “1/z” button.
It tells me that 1/1.37 is indeed equal to z3 to 9 decimal places. But it
was not necessary to spend all that money. To check that 0.72992701
is correct to 8 decimal places, it is enough to check by multiplication
that (1.37)(0.729927005) < 1 and (1.37)(0.729927015) > 1.

Note. In the early days of computing, the technique for finding 1/a
described above was of great practical importance. Computers had
addition, subtraction, and multiplication “hard-wired.” But division
was not hard-wired, and had to be done by software. Note that z/y =
x(1/y), so if multiplication is hard-wired, we can do division if we can
find reciprocals. And Newton’s Method was used to do that.

. (a) A devotee of Newton-Raphson used the method to solve the equa-
tion x'% = 0, using the initial estimate o = 0.1. Calculate the next
five Newton Method estimates.

(b) The devotee then tried to use the method to solve 3z'/3 = 0, using
zg = 0.1. Calculate the next ten estimates.

Solution (a) Let f(x) = #1%°. Then f'(z) = 1002% and the Newton
Method iteration is
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So, to calculator accuracy, 1 = 0.099, xo = .09801, x3 = 0.0970299,
x4 = 0.096059601, and x5 = 0.095099004.

Note the slow progress rate. The root is 0, of course, but in 5 steps
we have barely inched closer to the truth.

Tp4+1 = Tn

(b) Let f(z) = 3z'/3. Then f'(z) = 2=%/3, and the Newton Method
iteration becomes

3x1/3
Tp+l = Ty — Py = x, — 3, = —21,.
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Now everything is easy. The next 10 estimates are —0.2, 0.4, —0.8,
1.6, —3.2, 6.4, —12.8, 2.56, —5.12, and 10.24. It is obvious that things
are going bad. In fact, if we start with any non-zero estimate, the
Newton Method estimates oscillate more and more wildly.

Note. The above two examples—with very slow convergence in (a)
and total failure in (b)—are not at all typical. Ordinarily the Newton
Method is marvellously efficient, at least if the initial estimate is close
enough to the truth.

Note that in part (a), successive estimates were quite close to each
other, but not really close to the truth. So we need to be a little
cautious about the usual rule of thumb that we can stop when two
successive estimates agree to the number of decimals we are interested
in. But still, in most cases, the rule of thumb is a good one.

. Suppose that

fz) =

e~/ if g #0,
0 if x =0.

The function f is continuous everywhere, in fact differentiable arbi-
trarily often everywhere, and 0 is the only solution of f(x) = 0. Show
that if zg = 0.0001, it takes more than one hundred million iterations
of the Newton Method to get below 0.00005.

Solution: The differentiation (for x # 0) is straightforward. (Showing
that f/(0) = 0 is more delicate, but we don’t need that here.) By the

Chain Rule,
2¢~ 1/x2?

f/(.ilf) = e

Write down the standard Newton Method iteration. The e~1/%% terms
cancel, and we get

3 3
= In ivalent] —In
Tptl = Ty — 5 or equivalently =z, —z,41 = 5 "

Now the analysis is somewhat delicate. It hinges on the fact that if x,,
is close to 0, then 41 is very near to z,, meaning that each iteration
gains us very little additional accuracy.

Start with g = 0.0001. It is fairly easy to see that x,, > 0 for all n.
For z1 = xo(1 — :c(%/2), and in particular 0 < x1 < xg. The same idea
shows that 0 < zo < x1, but then 0 < x3 < 29, and so on forever.



Thus if we start with ¢ = 0.0001, the difference x,, — x,,+1 will always
be positive and equal to z3 /2, and in particular less than or equal to
(0.0001)3/2. So with each iteration there is a shrinkage of at most
5 x 10713, But to get from 0.0001 to 0.00005 we must shrink by more
than 5 x 1075, Thus we will need more than (5 x 107%)/(5 x 10713),
that is, 10% iterations. (More, because as we get closer to 0.00005, the
shrinkage per iteration is less than what we estimated.)

. Use the Newton Method to find the smallest and the second smallest
positive roots of the equation tan x = 4x, correct to 4 decimal places.

Solution: Draw the curves y = tanz and y = 4z. The roots of our
equation are the z-coordinates of the places where these two curves
meet.

A glance at the picture shows that (for x > 0) the curves meet at
x = 0, then at a point with x just shy of /2, and then again at a
point with z just shy of 37/2 (the pattern continues).

We first find the root that is near 7/2. Let f(z) = tanx — 4z. The
f'(z) = sec? z — 4, and the Newton Method recurrence is

tan x,, — 4z,
Tl = In T2 Tp—4

Some simplification is possible. For example, we can use the identity

sec2z = 1 + tan? z to rewrite the recurrence as

tan x,, — 4x,
x =T, - ——.
ntl " tan?z, — 3
This trick cuts down on the computational work. This was a particu-
larly important consideration in the old days when computations were
done by hand, with the aid of tables and slide rules.

For the first root, a bit of fooling around suggests taking x¢o = 1.4.
Then x1 = 1.393536477, xo = 1.393249609, and z3 = 1.393249075.
This suggests that to 4 decimal places the root is 1.3932. We can
verify this by the sign change criterion in the usual way.

For the second root, after some work we can for example arrive at the
initial estimate x¢g = 4.66. The computation is quite sensitive to the
right choice of initial value. And then we get x1 = 4.658806388 and
xo = 4.658778278. To 4 decimal places the root is 4.6588. We can
verify that we are close enough by the sign change criterion.
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Note. We may be nervous about using a casual sketch to locate the
first two positive roots. If we are, we can analyze the behaviour of
f(z) by looking at its derivative f'(z). Recall that f’(z) = sec? x — 4.
The sec function increases steadily in the interval (0,7/2). It follows
that f’(x) is negative in this interval up to the point where f’(x) = 0,
which happens when secx = 2, that is, when cosz = 1/2, at 7/3. So
f(z) decreases from x = 0 to x = 7/3, then increases. Since f(0) =0,
we conclude that f is negative in the interval (0,7/3), then increases.
It becomes very large positive near x = 7/2. So f(x) = 0 in exactly
one place in the interval (0,7/2). In a similar way, we can show that
f(z) = 0 at exactly one place in the interval (7/2,37/2).

Note. We attacked the problem in the ‘natural’ way, making the most
obvious choice for f(x). It turns out that, particularly for the second
positive root, and even more so say for the fifth positive root, we have
to be very careful in our choice of xg. The problem is that near the
roots the tan function is growing at a violent rate. A quite small
change in x can have a dramatic effect on tan x.

We can rewrite the equation tanx = 4z in ways that avoid most of
the problems. For instance, rewrite it as g(x) = 0 where g(z) =
sinz — 4z cos . The Newton-Raphson recurrence becomes

sin x,, — 4x,, coS T,

x =1, — .
ntl " Az, sinz, — 3cosx,

Calculations with this recurrence are quite a bit more numerically

stable than calculations with the ‘natural’ recurrence that we used

earlier.

The circle below has radius 1, and the longer circular arc joining A
and B is twice as long as the chord AB. Find the length of the chord
AB, correct to 18 decimal places.

Solution: This is somewhat of a trick question. Sorry! It seemed like
a good idea at the time.

Draw a perpendicular from O to AB, meeting AB at M. Let 6§ =
ZAOM. Standard trigonometry shows that the length of AB is 2sin 6.
The shorter arc joining A and B has length 26, so the longer arc has
length 2w — 26. The longer arc is twice the chord, and therefore

21w — 20 = 4sin 0.
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Nl

We can use the Newton Method to solve this equation as it stands.
Let f(0) =2sinf 4+ 0 — 7. Then f/(0) = 2cosf + 1, and the Newton
Method recurrence is
2sinf, + 0, — 7

2cosb, +1

‘9n+1 = 911 -

An ordinary calculator will only handle this to 8 or 9 places. The
scientific calculator that comes bundled with Microsoft Windows can
handle about 30.

But we can find the answer without doing any work by looking back
at a calculation done in the notes. We are solving m —60 = 2sin 6. Note
that by the symmetry of the sine function, we have sin 6 = sin(w — 0).
Let x = m — 0. Then our equation is equivalent to x = 2sin z.

It so happens that in the notes this equation is solved to high accuracy.
The positive root of this equation, to 19 places, is given there as x =
1.8954942670339809471. But the length of the chord is 2sin #, that is,
2sinx, and that is equal to x.

Find, correct to 5 decimal places, the z-coordinate of the point on the
curve y = Inz which is closest to the origin. Use the Newton Method.

Solution: Let (x,tanz) be a general point on the curve, and let S(z)
be the square of the distance from (x,tanz) to the origin. Then

S(z) = x> + In?x.

We want to minimize the distance. This is equivalent to minimizing
the square of the distance. Now the minimization process takes the
usual route. Note that S(z) is only defined when = > 0. We have

1 2
S'(z) =2z + o T _ “(z* + Inx).
x T
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Since Inx is increasing, and z? is increasing for = > 0, it follows that
S’(x) is always increasing. It is clear that S’(x) < 0 for a while, for
example at x = 1/2, and that S’(1) > 0. It follows that S’(x) must be
0 at some place r between 1/2 and 1, and that S’(z) < 0 if x < r and
S’(x) > 0 for x > r. We conclude that S(x) is decreasing up to z =r
and then increasing. Thus the minimum value of S(z), and hence of
the distance, is reached at x = r.

Our problem thus comes down to solving the equation S'(z) = 0.
We can use the Newton Method directly on S’(z), but calculations are
more pleasant if we observe that S’(x) = 0 is equivalent to x?+Inx = 0.
Let f(x) = 22 +Inx. Then f/(r) = 2z +1/z and we get the recurrence

2
x;, +Inz,

e T T S+ 1,

We need to find a suitable starting point xg. Experimentation with
a calculator suggests that we take xg = 0.65. Then x5 = 0.6529181,
and zo = 0.65291864. Since x7 agrees with x5 to 5 decimal places, we
can perhaps decide that, to 5 places, the minimum distance occurs at
x = 0.65292. If we have doubt, we can try to see whether f(z) has
different signs at 0.652915 and 0.652925. It does.

It costs a firm C(q) dollars to produce ¢ grams per day of a certain
chemical, where

C(q) = 1000 + 2q + 3¢*/3

The firm can sell any amount of the chemical at $4 a gram. Find
the break-even point of the firm, that is, how much it should produce
per day in order to have neither a profit nor a loss. Use the Newton
Method and give the answer to the nearest gram.

Solution: If we sell ¢ grams then the revenue is 4q. The break-even
point is when revenue is equal to cost, that is, when

4q = 1000 + 2q + 3¢*/>.

Let f(q) = 2¢—3¢*/3—1000. We need to solve the equation f(q) = 0. It
is worth asking first whether there is a solution, and whether possibly
there might be more than one.

Note that f(gq) < 0 for “small” values of ¢, indeed up to 500 and
beyond. Also, f(1000) > 0. Since f is continuous, it is equal to 0

11
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somewhere between 500 and 1000. We have f’(q) = 2 — ¢~ /3. From
this we conclude easily that f is increasing from ¢ = 1/8 on. It follows
that f(q) = 0 at exactly one place.

The Newton Method yields the recurrence

s — g 20— 3¢2/* —1000 g, + 1000, >
n - n -
2 —2q, '/ 2/ — 2

The simplification is not necessary, but it makes subsequent calcula-
tions a bit easier.

Where shall we start? A small amount of experimentation suggests
taking gg to be say 600. We then get ¢ = 607.6089386, and qo =
607.6067886, perhaps enough to conclude that to the nearest integer
the answer is 608. It is, for f(607.5) and f(608.5) have different signs.

Note. The problem is slightly easier to handle if we make the substi-
tution ¢ = z3. Then we end up trying to solve the equation g(z) = 0
where g(x) = 22% — 322 —1000. That way we avoid the unpleasantness
of dealing with fractional exponents.

A loan of A dollars is repaid by making n equal monthly payments of
M dollars, starting a month after the loan is made. It can be shown
that if the monthly interest rate is r, then

Ar_M(l—ﬁ).

A car loan of $10000 was repaid in 60 monthly payments of $250.
Use the Newton Method to find the monthly interest rate correct to 4
significant figures.

Solution: Even quite commonplace money calculations involve equa-
tions that cannot be solved by ‘exact’ formulas. Let r be the interest

rate. Then .
10000r =250 (1 — — | .
' ( 1+ r>6°>

If we are going to work by hand, it is maybe worthwhile to simplify a
bit to f(r) = 0 where

1
f(?“):407“+m—1
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and therefore
60

(147)8t"
The Newton Method iteration is now easy to write down. In raw form
it is

7/(r) =10 -

407, +1/(1 +1,)%0 — 1
Tnel = Tn —
40 — 60/(1 + 7,)81

Compute. Particularly if we do the work by hand, it is helpful to make
a good choice of rg. If the interest rate were 2.5% a month, the monthly
interest on $10,000 would be $250, and so with monthly payments of
$250 we would never pay off the loan. So the monthly interest rate
must have been substantially under 2.5%. A bit of fooling around
suggests taking rop = 0.015. We then find that r; = 0.014411839,
ro = 0.014394797 and r3 = 0.01439477. This suggests that to four
significant figures the monthly interest rate is 1.439%.
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