Forbidden Configurations and Indicator Polynomials

Richard Anstee
Balin Fleming
UBC, Vancouver

CanaDAM, May 25, 2009

Introduction

The use of indicator polynomials was explored in a joint paper with Fleming, Füredi and Sali. This talk focuses on joint work with Balin Fleming that led to a new bound for Forbidden Configurations. Füredi and Sali continue to explore applications to critical hypergraphs.

Forbidden Configuration Survey at www.math.ubc.ca/~anstee

$$
[m]=\{1,2, \ldots, m\}
$$

Let S be a finite set.

$$
\begin{aligned}
& 2^{S}=\{T: T \subseteq S\} \\
& \binom{S}{k}=\left\{T \in 2^{S}:|T|=k\right\}
\end{aligned}
$$

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

$$
[m]=\{1,2, \ldots, m\}
$$

Let S be a finite set.

$$
\begin{aligned}
& 2^{S}=\{T: T \subseteq S\} \\
& \binom{S}{k}=\left\{T \in 2^{S}:|T|=k\right\}
\end{aligned}
$$

Definition We say that a matrix A is simple if it is a (0,1)-matrix with no repeated columns.
i.e. if A is an m-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \in A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \in A=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.
Definition Let forb (m, F) be the largest function of m and F so that there exist a $m \times$ forb (m, F) simple matrix with no configuration F. Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains F as a configuration.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
f \circ r b\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Theorem (Füredi 83). Let F be a $k \times I$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
f \circ r b\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Theorem (Füredi 83). Let F be a $k \times I$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$
Which F have forb (m, F) being $O\left(m^{k-1}\right)$ and which F have forb (m, F) being $\Theta\left(m^{k}\right)$?

Let A be an m-rowed simple matrix which has no configuration K_{k}. For any k-set of rows $S \in\binom{[m]}{k}$ let $\left.A\right|_{S}$ denote the submatrix of A given by the rows of S.
Since A has no K_{k}, then for every k-set $S \in\binom{[m]}{k}$ of rows we have that $\left.A\right|_{S}$ has an absent $k \times 1(0,1)$-column.
Remark If A is an m-rowed simple matrix with the property that for every k-set of rows $S \in\binom{[m]}{k}$ the submatrix $\left.A\right|_{S}$ has an absent column, then A has no K_{k} and so has at most $O\left(m^{k-1}\right)$ columns.

Let B be a $k \times(k+1)$ simple matrix with one column of each column sum. For $k=3$ a possible B is

$$
B=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

For a matrix C, let $t \cdot C$ denote the matrix $[C C C \cdots C$] from concatenating t copies of C. Let $F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]$ so for our choice of B,

$$
F_{B}(t)=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} t \cdot\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right]
$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_{B}(t)$. Then for any 3 -set of rows $S \in\binom{[m]}{3}$, either

Let B be a $k \times(k+1)$ simple matrix with one column of each column sum. For $k=3$ a possible B is

$$
B=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

For a matrix C, let $t \cdot C$ denote the matrix $[C C C \cdots C$] from concatenating t copies of C. Let $F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]$ so for our choice of B,

$$
F_{B}(t)=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} t \cdot\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right]
$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_{B}(t)$. Then for any 3 -set of rows $S \in\binom{[m]}{3}$, either $\left.A\right|_{S}$ has an absent column

Let B be a $k \times(k+1)$ simple matrix with one column of each column sum. For $k=3$ a possible B is

$$
B=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

For a matrix C, let $t \cdot C$ denote the matrix $[C C C \cdots C$] from concatenating t copies of C. Let $F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]$ so for our choice of B,

$$
F_{B}(t)=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} t \cdot\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right]
$$

Let t be given. Let A be any m-rowed simple matrix which has no configuration $F_{B}(t)$. Then for any 3 -set of rows $S \in\binom{[m]}{3}$, either $\left.A\right|_{S}$ has an absent column or $\left.A\right|_{S}$ has two columns which appear at most t times each.

Assume A is an m-rowed simple matrix with no $F_{B}(t)$.
Let S be a 3 -set of rows in [m] and let α be a 3×1 column. We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$
\left.\gamma\right|_{s}=\alpha
$$

We say 3×1 column α is in short supply in A if it is violated by at most t columns of A.

Assume A is an m-rowed simple matrix with no $F_{B}(t)$.
Let S be a 3 -set of rows in [m] and let α be a 3×1 column. We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$
\left.\gamma\right|_{s}=\alpha
$$

We say 3×1 column α is in short supply in A if it is violated by at most t columns of A.

Let \mathcal{T} be the set of 3 -sets S for which there is no absent column and hence (at least) two 3×1 columns α, β in short supply. Then by eliminating $\leq t|\mathcal{T}|$ columns with violations on $S \in \mathcal{T}$ from A, we obtain a matrix which has an absent column on each 3 -set of rows and so has $O\left(m^{2}\right)$ columns. Unfortunately $|\mathcal{T}|$ can be as big as $\Theta\left(m^{3}\right)$.

Multilinear Indicator Polynomials

Let $S=\{i, j, k\} \subseteq[m]$

Let $x_{1}, x_{2}, \ldots, x_{m}$ be variables. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}$ be a 3×1 $(0,1)$-column.

$$
f_{S, \alpha}(\mathbf{x})=\left(x_{i}-\overline{\alpha_{1}}\right)\left(x_{j}-\overline{\alpha_{2}}\right)\left(x_{k}-\overline{\alpha_{3}}\right)
$$

Multilinear Indicator Polynomials

Let $S=\{i, j, k\} \subseteq[m]$
Let $x_{1}, x_{2}, \ldots, x_{m}$ be variables. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}$ be a 3×1 $(0,1)$-column.

$$
f_{S, \alpha}(\mathbf{x})=\left(x_{i}-\overline{\alpha_{1}}\right)\left(x_{j}-\overline{\alpha_{2}}\right)\left(x_{k}-\overline{\alpha_{3}}\right)
$$

For a $m \times 1(0,1)$-column γ

$$
f_{S, \alpha}(\gamma) \begin{cases}\neq 0 & \text { if }\left.\gamma\right|_{S}=\alpha \\ =0 & \text { otherwise }\end{cases}
$$

Multilinear Indicator Polynomials

$$
f_{S, \alpha}(\mathbf{x})=\left(x_{i}-\overline{\alpha_{1}}\right)\left(x_{j}-\overline{\alpha_{2}}\right)\left(x_{k}-\overline{\alpha_{3}}\right)
$$

We check that degree of $f_{S, \alpha}(\mathbf{x})$ is 3 with leading term

$$
x_{i} x_{j} x_{k}
$$

Assume $S \in \mathcal{T}$ and there are two 3×1 columns α, β in short supply (no column absent) and the two indicator polynomials are $f_{S, \alpha}, f_{S, \beta}$. We set

$$
\begin{aligned}
f_{S}(\mathbf{x}) & =a_{1} f_{S, \alpha}(\mathbf{x})+a_{2} f_{S, \beta}(\mathbf{x}) \\
a_{1} & =+1, \quad a_{2}=-1
\end{aligned}
$$

We have that for a $m \times 1(0,1)$-column γ

$$
f_{S}(\gamma)\left\{\begin{array}{cc}
\neq 0 & \text { if }\left.\gamma\right|_{S}=\alpha \text { or }\left.\gamma\right|_{S}=\beta \\
=0 & \text { otherwise }
\end{array}\right.
$$

and degree of $f_{S}(\mathbf{x})$ is (at most) 2 since the leading terms of degree 3 of $f_{S, \alpha}(\mathbf{x})$ and $f_{S, \beta}(\mathbf{x})$ will cancel.

Let \mathcal{T} be the set of all 3-tuples S for which two columns, say α, β are in short supply.
A greedy approach would yield what we call a maximal independent set $\mathcal{I}=\left(S_{i}\right)$ which is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $m \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that

Let \mathcal{T} be the set of all 3-tuples S for which two columns, say α, β are in short supply.
A greedy approach would yield what we call a maximal independent set $\mathcal{I}=\left(S_{i}\right)$ which is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $m \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that γ_{i} violates S_{i} for one of the two chosen columns but violates no S_{j} with $j<i$.

Let \mathcal{T} be the set of all 3-tuples S for which two columns, say α, β are in short supply.
A greedy approach would yield what we call a maximal independent set $\mathcal{I}=\left(S_{i}\right)$ which is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $m \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that γ_{i} violates S_{i} for one of the two chosen columns but violates no S_{j} with $j<i$.
We could then delete $\leq 2 t|\mathcal{I}|$ columns from A to obtain a matrix with at least one column absent on each triple of rows.

Let \mathcal{T} be the set of all 3-tuples S for which two columns, say α, β are in short supply.
A greedy approach would yield what we call a maximal independent set $\mathcal{I}=\left(S_{i}\right)$ which is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $m \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that γ_{i} violates S_{i} for one of the two chosen columns but violates no S_{j} with $j<i$.
We could then delete $\leq 2 t|\mathcal{I}|$ columns from A to obtain a matrix with at least one column absent on each triple of rows.
Theorem If $\mathcal{I}=\left(S_{i}\right)$ is an independent set, then the indicator polynomials f_{S} are linearly independent.

Theorem If $\mathcal{I}=\left(S_{i}\right)$ is an independent set, and the indicator polynomials f_{S} are degree at most 2 then

$$
\begin{gathered}
|\mathcal{I}| \leq\binom{ m}{2}+\binom{m}{1}+\binom{m}{0} \\
=\Theta\left(m^{2}\right)
\end{gathered}
$$

Theorem forb $\left(m, F_{B}(t)\right)$ is $\Theta\left(m^{2}\right)$.
Proof: Assume A is a matrix with no $F_{B}(t)$. Let $\mathcal{I}=\left(S_{i}\right)$ be a maximal independent set with indicator polynomials $f_{S_{i}}$. For a given set $S \in \mathcal{I}$ there are at most $2 t$ columns with violations of the two chosen columns in short supply on S. By our linear algebra, $|\mathcal{I}|$ is $O\left(m^{2}\right)$. Thus we may remove $2 t|\mathcal{I}|$ or $O\left(m^{2}\right)$ columns and remove all violations on the two chosen 3×1 columns for each $S \in \mathcal{I}$ and so on each $S \in \mathcal{T}$ there will be an absent 3×1 column. The resulting matrix has at most $O\left(m^{2}\right)$ columns and so A has at most $O\left(m^{2}\right)$ columns.

We have one more 3-rowed configuration F with forb (m, F) being $O\left(m^{2}\right)$. Let D be the 3×5 simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{3}(t+1) \cdot D\right]$ which becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]\right]
$$

If a matrix A has no $F_{D}(t)$ then each 3 -set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

We have one more 3-rowed configuration F with forb (m, F) being $O\left(m^{2}\right)$. Let D be the 3×5 simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{3}(t+1) \cdot D\right]$ which becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]\right]
$$

If a matrix A has no $F_{D}(t)$ then each 3 -set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

	no
i	0
j	0
k	0

We have one more 3-rowed configuration F with forb (m, F) being $O\left(m^{2}\right)$. Let D be the 3×5 simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{3}(t+1) \cdot D\right]$ which becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]\right]
$$

If a matrix A has no $F_{D}(t)$ then each 3 -set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

We have one more 3-rowed configuration F with forb (m, F) being $O\left(m^{2}\right)$. Let D be the 3×5 simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{3}(t+1) \cdot D\right]$ which becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]\right]
$$

If a matrix A has no $F_{D}(t)$ then each 3 -set of rows $\{i, j, k\}$ in some ordering has one of the following occur:

	no	$\leq t$
i	0	
j	0	
k	0	or at least two columns are in short supply or
0		
0		
0		

The case of one column in short supply (but not absent) makes the proof much more difficult. We can eliminate $O\left(m^{2}\right)$ columns and make a column absent on each 3 -set of rows but the argument is more complex. The new proof idea, using indicator polynomials, was to consider what is in short supply on some 4-sets of rows and miraculously we are able to find indicator polynomials of degree 2 (we are able to cancel the terms of degree 4 and 3).

A typical situation if we avoid $F_{D}(t)$ could be:

	$\leq t$	$\leq t$	$\leq t$	$\leq t$	no
i	0	0	1	0	
j	0	0			0
k	1		0	1	0
l		1	1	1	0

Note that

$$
\begin{array}{cccccc}
& \leq t \\
i & 1 \\
j & \\
k & 0 & & & \leq t & \leq t \\
i & 1 & 1 \\
j & 1 & & 1 & 0 \\
k & 0 & 0 \\
l & 1 & 1
\end{array}
$$

We only need a few of these 4×1 columns to get our reduction in degree.

	+1	-1	+1	-1
i	0	1	1	0
j	0	0	0	0
k	0	0	0	0
l	1	1	0	0
	α	β	γ	δ

We form a new indicator polynomial for the 4 columns $\alpha, \beta, \gamma, \delta$ above as

$$
f_{S}(\mathbf{x})=+1 f_{S, \alpha}(\mathbf{x})-1 f_{S, \beta}(\mathbf{x})+1 f_{S, \gamma}(\mathbf{x})-1 f_{S, \delta}(\mathbf{x})
$$

and we find that f_{S} is a degree 2 indicator polynomial for the 4 columns above.

Theorem Let k, t be given positive integers with $k \geq 2, t \geq 1$. Let B as a $k \times(k+1)$ simple matrix with one column of each column sum And let $F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]$. Then

$$
\text { forb }\left(m, F_{B}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ Then

$$
\text { forb }\left(m, F_{D}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Theorem Let k, t be given positive integers with $k \geq 2, t \geq 1$. Let B as a $k \times(k+1)$ simple matrix with one column of each column sum And let $F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]$. Then

$$
\text { forb }\left(m, F_{B}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ Then

$$
\text { forb }\left(m, F_{D}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Theorem Let F is a k-rowed configuration which is not a configuration in $F_{B}(t)$ (for any choice of B as a $k \times(k+1)$ simple matrix with one column of each column sum and for any t) and not in $F_{D}(t)$ (for any t). Then forb (m, F) is $\Theta\left(m^{k}\right)$.

Merci/Thanks to the organizers for arranging this conference!

