Forbidden Configurations and Indicator Polynomials

Richard Anstee Balin Fleming UBC, Vancouver

CanaDAM, May 25, 2009

The use of indicator polynomials was explored in a joint paper with Fleming, Füredi and Sali. This talk focuses on joint work with Balin Fleming that led to a new bound for Forbidden Configurations. Füredi and Sali continue to explore applications to critical hypergraphs.

Forbidden Configuration Survey at www.math.ubc.ca/~anstee

向下 イヨト イヨト

$$[m] = \{1, 2, \dots, m\}$$

Let S be a finite set.
$$2^{S} = \{T : T \subseteq S\}$$
$$\binom{S}{k} = \{T \in 2^{S} : |T| = k\}$$

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

$$[m] = \{1, 2, \dots, m\}$$

Let S be a finite set.

$$2^{S} = \{T : T \subseteq S\}$$
$$\binom{S}{k} = \{T \in 2^{S} : |T| = k\}$$

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

i.e. if A is an m-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

向下 イヨト イヨト

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \in A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

伺い イヨト イヨト

-

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \in A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A for which we say F is a *forbidden configuration* in A. **Definition** Let forb(m, F) be the largest function of m and F so that there exist a $m \times \text{forb}(m, F)$ simple matrix with *no* configuration F. Thus if A is any $m \times (\text{forb}(m, F) + 1)$ simple matrix then A contains F as a configuration.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

伺 ト イヨト イヨト

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

Theorem (Füredi 83). Let F be a $k \times l$ matrix. Then forb $(m, F) = O(m^k)$

伺い イヨト イヨト

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

Theorem (Füredi 83). Let F be a $k \times l$ matrix. Then forb $(m, F) = O(m^k)$

Which F have forb(m, F) being $O(m^{k-1})$ and which F have forb(m, F) being $\Theta(m^k)$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let A be an *m*-rowed simple matrix which has no configuration K_k . For any k-set of rows $S \in {\binom{[m]}{k}}$ let $A|_S$ denote the submatrix of A given by the rows of S.

Since A has no K_k , then for every k-set $S \in {\binom{[m]}{k}}$ of rows we have that $A|_S$ has an absent $k \times 1$ (0,1)-column.

Remark If A is an *m*-rowed simple matrix with the property that for every k-set of rows $S \in {\binom{[m]}{k}}$ the submatrix $A|_S$ has an absent column, then A has no K_k and so has at most $O(m^{k-1})$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *B* be a $k \times (k + 1)$ simple matrix with one column of each column sum. For k = 3 a possible *B* is

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

For a matrix *C*, let $t \cdot C$ denote the matrix $[CCC \cdots C]$ from concatenating *t* copies of *C*. Let $F_B(t) = [K_k \ t \cdot [K_k \setminus B]]$ so for our choice of *B*,

$$F_B(t) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & t \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_B(t)$. Then for any 3-set of rows $S \in {\binom{[m]}{3}}$, either

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *B* be a $k \times (k + 1)$ simple matrix with one column of each column sum. For k = 3 a possible *B* is

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

For a matrix *C*, let $t \cdot C$ denote the matrix $[CCC \cdots C]$ from concatenating *t* copies of *C*. Let $F_B(t) = [K_k \ t \cdot [K_k \setminus B]]$ so for our choice of *B*,

$$F_B(t) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & t \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_B(t)$. Then for any 3-set of rows $S \in {[m] \choose 3}$, either $A|_S$ has an absent column

(1) マン・ション・

Let *B* be a $k \times (k + 1)$ simple matrix with one column of each column sum. For k = 3 a possible *B* is

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

For a matrix *C*, let $t \cdot C$ denote the matrix $[CCC \cdots C]$ from concatenating *t* copies of *C*. Let $F_B(t) = [K_k \ t \cdot [K_k \setminus B]]$ so for our choice of *B*,

$$F_B(t) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & t \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_B(t)$. Then for any 3-set of rows $S \in \binom{[m]}{3}$, either $A|_S$ has an absent column or $A|_S$ has two columns which appear at most t times each.

伺 ト イヨト イヨト

Assume A is an *m*-rowed simple matrix with no $F_B(t)$.

Let S be a 3-set of rows in [m] and let α be a 3 × 1 column. We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$\gamma|_{\mathcal{S}} = \alpha.$$

We say 3×1 column α is

in short supply in A if it is violated by at most t columns of A.

伺い イヨト イヨト

Assume A is an *m*-rowed simple matrix with no $F_B(t)$.

Let S be a 3-set of rows in [m] and let α be a 3 × 1 column. We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$\gamma|_{\mathcal{S}} = \alpha.$$

We say 3×1 column α is in short supply in A if it is violated by at most t columns of A.

Let \mathcal{T} be the set of 3-sets S for which there is no absent column and hence (at least) two 3×1 columns α, β in short supply. Then by eliminating $\leq t |\mathcal{T}|$ columns with violations on $S \in \mathcal{T}$ from A, we obtain a matrix which has an absent column on each 3-set of rows and so has $O(m^2)$ columns. Unfortunately $|\mathcal{T}|$ can be as big as $\Theta(m^3)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $S = \{i, j, k\} \subseteq [m]$ Let x_1, x_2, \ldots, x_m be variables. Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)^T$ be a 3×1 (0,1)-column.

$$f_{\mathcal{S},\alpha}(\mathbf{x}) = (x_i - \bar{\alpha_1})(x_j - \bar{\alpha_2})(x_k - \bar{\alpha_3})$$

向下 イヨト イヨト

Let $S = \{i, j, k\} \subseteq [m]$ Let x_1, x_2, \ldots, x_m be variables. Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)^T$ be a 3×1 (0,1)-column.

$$f_{\mathcal{S},\alpha}(\mathbf{x}) = (x_i - \bar{\alpha_1})(x_j - \bar{\alpha_2})(x_k - \bar{\alpha_3})$$

For a m imes 1 (0,1)-column γ

$$f_{\mathcal{S},\alpha}(\gamma) \left\{ egin{array}{cc}
eq 0 & ext{if } \gamma|_{\mathcal{S}} = lpha \ = 0 & ext{otherwise} \end{array}
ight.$$

向下 イヨト イヨト

$$f_{S,\alpha}(\mathbf{x}) = (x_i - \bar{\alpha_1})(x_j - \bar{\alpha_2})(x_k - \bar{\alpha_3})$$

We check that degree of $f_{S,\alpha}(\mathbf{x})$ is 3 with leading term

 $x_i x_j x_k$

個 と く ヨ と く ヨ と

Assume $S \in \mathcal{T}$ and there are two 3×1 columns α, β in short supply (no column absent) and the two indicator polynomials are $f_{S,\alpha}$, $f_{S,\beta}$. We set

$$f_{S}(\mathbf{x}) = a_{1}f_{S,\alpha}(\mathbf{x}) + a_{2}f_{S,\beta}(\mathbf{x})$$

 $a_{1} = +1, \qquad a_{2} = -1$

We have that for a m imes 1 (0,1)-column γ

$$f_{\mathcal{S}}(\gamma) \begin{cases} \neq 0 & \text{if } \gamma|_{\mathcal{S}} = \alpha \text{ or } \gamma|_{\mathcal{S}} = \beta \\ = 0 & \text{otherwise} \end{cases}$$

and degree of $f_{S}(\mathbf{x})$ is (at most) 2 since the leading terms of degree 3 of $f_{S,\alpha}(\mathbf{x})$ and $f_{S,\beta}(\mathbf{x})$ will cancel.

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

A greedy approach would yield what we call a maximal independent set $\mathcal{I} = (S_i)$ which is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $m \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that

向下 イヨト イヨト 三日

A greedy approach would yield what we call a maximal independent set $\mathcal{I} = (S_i)$ which is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $m \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that γ_i violates S_i for one of the two chosen columns but violates no S_i with j < i.

向下 イヨト イヨト

A greedy approach would yield what we call a maximal independent set $\mathcal{I} = (S_i)$ which is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $m \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that γ_i violates S_i for one of the two chosen columns but violates no S_j with j < i. We could then delete $\leq 2t|\mathcal{I}|$ columns from A to obtain a matrix

with at least one column absent on each triple of rows.

向下 イヨト イヨト

A greedy approach would yield what we call a maximal independent set $\mathcal{I} = (S_i)$ which is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $m \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that γ_i violates S_i for one of the two chosen columns but violates no S_j with j < i.

We could then delete $\leq 2t|\mathcal{I}|$ columns from A to obtain a matrix with at least one column absent on each triple of rows.

Theorem If $\mathcal{I} = (S_i)$ is an independent set, then the indicator polynomials f_S are linearly independent.

A (10) × (10) × (10) ×

Theorem If $\mathcal{I} = (S_i)$ is an independent set, and the indicator polynomials f_S are degree at most 2 then

$$egin{aligned} |\mathcal{I}| &\leq \binom{m}{2} + \binom{m}{1} + \binom{m}{0} \ &= \Theta(m^2). \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem forb $(m, F_B(t))$ is $\Theta(m^2)$.

Proof: Assume A is a matrix with no $F_B(t)$. Let $\mathcal{I} = (S_i)$ be a maximal independent set with indicator polynomials f_{S_i} . For a given set $S \in \mathcal{I}$ there are at most 2t columns with violations of the two chosen columns in short supply on S. By our linear algebra, $|\mathcal{I}|$ is $O(m^2)$. Thus we may remove $2t|\mathcal{I}|$ or $O(m^2)$ columns and remove all violations on the two chosen 3×1 columns for each $S \in \mathcal{I}$ and so on each $S \in \mathcal{T}$ there will be an absent 3×1 column. The resulting matrix has at most $O(m^2)$ columns and so A has at most $O(m^2)$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot & \\ 0 & & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

If a matrix A has no $F_D(t)$ then each 3-set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

・ 同 ト ・ ヨ ト ・ ヨ ト ・

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot & \\ 0 & & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

If a matrix A has no $F_D(t)$ then each 3-set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

向下 イヨト イヨト

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot & \\ 0 & & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

If a matrix A has no $F_D(t)$ then each 3-set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

no

$$i \quad 0$$

 $j \quad 0$ or at least two columns are in short supply
 $k \quad 0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot & \\ 0 & & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

If a matrix A has no $F_D(t)$ then each 3-set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

no

$$i \quad 0$$

 $j \quad 0$ or at least two columns are in short supply or $\begin{cases} \leq t \\ 0 \\ 0 \\ k \end{cases}$

伺い イヨト イヨト

The case of one column in short supply (but not absent) makes the proof much more difficult. We can eliminate $O(m^2)$ columns and make a column absent on each 3-set of rows but the argument is more complex. The new proof idea, using indicator polynomials, was to consider what is in short supply on some 4-sets of rows and miraculously we are able to find indicator polynomials of degree 2 (we are able to cancel the terms of degree 4 and 3).

向下 イヨト イヨト

A typical situation if we avoid $F_D(t)$ could be:

We only need a few of these 4×1 columns to get our reduction in degree.

・回 と く ヨ と く ヨ と

We form a new indicator polynomial for the 4 columns $\alpha,\beta,\gamma,\delta$ above as

$$f_{\mathcal{S}}(\mathbf{x}) = +1f_{\mathcal{S},\alpha}(\mathbf{x}) - 1f_{\mathcal{S},\beta}(\mathbf{x}) + 1f_{\mathcal{S},\gamma}(\mathbf{x}) - 1f_{\mathcal{S},\delta}(\mathbf{x})$$

and we find that f_S is a degree 2 indicator polynomial for the 4 columns above.

-

Theorem Let k, t be given positive integers with $k \ge 2, t \ge 1$. Let B as a $k \times (k + 1)$ simple matrix with one column of each column sum And let $F_B(t) = [K_k t \cdot [K_k \setminus B]]$. Then

forb $(m, F_B(t))$ is $\Theta(m^{k-1})$

Let D be the $k \times (2^k - 2^{k-2} - 1)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ Then

forb $(m, F_D(t))$ is $\Theta(m^{k-1})$

マロト イヨト イヨト 二日

Theorem Let k, t be given positive integers with $k \ge 2, t \ge 1$. Let B as a $k \times (k + 1)$ simple matrix with one column of each column sum And let $F_B(t) = [K_k t \cdot [K_k \setminus B]]$. Then

forb $(m, F_B(t))$ is $\Theta(m^{k-1})$

Let D be the $k \times (2^k - 2^{k-2} - 1)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ Then

forb $(m, F_D(t))$ is $\Theta(m^{k-1})$

Theorem Let F is a k-rowed configuration which is not a configuration in $F_B(t)$ (for any choice of B as a $k \times (k+1)$ simple matrix with one column of each column sum and for any t) and not in $F_D(t)$ (for any t). Then forb(m, F) is $\Theta(m^k)$.

Merci/Thanks to the organizers for arranging this conference!

- ∢ ≣ →