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Introduction

The use of indicator polynomials was explored in a joint paper with
Fleming, Füredi and Sali. This talk focuses on joint work with
Balin Fleming that led to a new bound for Forbidden
Configurations. Füredi and Sali continue to explore applications to
critical hypergraphs.

Forbidden Configuration Survey at www.math.ubc.ca/∼anstee
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[m] = {1, 2, . . . ,m}

Let S be a finite set.
2S = {T : T ⊆ S}
(

S
k

)

= {T ∈ 2S : |T | = k}

Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.
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[m] = {1, 2, . . . ,m}

Let S be a finite set.
2S = {T : T ⊆ S}
(

S
k

)

= {T ∈ 2S : |T | = k}

Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is an m-rowed simple matrix then A is the incidence
matrix of some F ⊆ 2[m].
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[

1 1 1 0
1 0 0 0

]

∈ A =









1 1 1 1 1 1
0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 1
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[

1 1 1 0
1 0 0 0

]

∈ A =









1 1 1 1 1 1
0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 1









We consider the property of forbidding a configuration F in A for
which we say F is a forbidden configuration in A.
Definition Let forb(m,F ) be the largest function of m and F so
that there exist a m × forb(m,F ) simple matrix with no

configuration F . Thus if A is any m × (forb(m,F ) + 1) simple
matrix then A contains F as a configuration.
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows (i.e. incidence matrix of 2[k]).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·

(

m

0

)

= Θ(mk−1)
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows (i.e. incidence matrix of 2[k]).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·

(

m

0

)

= Θ(mk−1)

Theorem (Füredi 83). Let F be a k × l matrix. Then

forb(m,F ) = O(mk)
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows (i.e. incidence matrix of 2[k]).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·

(

m

0

)

= Θ(mk−1)

Theorem (Füredi 83). Let F be a k × l matrix. Then

forb(m,F ) = O(mk)

Which F have forb(m,F ) being O(mk−1) and which F have
forb(m,F ) being Θ(mk)?
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Let A be an m-rowed simple matrix which has no configuration Kk .

For any k-set of rows S ∈
([m]

k

)

let A|S denote the submatrix of A

given by the rows of S .

Since A has no Kk , then for every k-set S ∈
([m]

k

)

of rows we have
that A|S has an absent k × 1 (0,1)-column.

Remark If A is an m-rowed simple matrix with the property that
for every k-set of rows S ∈

([m]
k

)

the submatrix A|S has an absent
column, then A has no Kk and so has at most O(mk−1) columns.
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Let B be a k × (k + 1) simple matrix with one column of each
column sum. For k = 3 a possible B is

B =





0 0 0 1
0 0 1 1
0 1 1 1





For a matrix C , let t · C denote the matrix [CCC · · ·C ] from
concatenating t copies of C . Let FB(t) = [Kk t · [Kk\B ]] so for
our choice of B ,

FB(t) =





0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

t ·





0 1 1 1
1 0 0 1
0 0 1 0









Let t be given. Let A be any m-rowed simple matrix which has no
configuration FB(t). Then for any 3-set of rows S ∈

([m]
3

)

, either
A|S has an absent column
or A|S has two columns which appear at most t times each.
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Let t be given. Let A be any m-rowed simple matrix which has no
configuration FB(t). Then for any 3-set of rows S ∈

([m]
3

)

, either
A|S has an absent column
or A|S has two columns which appear at most t times each.
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Assume A is an m-rowed simple matrix with no FB(t).

Let S be a 3-set of rows in [m] and let α be a 3 × 1 column.
We say that an m × 1 column γ violates S (for the chosen α) if

γ|S = α.

We say 3 × 1 column α is
in short supply in A if it is violated by at most t columns of A.
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Assume A is an m-rowed simple matrix with no FB(t).

Let S be a 3-set of rows in [m] and let α be a 3 × 1 column.
We say that an m × 1 column γ violates S (for the chosen α) if

γ|S = α.

We say 3 × 1 column α is
in short supply in A if it is violated by at most t columns of A.

Let T be the set of 3-sets S for which there is no absent column
and hence (at least) two 3 × 1 columns α, β in short supply. Then
by eliminating ≤ t|T | columns with violations on S ∈ T from A,
we obtain a matrix which has an absent column on each 3-set of
rows and so has O(m2) columns. Unfortunately |T | can be as big
as Θ(m3).
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Multilinear Indicator Polynomials

Let S = {i , j , k} ⊆ [m]

Let x1, x2, . . . , xm be variables. Let α = (α1, α2, α3)
T be a 3 × 1

(0,1)-column.

fS ,α(x) = (xi − ᾱ1)(xj − ᾱ2)(xk − ᾱ3)
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Multilinear Indicator Polynomials

Let S = {i , j , k} ⊆ [m]

Let x1, x2, . . . , xm be variables. Let α = (α1, α2, α3)
T be a 3 × 1

(0,1)-column.

fS ,α(x) = (xi − ᾱ1)(xj − ᾱ2)(xk − ᾱ3)

For a m × 1 (0,1)-column γ

fS ,α(γ)

{

6= 0 if γ|S = α

= 0 otherwise
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Multilinear Indicator Polynomials

fS ,α(x) = (xi − ᾱ1)(xj − ᾱ2)(xk − ᾱ3)

We check that degree of fS ,α(x) is 3 with leading term

xixjxk
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Assume S ∈ T and there are two 3 × 1 columns α, β in short
supply (no column absent) and the two indicator polynomials are
fS ,α, fS ,β. We set

fS(x) = a1fS ,α(x) + a2fS ,β(x)

a1 = +1, a2 = −1

We have that for a m × 1 (0,1)-column γ

fS(γ)

{

6= 0 if γ|S = α or γ|S = β

= 0 otherwise

and degree of fS(x) is (at most) 2 since the leading terms of
degree 3 of fS ,α(x) and fS ,β(x) will cancel.
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Let T be the set of all 3-tuples S for which two columns, say α, β

are in short supply.

A greedy approach would yield what we call a maximal
independent set I = (Si ) which is an ordered list S1,S2, . . . ∈ T
and m × 1 (0,1)-columns γ1, γ2, . . . of A so that
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Let T be the set of all 3-tuples S for which two columns, say α, β

are in short supply.

A greedy approach would yield what we call a maximal
independent set I = (Si ) which is an ordered list S1,S2, . . . ∈ T
and m × 1 (0,1)-columns γ1, γ2, . . . of A so that
γi violates Si for one of the two chosen columns

but violates no Sj with j < i .
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Let T be the set of all 3-tuples S for which two columns, say α, β

are in short supply.

A greedy approach would yield what we call a maximal
independent set I = (Si ) which is an ordered list S1,S2, . . . ∈ T
and m × 1 (0,1)-columns γ1, γ2, . . . of A so that
γi violates Si for one of the two chosen columns

but violates no Sj with j < i .
We could then delete ≤ 2t|I| columns from A to obtain a matrix
with at least one column absent on each triple of rows.

Richard Anstee Balin Fleming UBC, Vancouver Forbidden Configurations and Indicator Polynomials



Let T be the set of all 3-tuples S for which two columns, say α, β

are in short supply.

A greedy approach would yield what we call a maximal
independent set I = (Si ) which is an ordered list S1,S2, . . . ∈ T
and m × 1 (0,1)-columns γ1, γ2, . . . of A so that
γi violates Si for one of the two chosen columns

but violates no Sj with j < i .
We could then delete ≤ 2t|I| columns from A to obtain a matrix
with at least one column absent on each triple of rows.

Theorem If I = (Si) is an independent set, then the indicator

polynomials fS are linearly independent.
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Theorem If I = (Si) is an independent set, and the indicator

polynomials fS are degree at most 2 then

|I| ≤

(

m

2

)

+

(

m

1

)

+

(

m

0

)

= Θ(m2).
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Theorem forb(m,FB(t)) is Θ(m2).

Proof: Assume A is a matrix with no FB(t). Let I = (Si ) be a
maximal independent set with indicator polynomials fSi

. For a
given set S ∈ I there are at most 2t columns with violations of the
two chosen columns in short supply on S . By our linear algebra,
|I| is O(m2). Thus we may remove 2t|I| or O(m2) columns and
remove all violations on the two chosen 3 × 1 columns for each
S ∈ I and so on each S ∈ T there will be an absent 3 × 1 column.
The resulting matrix has at most O(m2) columns and so A has at
most O(m2) columns.
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We have one more 3-rowed configuration F with forb(m,F ) being
O(m2). Let D be the 3 × 5 simple matrix with all columns of sum
at least 1 that do not simultaneously have 1’s in rows 1 and 2. We
take FD(t) = [03 (t + 1) · D] which becomes

FD(t) =





0
0
0

(t + 1) ·





0 1 1 0 0
0 0 0 1 1
1 0 1 0 1









If a matrix A has no FD(t) then each 3-set of rows {i , j , k} in
some ordering has one of the following occur:

no
i 0
j 0
k 0

or at least two columns are in short supply or

≤ t

0
0
1

.
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The case of one column in short supply (but not absent) makes the
proof much more difficult. We can eliminate O(m2) columns and
make a column absent on each 3-set of rows but the argument is
more complex. The new proof idea, using indicator polynomials,
was to consider what is in short supply on some 4-sets of rows and
miraculously we are able to find indicator polynomials of degree 2
(we are able to cancel the terms of degree 4 and 3).
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A typical situation if we avoid FD(t) could be:

≤ t ≤ t ≤ t ≤ t no
i 0 0 1 0
j 0 0 0
k 1 0 1 0
l 1 1 1 0

Note that
≤ t

i 1
j

k 0
l 1

⇒

≤ t ≤ t

i 1 1
j 1 0
k 0 0
l 1 1

We only need a few of these 4 × 1 columns to get our reduction in
degree.
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+1 −1 +1 −1
i 0 1 1 0
j 0 0 0 0
k 0 0 0 0
l 1 1 0 0

α β γ δ

We form a new indicator polynomial for the 4 columns α, β, γ, δ

above as

fS(x) = +1fS ,α(x)−1fS ,β(x)+1fS ,γ(x)−1fS ,δ(x)

and we find that fS is a degree 2 indicator polynomial for the 4
columns above.
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Theorem Let k , t be given positive integers with k ≥ 2, t ≥ 1.
Let B as a k × (k + 1) simple matrix with one column of each

column sum And let FB(t) = [Kk t · [Kk\B ]]. Then

forb(m,FB(t)) is Θ(mk−1)

Let D be the k × (2k − 2k−2 − 1) simple matrix with all columns

of sum at least 1 that do not simultaneously have 1’s in rows 1 and

2. We take FD(t) = [0k (t + 1) · D] Then

forb(m,FD(t)) is Θ(mk−1)
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Theorem Let k , t be given positive integers with k ≥ 2, t ≥ 1.
Let B as a k × (k + 1) simple matrix with one column of each

column sum And let FB(t) = [Kk t · [Kk\B ]]. Then

forb(m,FB(t)) is Θ(mk−1)

Let D be the k × (2k − 2k−2 − 1) simple matrix with all columns

of sum at least 1 that do not simultaneously have 1’s in rows 1 and

2. We take FD(t) = [0k (t + 1) · D] Then

forb(m,FD(t)) is Θ(mk−1)

Theorem Let F is a k-rowed configuration which is not a
configuration in FB(t) (for any choice of B as a k × (k + 1) simple
matrix with one column of each column sum and for any t) and
not in FD(t) (for any t). Then forb(m,F ) is Θ(mk).
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Merci/Thanks to the organizers for arranging this conference!
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