Forbidden Configurations and Indicator Polynomials

Richard Anstee
Balin Fleming
UBC, Vancouver

BIRS, Invariants of Incidence Matrices, April 3, 2009

Introduction

The use of indicator polynomials was explored in a joint paper with Fleming, Füredi and Sali. This talk focuses on joint work with Balin Fleming that led to a breakthrough for Forbidden Configurations. Füredi and Sali continue to explore applications to critical hypergraphs.

Forbidden Configuration Survey at www.math.ubc.ca/~anstee

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F}.

$$
[m]=\{1,2, \ldots, m\}
$$

Let S be a finite set.

$$
\begin{aligned}
& 2^{S}=\{T: T \subseteq S\} \\
& \binom{S}{k}=\left\{T \in 2^{S}:|T|=k\right\}
\end{aligned}
$$

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F}.

$$
[m]=\{1,2, \ldots, m\}
$$

Let S be a finite set.
$2^{S}=\{T: T \subseteq S\}$
$\binom{S}{k}=\left\{T \in 2^{S}:|T|=k\right\}$
i.e. if A is an m-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F}.

$$
[m]=\{1,2, \ldots, m\}
$$

Let S be a finite set.

$$
\begin{aligned}
& 2^{S}=\{T: T \subseteq S\} \\
& \binom{S}{k}=\left\{T \in 2^{S}:|T|=k\right\}
\end{aligned}
$$

i.e. if A is an m-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.
Some matrix notations are helpful: K_{k} is the $k \times 2^{k}$ simple matrix $\approx 2^{[k]}$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.
Definition Let forb (m, F) be the largest function of m and F so that there exist a $m \times$ forb (m, F) simple matrix with no configuration F. Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains F as a configuration.

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.
Definition Let forb (m, F) be the largest function of m and F so that there exist a $m \times$ forb (m, F) simple matrix with no configuration F. Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains F as a configuration.
For example, \quad forb $\left(m,\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)=m+1$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
f \circ r b\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Corollary Let F be a $k \times 1$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
f \circ r b\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

Corollary Let F be a $k \times 1$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$
Theorem (Füredi 83). Let F be a $k \times I$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$

Order Shattered Sets

Let $\mathcal{F} \subseteq 2^{[m]}$. We say $S=\left\{i_{1}, i_{2}, i_{3}\right\}$ is order-shattered by \mathcal{F} (or the associated incidence matrix A) if there are 2^{3} columns of A

$$
\left[\begin{array}{llllllll}
* & * & * & * & * & * & * & * \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\delta & \delta & \epsilon & \epsilon & \kappa & \kappa & \lambda & \lambda \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\beta & \beta & \beta & \beta & \gamma & \gamma & \gamma & \gamma \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\alpha & \alpha
\end{array}\right] \longrightarrow \text { row } i_{1}
$$

Note that $\left.A\right|_{S}$ has K_{3}. The symbols $\alpha, \beta, \ldots, \lambda$ are for vectors of appropriate length and $*$ refers to arbitrary entries.

Using the definition of order shattered sets we define

$$
\operatorname{osh}(\mathcal{F})=\left\{S \in 2^{[m]}: S \text { is order shattered by } \mathcal{F}\right\}
$$

The set $\operatorname{osh}(\mathcal{F})$ is a downset and moreover $|\operatorname{osh}(\mathcal{F})|=|\mathcal{F}|$.
Theorem (A, Ronyai, Sali 02) The inclusion matrix $I(\operatorname{osh}(\mathcal{F}), \mathcal{F})$ is nonsingular over every field.

Let A be an m-rowed simple matrix which has no configuration K_{k}. For any k-set of rows $S \in\binom{[m]}{k}$, we let $\left.A\right|_{S}$ denote the submatrix of A given by the rows of S. Since A has no K_{k}, then for every k-set S of rows we have that $\left.A\right|_{S}$ has an absent $k \times 1(0,1)$-column.
Remark If A has the property that for every k-set of rows $S \in\binom{[m]}{k}$ we have that $\left.A\right|_{S}$ has an absent column, then A has no K_{k} and so has at most $O\left(m^{k-1}\right)$ columns.

Let B be a $k \times(k+1)$ simple matrix with one column of each column sum. For a matrix C, let $t \cdot C$ denote the matrix [CCC $\cdots C$] from concatenating t copies of C. Let

$$
F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]
$$

Let k, t be given. Let A be any m-rowed simple matrix which has no configuration $F_{B}(t)$. Then for any k-set of rows $S \in\binom{[m]}{k}$, either $\left.A\right|_{S}$ has an absent column or $\left.A\right|_{S}$ has two columns which appear at most t times each.
We say such columns are in short supply.

Let B be a $k \times(k+1)$ simple matrix with one column of each column sum. For a matrix C, let $t \cdot C$ denote the matrix [CCC $\cdots C$] from concatenating t copies of C. Let

$$
F_{B}(t)=\left[K_{k} t \cdot\left[K_{k} \backslash B\right]\right]
$$

Let k, t be given. Let A be any m-rowed simple matrix which has no configuration $F_{B}(t)$. Then for any k-set of rows $S \in\binom{[\mathrm{~m}]}{k}$, either $\left.A\right|_{S}$ has an absent column or $\left.A\right|_{S}$ has two columns which appear at most t times each.
We say such columns are in short supply.
Idea: We wish to show that we could delete $O\left(m^{k-1}\right)$ columns from A to obtain A^{\prime} where A^{\prime} has an absent column for each k-set of rows and hence A^{\prime} has at most $O\left(m^{k-1}\right)$ columns and so A has at most $O\left(m^{k-1}\right)$ columns.

Assume A is an m-rowed simple matrix with no $F_{B}(t)$. Let $S \in\binom{[m]}{k}$ and let α be a $k \times 1$ column which is in short supply on S.
We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$
\left.\gamma\right|_{s}=\alpha
$$

Assume A is an m-rowed simple matrix with no $F_{B}(t)$.
Let $S \in\binom{[m]}{k}$ and let α be a $k \times 1$ column which is in short supply on S.
We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$
\left.\gamma\right|_{s}=\alpha
$$

Let $\mathcal{T} \subseteq\binom{[m]}{k}$ be the set of k-sets S for which there are (at least) two $k \times 1$ columns α, β in short supply (no column absent).
We could eliminate $\leq t|\mathcal{T}|$ columns with violations on $S \in \mathcal{T}$ from A to obtain A^{\prime} which has an absent column on each k-set of rows. Unfortunately $|\mathcal{T}|$ can be too large. We need a better way to estimate the number of columns in A that have violations on $S \in \mathcal{T}$.

Multilinear Indicator Polynomials

Let $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in\binom{[m]}{k}$
Let $x_{1}, x_{2}, \ldots, x_{m}$ be variables. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)^{T}$ be a $k \times 1(0,1)$-column. Let a be the number of 1 's in α.

$$
f_{S, \alpha}(\mathbf{x})=\prod_{j=1}^{k}\left(x_{i j}-\alpha_{j}\right)
$$

For a $m \times 1(0,1)$-column γ

$$
f_{S, \alpha}(\bar{\gamma})=\left\{\begin{array}{cl}
(-1)^{a} & \text { if }\left.\gamma\right|_{S}=\alpha \\
0 & \text { otherwise }
\end{array}\right.
$$

Multilinear Indicator Polynomials

Let $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in\binom{[m]}{k}$
Let $x_{1}, x_{2}, \ldots, x_{m}$ be variables. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)^{T}$ be a $k \times 1(0,1)$-column. Let a be the number of 1 's in α.

$$
f_{S, \alpha}(\mathbf{x})=\prod_{j=1}^{k}\left(x_{i_{j}}-\alpha_{j}\right)
$$

For a $m \times 1(0,1)$-column γ

$$
\begin{gathered}
f_{S, \alpha}(\bar{\gamma})=\left\{\begin{array}{cl}
(-1)^{a} & \text { if }\left.\gamma\right|_{S}=\alpha \\
0 & \text { otherwise }
\end{array}\right. \\
f_{S, \alpha}(\bar{\gamma}) \begin{cases}\neq 0 & \text { if }\left.\gamma\right|_{S}=\alpha \\
=0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Multilinear Indicator Polynomials

$$
f_{S, \alpha}(\mathbf{x})=\prod_{j=1}^{k}\left(x_{i_{j}}-\alpha_{j}\right)
$$

We check that degree of $f_{S, \alpha}(\mathbf{x})$ is k with leading term

$$
\prod_{j=1}^{k} x_{i_{j}}
$$

Assume $S \in \mathcal{T}$ and there are two $k \times 1$ columns α, β in short supply (no column absent) and the two indicator polynomials $f_{S, \alpha}$, $f_{S, \beta}$. We set

$$
\begin{aligned}
f_{S}(\mathbf{x}) & =a_{1} f_{S, \alpha}(\mathbf{x})+a_{2} f_{S, \beta}(\mathbf{x}) \\
a_{1} & =+1, \quad a_{2}=-1
\end{aligned}
$$

We have that for a $m \times 1(0,1)$-column γ

$$
f_{S}(\bar{\gamma})\left\{\begin{array}{cc}
\neq 0 & \text { if }\left.\gamma\right|_{S}=\alpha \text { or }\left.\gamma\right|_{S}=\beta \\
=0 & \text { otherwise }
\end{array}\right.
$$

and degree of $f_{S}(\mathbf{x})$ is (at most) $k-1$ since the leading terms of degree k of $f_{S, \alpha}(\mathbf{x})$ and $f_{S, \beta}(\mathbf{x})$ will cancel.

Let $\mathcal{T} \subseteq\binom{[m]}{k}$ be the set of all k-tuples S for which two columns, say α, β are in short supply.
An independent set $\mathcal{I}=\left(S_{i}\right)$ is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $k \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that
γ_{i} violates S_{i} for two chosen columns but violates no S_{j} with $j<i$
An independent set can be found by a greedy approach.

Let $\mathcal{T} \subseteq\binom{[m]}{k}$ be the set of all k-tuples S for which two columns, say α, β are in short supply.
An independent set $\mathcal{I}=\left(S_{i}\right)$ is an ordered list $S_{1}, S_{2}, \ldots \in \mathcal{T}$ and $k \times 1(0,1)$-columns $\gamma_{1}, \gamma_{2}, \ldots$ of A so that
γ_{i} violates S_{i} for two chosen columns but violates no S_{j} with $j<i$
An independent set can be found by a greedy approach.
Theorem If $\mathcal{I}=\left(S_{i}\right)$ is an independent set, then the indicator polynomials f_{S} are linearly independent.
Proof: Form the matrix of order $|\mathcal{I}|$ with $i j$ entry equal to

$$
f_{S_{j}}\left(\bar{\gamma}_{i}\right)
$$

The matrix is upper triangular with nonzeros on the diagonal.

Assume we have an independent set $\mathcal{I}=\left(S_{i}\right)$.

Assume we have an independent set $\mathcal{I}=\left(S_{i}\right)$. Theorem If $\mathcal{I}=\left(S_{i}\right)$ is an independent set, and the indicator polynomials f_{S} are degree at most d then

$$
\begin{aligned}
|\mathcal{I}| \leq\binom{ m}{d}+ & \binom{m}{d-1}+\cdots+\binom{m}{0} \\
& =\Theta\left(m^{d}\right)
\end{aligned}
$$

Assume we have an independent set $\mathcal{I}=\left(S_{i}\right)$.
Theorem If $\mathcal{I}=\left(S_{i}\right)$ is an independent set, and the indicator polynomials f_{S} are degree at most d then

$$
\begin{aligned}
|\mathcal{I}| \leq\binom{ m}{d}+ & \binom{m}{d-1}+\cdots+\binom{m}{0} \\
& =\Theta\left(m^{d}\right)
\end{aligned}
$$

In our case the indicator polynomials have degree $k-1$ and so $|\mathcal{I}|$ is $O\left(m^{k-1}\right)$.

Theorem forb $\left(m, F_{B}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
Proof: Assume A is a matrix with no $F_{B}(t)$. For a given set $S \in \mathcal{T} \subseteq\binom{[m]}{k}$ there are at most $2 t$ columns with violations of the two chosen columns in short supply on S. Let $\mathcal{I}=\left(S_{i}\right)$ be a maximal independent set with indicator polynomials $f_{S_{i}}$. Thus we may remove $2 t|\mathcal{I}|$ or $O\left(m^{k-1}\right)$ columns and remove all violations on the two chosen $k \times 1$ columns for each $S \in \mathcal{T}$ and so on each $S \in \mathcal{T}$ there will be an absent column. The resulting matrix has at most $O\left(m^{k-1}\right)$ columns and so A has at most $O\left(m^{k-1}\right)$ columns.

There is one more k-rowed configuration F, for each k, with forb (m, F) being $\Theta\left(m^{k-1}\right)$. Let $k=4$ and let D be the $k \times(11)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

There is one more k-rowed configuration F, for each k, with forb (m, F) being $\Theta\left(m^{k-1}\right)$. Let $k=4$ and let D be the $k \times(11)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

If a matrix A has no $F_{D}(t)$ then each 4-set of rows $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ in some ordering has one of the following occur:

	no
i_{1}	0
i_{2}	0
i_{3}	0
i_{4}	0

We have one more k-rowed configuration F, for each k, with forb (m, F) being $O\left(m^{k-1}\right)$. Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

If a matrix A has no F then each 4 -set of rows $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ in some ordering has one of the following occur:

	no
i_{1}	0
i_{2}	0
i_{3}	0
i_{4}	0

We have one more k-rowed configuration F, for each k, with forb (m, F) being $O\left(m^{k-1}\right)$. Let $k=4$ and let D be the $k \times 11$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2 . We take $F_{D}(t)=\left[\mathbf{0}_{4}(t+1) \cdot D\right]$ which becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

If a matrix A has no F then each 4 -set of rows $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ in some ordering has one of the following occur:

	no	$\leq t$
i_{1}	0	0
i_{2}	0	
i_{3}	0	or at least two columns are in short supply or
i_{4}	0	0
i_{2}	0	
	1	

The case of one column in short supply makes the proof much more difficult. We can find ways to eliminate $O\left(m^{3}\right)$ columns and make a column absent on many 4 -sets of rows. But some are left.

A typical situation if we avoid $F_{D}(t)$ could be:

	$\leq t$	no					
i_{1}	0	0	1	0	1	0	
i_{2}	0	0	1	0			0
i_{3}	0	0			1	0	0
i_{4}	1		0	1	0	1	0
i_{5}		1	1	1	1	1	0

We only need a few of these columns to get our reduction in degree. Note that

	$\leq t$		$\leq t$	$\leq t$	
i_{1}	1				
i_{2}					
i_{3}	1				
i_{4}	0				
i_{1}	1	1			
i_{5}	1		i_{2}	1	0
i_{3}	1	1			
i_{4}	0	0			
i_{5}	1	1			

$|S|=5$

$$
f_{S, \alpha}(\mathbf{x})=\prod_{j=1}^{5}\left(x_{i_{j}}-\alpha_{j}\right)
$$

For a 5×1 vector α, we check that degree of $f_{S, \alpha}(\mathbf{x})$ is 5 with leading term

$$
\prod_{j=1}^{5} x_{i_{j}}
$$

Consider $\sum y_{i} f_{S, \alpha(i)}(\mathbf{x})$ for some 5×1 columns $\alpha(1), \alpha(2), \ldots$ We can cancel the terms of degree 5 if $\mathbf{1}^{\top} \mathbf{y}=0$.
$|S|=5$

$$
f_{S, \alpha}(\mathbf{x})=\prod_{j=1}^{5}\left(x_{i_{j}}-\alpha_{j}\right)
$$

The terms of degree 4 in $f_{S, \alpha}(\mathbf{x})$ are

$$
\alpha_{r} \prod_{j \in S \backslash r} x_{j}=\left\{\begin{array}{cc}
\prod_{j \in S \backslash r} x_{j} & \text { if } \alpha_{r}=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider $\sum y_{i} f_{S, \alpha(i)}(\mathbf{x})$ for some 5×1 columns $\alpha(1), \alpha(2), \ldots$ Let M denote the matrix whose columns are the vectors $\alpha(1), \alpha(2), \ldots$. We can cancel the terms of degree 4 if $\mathbf{M y}=0$.

We are trying to find solutions to $M \mathbf{y}=\mathbf{0}$ with $\mathbf{1}^{T} \mathbf{y}=0$. We are able to get two easy solutions to $M \mathbf{y}=\mathbf{0}$:

\mathbf{y}	-1	+1	-1	+1	-1	+1	-1
i_{1}	1	1	1	1	0	0	0
i_{2}	1	1	0	0	0	0	0
i_{3}	0	1	1	0	0	0	0
i_{4}	0	0	0	0	0	1	1
i_{5}	1	1	1	0	0	1	0
			+1	+1	-1		
			i_{1}	0	0	0	
		i_{2}	0	0	0		
			i_{3}	0	0	0	
		i_{4}	1	0	1		
		i_{5}	0	1	1		

If we add the two solutions together, we obtain a solution \mathbf{y} whose sum of coefficients is 0 i.e. $\mathbf{1}^{T} \mathbf{y}=0$.

Adding the two previous solutions together we obtain a solution to $M \mathbf{y}=\mathbf{0}$ with $\mathbf{1}^{T} \mathbf{y}=0$:

\mathbf{y}	-1	+1	-1	+1	-1	+1
i_{1}	1	1	1	1	0	0
i_{2}	1	1	0	0	0	0
i_{3}	0	1	1	0	0	0
i_{4}	0	0	0	0	0	0
i_{5}	1	1	1	0	0	1

We obtain an indicator polynomial $f(\mathbf{x})$ of degree 3 with $f(\bar{\gamma}) \neq 0$ if and only if γ violates one of the 6 listed columns on 5 rows. Note that $f(\mathbf{x})$ is an indicator polynomial for the 6 columns in short supply on the 5 rows but is not an indicator polynomial for all columns in short supply (or absent) on the 5 rows.

Theorem forb $\left(m, F_{D}(t)\right)$ is $O\left(m^{3}\right)$.
Proof: Assume A has no $F_{D}(t)$ and that we have deleted $O\left(m^{3}\right)$ columns. Consider the cases above for $S \in\binom{[m]}{5}$ and for which we have an indicator polynomial of degree at most 3 counting some violations (6 in example above).
Then we can create a maximal independent set $\mathcal{I}=\left(S_{i}\right)$ as before and given that the indicator polynomials are of degree at most 3 , we can eliminate $O\left(m^{3}\right)$ columns. Further eliminations of $O\left(m^{3}\right)$ columns are required before there is guaranteed to be an absent column on each 4 -set of $\binom{[m]}{4}$ at which point we conclude that $O\left(m^{3}\right)$ columns remain and so A has at most $O\left(m^{3}\right)$ columns.

Theorem Let k, t be given positive integers with $k \geq 2, t \geq 1$. Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ Then

$$
\text { forb }\left(m, F_{D}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Theorem Let k, t be given positive integers with $k \geq 2, t \geq 1$. Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[\mathbf{0}_{k}(t+1) \cdot D\right]$ Then

$$
f \circ r b\left(m, F_{D}(t)\right) \text { is } \Theta\left(m^{k-1}\right)
$$

Theorem Let k be given and assume F is a k-rowed configuration which is not a configuration in $F_{B}(t)$ (for any choice of B as a $k \times(k+1)$ simple matrix with one column of each column sum and for any t) and not in $F_{D}(t)$ (for any t). Then forb (m, F) is $\Theta\left(m^{k}\right)$.

Where could we go from here?
Linear algebra does work for the following case for which we already had an alternate proof.
no configuration $F=(t+1) \cdot\left[\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right] \quad$ forces $\begin{array}{ccccc}\leq t & \leq t & \leq t & \leq t \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}$
on any 4 rows. We can form a degree 2 indicator polynomial

$$
f(\mathbf{x})=x_{1} x_{2}-x_{2} x_{3}+x_{3} x_{4}-x_{1} x_{4}
$$

Where could we go from here?
Linear algebra does work for the following case for which we already had an alternate proof.
no configuration $F=(t+1) \cdot\left[\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right] \quad$ forces $\begin{array}{ccccc}\leq t & \leq t & \leq t & \leq t \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}$
on any 4 rows. We can form a degree 2 indicator polynomial

$$
f(\mathbf{x})=x_{1} x_{2}-x_{2} x_{3}+x_{3} x_{4}-x_{1} x_{4}
$$

Theorem Let $t \geq 1$ be given. Then forb (m, F) is $\Theta\left(m^{2}\right)$.

$$
\begin{aligned}
& \text { Now if } A \text { has no configuration } F=(t+1) \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \\
& \begin{array}{ccccccc}
& \leq t & \leq t & \leq t & & \leq t & \leq t \\
\text { this forces } & \leq t \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & \text { or } & 0 & 1 & 1 \\
0 & 1 & 0 & & 1 & 0 & 1 \\
0 & 0 & 1 & & 1 & 1 & 0
\end{array}
\end{aligned}
$$

on any 4 rows. I have no idea how to use indicator polynomials for this case but we can conjecture a result.

$$
\begin{aligned}
& \text { Now if } A \text { has no configuration } F=(t+1) \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \\
& \begin{array}{ccccccc}
& \leq t & \leq t & \leq t & & \leq t & \leq t \\
\text { this forces } & & \leq t \\
1 & 1 & 1 & & 0 & 0 & 0 \\
1 & 0 & 0 & \text { or } & 0 & 1 & 1 \\
0 & 1 & 0 & & 1 & 0 & 1 \\
0 & 0 & 1 & & 1 & 1 & 0
\end{array}
\end{aligned}
$$

on any 4 rows. I have no idea how to use indicator polynomials for this case but we can conjecture a result.
Conjecture Let $t \geq 2$ be given. Then forb (m, F) is $\Theta\left(m^{2}\right)$.

Thanks for the invite to Banff!

Thanks for the invite to Banff!
Thanks to the organizers Chris Godsil, Peter Sin and Qing Xiang!
Thanks to all the participants for a wonderful conference!

The building blocks of our constructions are $I^{\prime} I^{c}$ and T :
$I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
Note that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin I, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \notin I^{c}, \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin T
$$

The building blocks of our constructions are $I^{\prime} I^{c}$ and T :
$I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
Note that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin I, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \notin I^{c}, \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin T
$$

Note that forb $\left(m,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\operatorname{forb}\left(m,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=$ forb $\left(m,\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=m+1$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each
$A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Thus $x(F)+1$ is the smallest value of p such that F is a configuration in every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
The conjecture has been verified for $k \times l F$ where $k=2$ (A, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $I=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ plus other cases.

