Forbidden Configurations: A Survey

Richard Anstee
UBC, Vancouver

UBC Okanagan, Aug. 22, 2009

Introduction

Forbidden configurations are first described as a problem area in a 1985 paper. The subsequent work has involved a number of coauthors: Farzin Barekat, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash, Miguel Raggi and Attila Sali but there are works of other authors (some much older, some recent) impinging on this problem as well (Balachandran, Dukes). For example, the definition of VC-dimension uses a forbidden configuration.

Survey at www.math.ubc.ca/~anstee

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{F}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & \hline 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & \hline 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & \hline 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.
Definition Let forb (m, F) be the largest function of m and F so that there exist a $m \times$ forb (m, F) simple matrix with no configuration F. Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains F as a configuration.

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & \hline 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.
Definition Let forb (m, F) be the largest function of m and F so that there exist a $m \times$ forb (m, F) simple matrix with no configuration F. Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains F as a configuration.
For example, forb $\left(m,\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=2, \quad$ forb $\left(m,\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right)=m+2$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Corollary Let F be a $k \times 1$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
f \circ r b\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Corollary Let F be a $k \times I$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$
Theorem (Füredi 83). Let F be a $k \times I$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$

Definition Let $\mathbf{1}_{k} \mathbf{0}_{\ell}$ denote the column with k 1's on top of $\ell 0$'s. Then let $\mathbf{1}_{k}=\mathbf{1}_{k} \mathbf{0}_{0}$.

Definition Let $\mathbf{1}_{k} \mathbf{0}_{\ell}$ denote the column with k 's on top of $\ell 0$'s. Then let $\mathbf{1}_{k}=\mathbf{1}_{k} \mathbf{0}_{0}$.

Definition Let $t \cdot M$ be the matrix [$M M \cdots M$] consisting of t copies of M placed side by side.

Definition Let $\mathbf{1}_{k} \mathbf{0}_{\ell}$ denote the column with k 's on top of $\ell 0$'s. Then let $\mathbf{1}_{k}=\mathbf{1}_{k} \mathbf{0}_{0}$.

Definition Let $t \cdot M$ be the matrix [$M M \cdots M$] consisting of t copies of M placed side by side.

Theorem (A, Füredi 86)
$\operatorname{forb}\left(m, t \cdot K_{k}\right)=\frac{t-2}{k+1}\binom{m}{k}(1+o(1))+\binom{m}{k}+\binom{m}{k-1}+\cdots\binom{m}{0}$

Definition Let $\mathbf{1}_{k} \mathbf{0}_{\ell}$ denote the column with k 1's on top of $\ell 0$'s. Then let $\mathbf{1}_{k}=\mathbf{1}_{k} \mathbf{0}_{0}$.

Definition Let $t \cdot M$ be the matrix [$M M \cdots M$] consisting of t copies of M placed side by side.

Theorem (A, Füredi 86)
$\operatorname{forb}\left(m, t \cdot K_{k}\right)=\frac{t-2}{k+1}\binom{m}{k}(1+o(1))+\binom{m}{k}+\binom{m}{k-1}+\cdots\binom{m}{0}$

Definition Let K_{k}^{ℓ} denote the $k \times\binom{ k}{\ell}$ simple matrix of all possible columns of sum ℓ on k rows.

Critical Substructures

Definition A critical substructure of a configuration F is a minimal configuration F^{\prime} contained in F such that

$$
\text { forb }(m, F)=\text { forb }\left(m, F^{\prime}\right)
$$

A critical substructure is what drives the construction yielding a lower bound forb (m, F) where some other argument provides the upper bound for forb (m, F).
A consequence is that for a configuration $F^{\prime \prime}$ which contains F^{\prime} and is contained in F, we deduce that

$$
\text { forb }(m, F)=\operatorname{forb}\left(m, F^{\prime \prime}\right)=\operatorname{forb}\left(m, F^{\prime}\right)
$$

Critical Substructures for K_{3}

$$
K_{3}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=\mathrm{forb}\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=\mathrm{forb}\left(m, 2 \cdot \mathbf{1}_{2}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
\left.K_{3}=\begin{array}{|l|lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=$ forb $\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=$ forb $\left(m, 2 \cdot \mathbf{1}_{2}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
K_{3}=\left[\begin{array}{l|lll|llll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=\mathrm{forb}\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=$ forb $\left(m, 2 \cdot \mathbf{1}_{2}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
K_{3}=\left[\begin{array}{llll|lll|l}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=\mathrm{forb}\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=\mathrm{forb}\left(m, 2 \cdot \mathbf{1}_{2}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
K_{3}=\left[\begin{array}{lllllll|l}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=$ forb $\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{2}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
\left.K_{3}=\begin{array}{|llllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=\mathrm{forb}\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{2}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Critical Substructures for K_{3}

$$
K_{3}=\left[\begin{array}{llllll|ll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{3}, K_{3}^{2}, K_{3}^{1}, \mathbf{0}_{3}, 2 \cdot \mathbf{1}_{2}, 2 \cdot \mathbf{0}_{2}$ since forb $\left(m, \mathbf{1}_{3}\right)=\mathrm{forb}\left(m, K_{3}^{1}\right)=\mathrm{forb}\left(m, K_{3}^{2}\right)=\mathrm{forb}\left(m, \mathbf{0}_{3}\right)$
$=$ forb $\left(m, 2 \cdot \mathbf{1}_{2}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{2}\right)$.

Designs and Forbidden Configurations

A 2-design $S_{\lambda}(2,3, v)$ consists of $\frac{\lambda}{3}\binom{v}{2}$ triples from $[v]=\{1,2, \ldots, v\}$ such that for each pair $i, j \in\binom{[v]}{2}$, there are exactly λ triples containing i, j. If we encode the triple system as a v-rowed (0,1)-matrix A such that the columns are the incidence vectors of the triples, then A has no $2 \times(\lambda+1)$ submatrix of 1 's.

Designs and Forbidden Configurations

A 2-design $S_{\lambda}(2,3, v)$ consists of $\frac{\lambda}{3}\binom{v}{2}$ triples from $[v]=\{1,2, \ldots, v\}$ such that for each pair $i, j \in\binom{[v]}{2}$, there are exactly λ triples containing i, j. If we encode the triple system as a v-rowed (0,1)-matrix A such that the columns are the incidence vectors of the triples, then A has no $2 \times(\lambda+1)$ submatrix of 1 's.
Remark If A is a $v \times n(0,1)$-matrix with column sums 3 and A has no $2 \times(\lambda+1)$ submatrix of 1 's then $n \leq \frac{\lambda}{3}\binom{v}{2}$ with equality if and only if the columns of A correspond to the triples of a 2 -design $S_{\lambda}(2,3, v)$.

Theorem (A, Barekat) Let λ and v be given integers. There exists an M so that for $v>M$, if A is an $v \times n(0,1)$-matrix with column sums in $\{3,4, \ldots, v-1\}$ and A has no $3 \times(\lambda+1)$ configuration

$$
\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

then

$$
n \leq \frac{\lambda}{3}\binom{v}{2}
$$

and we have equality if and only if the columns of A correspond to the triples of a 2-design $S_{\lambda}(2,3, v)$.

Theorem (A, Barekat) Let λ and v be given integers. There exists an M so that for $v>M$, if A is an $v \times n(0,1)$-matrix with column sums in $\{3,4, \ldots, v-3\}$ and A has no $4 \times(\lambda+1)$ configuration

$$
\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

then

$$
n \leq \frac{\lambda}{3}\binom{v}{2}
$$

with equality only if there are positive integers a, b with $a+b=\lambda$ and there are $\frac{a}{3}\binom{v}{2}$ columns of A of column sum 3 corresponding to the triples of a 2-design $S_{a}(2,3, v)$ and there are $\frac{b}{3}\binom{v}{2}$ columns of A of column sum $v-3$ corresponding to $(v-3)$ - sets whose complements (in $[v]$) corresponding to the triples of a 2-design $S_{b}(2,3, v)$.

Theorem (N. Balachandran 09) Let λ and v be given integers. There exists an M so that for $v>M$, if A is an $v \times n(0,1)$-matrix with column sums in $\{4,5, \ldots, v-1\}$ and A has no 4×2 configuration

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]
$$

then

$$
n \leq \frac{1}{4}\binom{v}{3}
$$

with equality only if there is 3 -design $S_{1}(3,4, v)$ corresponding to ($v-3$) - sets whose complements (in [$v]$) corresponding to the quadruples of a 3-design $S_{1}(3,4, v)$.
Naranjan Balachandran has indicated that he has made further progress on this problem

Exact Bounds

A, Barekat 09

Configuration F	Exact Bound forb (m, F)
$\overbrace{\left[\begin{array}{llll} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{array}\right]}^{p}$	$\frac{p+1}{3}\binom{m}{2}+\binom{m}{1}+2\binom{m}{0}$ for m large, $m \equiv 1,3(\bmod 6)$
$\overbrace{\left[\begin{array}{llll} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{array}\right]}^{p}$	$\frac{p+3}{3}\binom{m}{2}+2\binom{m}{1}+2\binom{m}{0}$ for m large, $m \equiv 1,3(\bmod 6)$

Another Example of Critical Substructures

$$
F_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem (A, Karp 09) For $m \geq 3$ we have
$\operatorname{forb}\left(m, F_{1}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)=\binom{m}{2}+m+2$.
Thus for

$$
F_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we deduce that forb $\left(m, F_{2}\right)=$ forb $\left(m, F_{1}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)$
$=\mathrm{forb}\left(m, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)$.

Another Example of Critical Substructures

$$
\left.F_{1}=\begin{array}{|cccc}
\begin{array}{|lll}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 & 0
\end{array} & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem (A, Karp 09) For $m \geq 3$ we have
$\operatorname{forb}\left(m, F_{1}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)=\binom{m}{2}+m+2$.
Thus for

$$
\left.F_{2}=\begin{array}{|llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we deduce that forb $\left(m, F_{2}\right)=$ forb $\left(m, F_{1}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)$
$=$ forb $\left(m, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)$.

Another Example of Critical Substructures

$$
F_{1}=\left[\begin{array}{ll|ll|}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\cline { 3 - 4 } & & \\
\hline
\end{array}\right.
$$

Theorem (A, Karp 09) For $m \geq 3$ we have
$\operatorname{forb}\left(m, F_{1}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)=\binom{m}{2}+m+2$.
Thus for

$$
F_{2}=\left[\begin{array}{ll|ll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right]
$$

we deduce that forb $\left(m, F_{2}\right)=$ forb $\left(m, F_{1}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{2} \mathbf{0}_{1}\right)$
$=\mathrm{forb}\left(\mathrm{m}, 2 \cdot \mathbf{1}_{1} \mathbf{0}_{2}\right)$.

Exact Bounds

$$
F_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Theorem (A,Karp 09)

$$
\text { forb }(m, F)=\operatorname{forb}\left(m, 3 \cdot \mathbf{1}_{2}\right) \leq \frac{4}{3}\binom{m}{2}+m+1
$$

with equality for $m \equiv 1,3(\bmod 6)$.

Exact Bounds

$$
F_{3}=\left[\begin{array}{|ccc|}
\hline 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
\hline
\end{array}\right]
$$

Theorem (A,Karp 09)

$$
\text { forb }(m, F)=\operatorname{forb}\left(m, 3 \cdot \mathbf{1}_{2}\right) \leq \frac{4}{3}\binom{m}{2}+m+1
$$

with equality for $m \equiv 1,3(\bmod 6)$.

Exact Bounds

A, Griggs, Sali 97, A, Ferguson, Sali 01, A, Kamoosi 07 A, Barekat, Sali 09, A, Barekat 09, A, Karp 09

Configuration F	
$\left[\begin{array}{l}0 \\ 1\end{array}\right]$	Exact Bound forb (m, F)
$\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$	$m+2$
$\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$	$2 m+2$
$\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 1\end{array}\right]$	$\left\lfloor\frac{5 m}{2}\right\rfloor+2$
$q \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$	$\left\lfloor\frac{(q+1) m}{2}\right\rfloor+2, \quad$ for m large

Exact Bounds

Configuration F	Exact Bound forb (m, F)
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{3 m}{2}\right\rfloor+1$
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{7 m}{3}\right\rfloor+1$
$\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{11 m}{4}\right\rfloor+1$
$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{15 m}{4}\right\rfloor+1$

Exact Bounds

Configuration F	Exact Bound forb (m, F)
$\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{8 m}{3}\right\rfloor$
$\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$	$\left\lfloor\frac{10 m}{3}-\frac{4}{3}\right\rfloor$
$\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$	$4 m$
$[\overbrace{1 \cdots}^{1 \cdots} 1 \begin{array}{llll} 0 \\ 0 & \cdots & 0 & 1 \end{array} \cdots \cdot 1]$	$p m-p+2$

$k \times 2$ Forbidden Configurations

$$
\begin{aligned}
\text { Let } F_{a b c d}= & \\
& b \begin{cases}{\left[\begin{array}{ll}
1 & 1 \\
: & : \\
1 & 1 \\
1 & 0 \\
: & : \\
1 & 0 \\
0 & 1 \\
: & : \\
0 & 1 \\
0 & 0 \\
: & : \\
0 & 0
\end{array}\right]}\end{cases}
\end{aligned}
$$

For the purposes of forbidden configurations we may assume that $a \geq d$ and $b \geq c$.

The following result used a difficult 'stability' result and the resulting constants in the bounds were unrealistic but the asymptotics agree with a general conjecture.

Theorem (A-Keevash 06) Assume a, b, c, d are given with $a \geq d$ and $b \geq c$. If $b>c$ or $a, b \geq 1$, then

$$
f \circ r b\left(m, F_{a b c d}\right)=\Theta\left(m^{a+b-1}\right) .
$$

Also forb $\left(m, F_{0 b b 0}\right)=\Theta\left(m^{b}\right)$ and forb $\left(m, F_{a 00 d}\right)=\Theta\left(m^{a}\right)$.

Note that the first column of $F_{a b c d}$ is $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$.
Theorem (A, Karp 09) Let $a, b \geq 2$. Then

$$
\begin{aligned}
& f \circ r b\left(m, F_{a b 01}\right)=\operatorname{forb}\left(m, \mathbf{1}_{a+b} \mathbf{0}_{1}\right)=\sum_{j=0}^{a+b-1}\binom{m}{j}+\sum_{j=m}^{m}\binom{m}{j} \\
& f \text { forb }\left(m, F_{a b 10}\right)=\operatorname{forb}\left(m, \mathbf{1}_{a+b} \mathbf{0}_{1}\right)=\sum_{j=0}^{a+b-1}\binom{m}{j}+\sum_{j=m}^{m}\binom{m}{j} \\
& \text { forb }\left(m, F_{a b 11}\right)=\operatorname{forb}\left(m, \mathbf{1}_{a+b} \mathbf{0}_{2}\right)=\sum_{j=0}^{a+b-1}\binom{m}{j}+\sum_{j=m-1}^{m}\binom{m}{j}
\end{aligned}
$$

Problem (A, Karp 09). Let a, b, c, d be given with a, b much larger than c, d. Is it true that forb $\left(m, F_{a b c d}\right)=$ forb $\left(m, \mathbf{1}_{a+b} \mathbf{0}_{c+d}\right)$?

Problem (A, Karp 09). Let a, b, c, d be given with a, b much larger than c, d. Is it true that forb $\left(m, F_{a b c d}\right)=$ forb $\left(m, \mathbf{1}_{a+b} \mathbf{0}_{c+d}\right)$?

We are asking when we can make the first column with $a+b$ 1's and $c+d 0$'s dominate the bound.

Pseudo-Exact Bounds

When determining forb (m, F) it is possible that there is a subconfiguration that dominates the bound but does not yield the exact bound? This is typically the case (when the bound is known) but the following result sharpens the typical results.

Theorem (A, Raggi 09) Let $t, q \geq 1$ be given. Let

$$
F_{4}(t, q)=\left[t \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right] q \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Then forb $\left(m, F_{4}(t, q)\right)$ is forb $\left(m, t \cdot \mathbf{1}_{4}\right)$ plus $O\left(q m^{2}\right)$.

$$
F_{2110}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Not all $k \times 2$ cases are obvious:
Theorem Let c be a positive real number. Let A be an $m \times\left(c\binom{m}{2}+m+2\right)$ simple matrix with no F_{2110}. Then for some $M>m$, there is an $M \times\left(\left(c+\frac{2}{m(m-1)}\right)\binom{M}{2}+M+2\right)$ simple matrix with no F_{2110}.
Theorem (P. Dukes 09) forb ($m, F_{2,1,1,0}$) $\leq .691 m^{2}$
The proof used inequalities and linear programming

$$
F_{0220}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Not all $k \times 2$ cases are obvious:
Theorem (A, Barekat, Sali 09)

$$
\text { forb }\left(m, F_{0220}\right)=\binom{m}{2}+m-2
$$

$$
F_{0220}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Not all $k \times 2$ cases are obvious:
Theorem (A, Barekat, Sali 09)

$$
\text { forb }\left(m, F_{0220}\right)=\binom{m}{2}+m-2
$$

Conjecture forb $\left(m, t \cdot F_{0220}\right)$ is $O\left(m^{2}\right)$.
The result is true for $t=2$. The result would follow from the general conjecture

Two interesting examples

$$
\text { Let } \quad \begin{aligned}
F_{5}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right], \quad F_{6}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \\
\text { forb }\left(m, F_{5}\right)=2 m, \quad \text { forb }\left(m, F_{6}\right)=\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+1
\end{aligned}
$$

Two interesting examples

Let $\begin{aligned} & F_{5}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right], \quad F_{6}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right] \\ & \operatorname{forb}\left(m, F_{5}\right)=2 m, \quad \text { forb }\left(m, F_{6}\right)\end{aligned}$
Problem What drives the asymptotics of forb (m, F) ? What structures in F are important?

Refinements of the Sauer Bound

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71) forb $\left(m, K_{k}\right)$ is $\Theta\left(m^{k-1}\right)$.

Let $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let F be a $k \times I$ simple matrix such that there is a pair of rows with no configuration E_{1} and there is a pair of rows with no configuration E_{2} and there is a pair of rows with no configuration E_{3}. Then forb (m, F) is $O\left(m^{k-2}\right)$.

Refinements of the Sauer Bound

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71) forb $\left(m, K_{k}\right)$ is $\Theta\left(m^{k-1}\right)$.

Let $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let F be a $k \times I$ simple matrix such that there is a pair of rows with no configuration E_{1} and there is a pair of rows with no configuration E_{2} and there is a pair of rows with no configuration E_{3}. Then forb (m, F) is $O\left(m^{k-2}\right)$.
Note that $F_{7}=\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$ has no E_{1} and no E_{2} on rows 1,2 and no E_{3} on rows 3,4. Thus forb $\left(m, F_{7}\right)$ is $O\left(m^{2}\right)$.

New Result

$$
F_{7}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A, Raggi, Sali 09) Let t be given. Then forb $\left(m, F_{7}(t)\right)$ is $O\left(m^{2}\right)$.
Note that $F_{7}=F_{7}(1)$. We cannot maintain the quadratic bound and repeat any other columns of F_{7} since repeating columns of sum 1 or 3 in F_{7} will yield constructions of $\Theta\left(m^{3}\right)$ columns avoiding them.

Definition $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let E be given with $E \in\left\{E_{1}, E_{2}, E_{3}\right\}$. Let F be a $k \times I$ simple matrix with the property that every pair of rows contains the configuration E. Then forb $(m, F)=\Theta\left(m^{k-1}\right)$.

$$
F_{6}=\left[\begin{array}{|llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \text { has } E_{3} \text { on rows } 1,2
$$

Definition $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let E be given with $E \in\left\{E_{1}, E_{2}, E_{3}\right\}$. Let F be a $k \times I$ simple matrix with the property that every pair of rows contains the configuration E. Then forb $(m, F)=\Theta\left(m^{k-1}\right)$.

$$
F_{6}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \text { has } E_{3} \text { on rows } 2,3
$$

Definition $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let E be given with $E \in\left\{E_{1}, E_{2}, E_{3}\right\}$. Let F be a $k \times I$ simple matrix with the property that every pair of rows contains the configuration E. Then forb $(m, F)=\Theta\left(m^{k-1}\right)$.

$$
\left.F_{6}=\begin{array}{|ccc|c}
\hline 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\hline
\end{array}\right] \text { has } E_{3} \text { on rows } 1,3
$$

Definition $E_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right], E_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Theorem (A, Fleming) Let E be given with $E \in\left\{E_{1}, E_{2}, E_{3}\right\}$. Let F be a $k \times I$ simple matrix with the property that every pair of rows contains the configuration E. Then forb $(m, F)=\Theta\left(m^{k-1}\right)$.

$$
\left.F_{6}=\begin{array}{|ccc|c}
\hline 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\hline
\end{array}\right] \text { has } E_{3} \text { on rows } 1,3
$$

Note that F_{6} has E_{3} on every pair of rows hence forb $\left(m, F_{6}\right)$ is $\Theta\left(m^{2}\right)$ (A, Griggs, Sali 97).

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin I, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \notin I^{c}, \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin T
$$

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :
$I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
Note that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin I, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \notin I^{c}, \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin T
$$

Note that forb $\left(m,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ forb $\left(m,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=$ forb $\left(m,\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=m+1$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll|l|llll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each
$A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
The conjecture has been verified for $k \times l F$ where $k=2$ (A, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $I=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ plus other cases.

Let B be a $k \times(k+1)$ matrix which has one column of each column sum. Given two matrices C, D, let $C \backslash D$ denote the matrix obtained from C by deleting any columns of D that are in C (i.e. set difference). Let $F_{B}(t)=\left[K_{k} \mid t \cdot\left[K_{k} \backslash B\right]\right]$. For $k=4$ an example is

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\right]
$$

Let B be a $k \times(k+1)$ matrix which has one column of each column sum. Given two matrices C, D, let $C \backslash D$ denote the matrix obtained from C by deleting any columns of D that are in C (i.e. set difference). Let $F_{B}(t)=\left[K_{k} \mid t \cdot\left[K_{k} \backslash B\right]\right]$. For $k=4$ an example is

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\right]
$$

Theorem (A, Griggs, Sali 97, A, Sali 05,
A, Fleming, Füredi, Sali 05) forb $\left(m, F_{B}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
The difficult problem here was the bound although induction works.

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Theorem (A, Sali 05 (for $k=3$), A, Fleming 09) forb $\left(m, F_{D}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
The argument used standard results for directed graphs, indicator polynomials and a linear algebra rank argument

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Theorem (A, Sali 05 (for $k=3$), A, Fleming 09) forb $\left(m, F_{D}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
The argument used standard results for directed graphs, indicator polynomials and a linear algebra rank argument
Theorem Let k be given and assume F is a k-rowed configuration which is not a configuration in $F_{B}(t)$ for any choice of B as a $k \times(k+1)$ simple matrix with one column of each column sum and not in $F_{D}(t)$, for any t. Then forb (m, F) is $\Theta\left(m^{k}\right)$.

THANKS FOR THE INVITE TO TALK AT BEAUTIFUL UBC O!

Exact Bounds

$$
F_{5}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Theorem (A, Dunwoody) forb $\left(m, F_{5}\right)=\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+1$
Proof: The proof technique is that of shifting, popularized by Frankl. A paper of Alon 83 using shifting refers to the possibility of such a result.

Definition We say $\mathcal{F} \subseteq 2^{[m]}$ is t-intersecting if for every pair $A, B \in \mathcal{F}$, we have $|A \cap B| \geq t$.
Theorem (Ahlswede and Khachatrian 97)
Complete Intersection Theorem.
Let k, r be given. A maximum sized ($k-r$)-intersecting k-uniform family $\mathcal{F} \subseteq\binom{[m]}{k}$ is isomorphic to $\mathcal{I}_{r_{1}, r_{2}}$ for some choice $r_{1}+r_{2}=r$ and for some choice $G \subseteq[m]$ where $|G|=k-r_{1}+r_{2}$ where $\mathcal{I}_{r_{1}, r_{2}}=\left\{A \subseteq\binom{[m]}{k}:|A \cap G| \geq k-r_{1}\right\}$

This generalizes the Erdős-Ko-Rado Theorem (61).

Theorem (A-Keevash 06) Stability Lemma.
Let $\mathcal{F} \subseteq\binom{[m]}{k}$. Assume that \mathcal{F} is $(k-r)$-intersecting and

$$
|\mathcal{F}| \geq(6 r)^{5 r+7} m^{r-1}
$$

Then $\mathcal{F} \subseteq \mathcal{I}_{r_{1}, r_{2}}$ for some choice $r_{1}+r_{2}=r$ and for some choice $G \subseteq[m]$ where $|G|=k-r_{1}+r_{2}$.

This result is for large intersections; we use it with a fixed r where k can grow with m.

