Forbidden Configurations and Indicator Polynomials

Richard Anstee Balin Fleming UBC, Vancouver

BIRS, Invariants of Incidence Matrices, April 3, 2009

The use of indicator polynomials was explored in a joint paper with Fleming, Füredi and Sali. This talk focuses on joint work with Balin Fleming that led to a breakthrough for Forbidden Configurations. Füredi and Sali continue to explore applications to critical hypergraphs.

Forbidden Configuration Survey at www.math.ubc.ca/~anstee

向下 イヨト イヨト

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F} .

 $[m] = \{1, 2, \dots, m\}$

Let S be a finite set. $2^{S} = \{T : T \subseteq S\}$ $\binom{S}{k} = \{T \in 2^{S} : |T| = k\}$

通 とう ほう ううせい

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F} .

 $[m] = \{1, 2, \dots, m\}$

Let S be a finite set.

$$2^{S} = \{T : T \subseteq S\} \\ \binom{S}{k} = \{T \in 2^{S} : |T| = k\}$$

i.e. if A is an *m*-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

ヨト イヨト イヨト

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns. We can think of A as the incidence matrix of some set system \mathcal{F} .

 $[m] = \{1, 2, \dots, m\}$

Let S be a finite set.

$$2^{S} = \{T : T \subseteq S\}$$

$$\binom{5}{k} = \{T \in 2^{5} : |T| = k\}$$

i.e. if A is an m-rowed simple matrix then A is the incidence matrix of some $\mathcal{F} \subseteq 2^{[m]}$.

Some matrix notations are helpful:

 K_k is the $k \times 2^k$ simple matrix $\approx 2^{[k]}$

通 とう ほう ううせい

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A for which we say F is a *forbidden configuration* in A. **Definition** Let forb(m, F) be the largest function of m and F so that there exist a $m \times \text{forb}(m, F)$ simple matrix with *no* configuration F. Thus if A is any $m \times (\text{forb}(m, F) + 1)$ simple matrix then A contains F as a configuration.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A for which we say F is a *forbidden configuration* in A. **Definition** Let forb(m, F) be the largest function of m and F so that there exist a $m \times \text{forb}(m, F)$ simple matrix with *no* configuration F. Thus if A is any $m \times (\text{forb}(m, F) + 1)$ simple matrix then A contains F as a configuration.

For example, forb
$$(m, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}) = m + 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

向下 イヨト イヨト

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

Corollary Let F be a $k \times l$ simple matrix. Then forb $(m, F) = O(m^{k-1})$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows (i.e. incidence matrix of $2^{[k]}$).

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$forb(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots \binom{m}{0} = \Theta(m^{k-1})$$

Corollary Let F be a $k \times l$ simple matrix. Then forb $(m, F) = O(m^{k-1})$ **Theorem** (Füredi 83). Let F be a $k \times l$ matrix. Then forb $(m, F) = O(m^k)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\mathcal{F} \subseteq 2^{[m]}$. We say $S = \{i_1, i_2, i_3\}$ is order-shattered by \mathcal{F} (or the associated incidence matrix A) if there are 2^3 columns of A

$$\begin{bmatrix} * & * & * & * & * & * & * & * \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \delta & \delta & \epsilon & \epsilon & \kappa & \kappa & \lambda & \lambda \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ \beta & \beta & \beta & \beta & \gamma & \gamma & \gamma & \gamma \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \alpha & \alpha \end{bmatrix} \longrightarrow \operatorname{row} i_{3}$$

Note that $A|_S$ has K_3 . The symbols $\alpha, \beta, \ldots, \lambda$ are for vectors of appropriate length and * refers to arbitrary entries.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Using the definition of order shattered sets we define

$$\operatorname{\textit{osh}}(\mathcal{F}) = \{S \in 2^{[m]} \, : \, S ext{ is order shattered by } \mathcal{F}\}$$

The set $osh(\mathcal{F})$ is a downset and moreover $|osh(\mathcal{F})| = |\mathcal{F}|$. **Theorem** (A, Ronyai, Sali 02) The inclusion matrix $I(osh(\mathcal{F}), \mathcal{F})$ is nonsingular over every field.

向下 イヨト イヨト

Let A be an *m*-rowed simple matrix which has no configuration K_k . For any k-set of rows $S \in {[m] \choose k}$, we let $A|_S$ denote the submatrix of A given by the rows of S. Since A has no K_k , then for every k-set S of rows we have that $A|_S$ has an absent $k \times 1$ (0,1)-column.

Remark If A has the property that for every k-set of rows $S \in {\binom{[m]}{k}}$ we have that $A|_S$ has an absent column, then A has no K_k and so has at most $O(m^{k-1})$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *B* be a $k \times (k + 1)$ simple matrix with one column of each column sum. For a matrix *C*, let $t \cdot C$ denote the matrix $[CCC \cdots C]$ from concatenating *t* copies of *C*. Let

 $F_B(t) = [K_k \ t \cdot [K_k \setminus B]]$

Let k, t be given. Let A be any m-rowed simple matrix which has no configuration $F_B(t)$. Then for any k-set of rows $S \in {\binom{[m]}{k}}$, either $A|_S$ has an absent column or $A|_S$ has two columns which appear at most t times each.

We say such columns are in short supply.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *B* be a $k \times (k + 1)$ simple matrix with one column of each column sum. For a matrix *C*, let $t \cdot C$ denote the matrix $[CCC \cdots C]$ from concatenating *t* copies of *C*. Let

 $F_B(t) = [K_k \ t \cdot [K_k \setminus B]]$

Let k, t be given. Let A be any m-rowed simple matrix which has no configuration $F_B(t)$. Then for any k-set of rows $S \in {\binom{[m]}{k}}$, either $A|_S$ has an absent column or $A|_S$ has two columns which appear at most t times each.

We say such columns are in short supply.

Idea: We wish to show that we could delete $O(m^{k-1})$ columns from A to obtain A' where A' has an absent column for each k-set of rows and hence A' has at most $O(m^{k-1})$ columns and so A has at most $O(m^{k-1})$ columns.

(4月) (4日) (4日)

Assume A is an *m*-rowed simple matrix with no $F_B(t)$.

Let $S \in {[m] \choose k}$ and let α be a $k \times 1$ column which is in short supply on S.

We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$\gamma|_{\mathcal{S}} = \alpha.$$

・周下 ・ヨト ・ヨト ・ ヨ

Assume A is an *m*-rowed simple matrix with no $F_B(t)$.

Let $S \in {\binom{[m]}{k}}$ and let α be a $k \times 1$ column which is in short supply on S.

We say that an $m \times 1$ column γ violates S (for the chosen α) if

$$\gamma|_{\mathcal{S}} = \alpha.$$

Let $\mathcal{T} \subseteq {\binom{[m]}{k}}$ be the set of *k*-sets *S* for which there are (at least) two $k \times 1$ columns α, β in short supply (no column absent).

We could eliminate $\leq t|\mathcal{T}|$ columns with violations on $S \in \mathcal{T}$ from A to obtain A' which has an absent column on each k-set of rows. Unfortunately $|\mathcal{T}|$ can be too large. We need a better way to estimate the number of columns in A that have violations on $S \in \mathcal{T}$.

Multilinear Indicator Polynomials

Let $S = \{i_1, i_2, \dots, i_k\} \in {\binom{[m]}{k}}$ Let x_1, x_2, \dots, x_m be variables. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)^T$ be a $k \times 1$ (0,1)-column. Let *a* be the number of 1's in α .

$$f_{\mathcal{S},lpha}(\mathbf{x}) = \prod_{j=1}^{k} (x_{i_j} - lpha_j)$$

For a m imes 1 (0,1)-column γ

$$f_{\mathcal{S},\alpha}(\bar{\gamma}) = \begin{cases} (-1)^a & \text{if } \gamma|_{\mathcal{S}} = \alpha \\ 0 & \text{otherwise} \end{cases}$$

向下 イヨト イヨト

Multilinear Indicator Polynomials

Let $S = \{i_1, i_2, \dots, i_k\} \in {\binom{[m]}{k}}$ Let x_1, x_2, \dots, x_m be variables. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)^T$ be a $k \times 1$ (0,1)-column. Let *a* be the number of 1's in α .

$$f_{\mathcal{S},lpha}(\mathbf{x}) = \prod_{j=1}^{k} (x_{i_j} - lpha_j)$$

For a m imes 1 (0,1)-column γ

$$f_{S,\alpha}(\bar{\gamma}) = \begin{cases} (-1)^{a} & \text{if } \gamma|_{S} = \alpha \\ 0 & \text{otherwise} \end{cases}$$
$$f_{S,\alpha}(\bar{\gamma}) \begin{cases} \neq 0 & \text{if } \gamma|_{S} = \alpha \\ = 0 & \text{otherwise} \end{cases}$$

Multilinear Indicator Polynomials

$$f_{\mathcal{S},\alpha}(\mathbf{x}) = \prod_{j=1}^{k} (x_{i_j} - \alpha_j)$$

We check that degree of $f_{S,\alpha}(\mathbf{x})$ is k with leading term

 $\prod_{i=1}^k x_{i_i}$

Richard Anstee Balin Fleming UBC, Vancouver Forbidden Configurations and Indicator Polynomials

向下 イヨト イヨト

Assume $S \in \mathcal{T}$ and there are two $k \times 1$ columns α, β in short supply (no column absent) and the two indicator polynomials $f_{S,\alpha}$, $f_{S,\beta}$. We set

$$egin{aligned} &f_{\mathcal{S}}(\mathbf{x}) = a_1 f_{\mathcal{S},lpha}(\mathbf{x}) + a_2 f_{\mathcal{S},eta}(\mathbf{x}) \ &a_1 = +1, \qquad a_2 = -1 \end{aligned}$$

We have that for a $m \times 1$ (0,1)-column γ

$$f_{\mathcal{S}}(\bar{\gamma}) \begin{cases} \neq 0 & \text{if } \gamma|_{\mathcal{S}} = \alpha \text{ or } \gamma|_{\mathcal{S}} = \beta \\ = 0 & \text{otherwise} \end{cases}$$

and degree of $f_S(\mathbf{x})$ is (at most) k-1 since the leading terms of degree k of $f_{S,\alpha}(\mathbf{x})$ and $f_{S,\beta}(\mathbf{x})$ will cancel.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\mathcal{T} \subseteq {\binom{[m]}{k}}$ be the set of all *k*-tuples *S* for which two columns, say α , β are in short supply.

An independent set $\mathcal{I} = (S_i)$ is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $k \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that

 γ_i violates S_i for two chosen columns but violates no S_j with j < i

An independent set can be found by a greedy approach.

・吊り ・ヨリ ・ヨリー ヨ

Let $\mathcal{T} \subseteq {\binom{[m]}{k}}$ be the set of all *k*-tuples *S* for which two columns, say α , β are in short supply.

An independent set $\mathcal{I} = (S_i)$ is an ordered list $S_1, S_2, \ldots \in \mathcal{T}$ and $k \times 1$ (0,1)-columns $\gamma_1, \gamma_2, \ldots$ of A so that

 γ_i violates S_i for two chosen columns but violates no S_j with j < i

An independent set can be found by a greedy approach.

Theorem If $\mathcal{I} = (S_i)$ is an independent set, then the indicator polynomials f_S are linearly independent.

Proof: Form the matrix of order $|\mathcal{I}|$ with *ij* entry equal to

$$f_{S_j}(\bar{\gamma}_i)$$

The matrix is upper triangular with nonzeros on the diagonal.

Assume we have an independent set $\mathcal{I} = (S_i)$.

・ロト ・回ト ・ヨト ・ヨト

Assume we have an independent set $\mathcal{I} = (S_i)$. **Theorem** If $\mathcal{I} = (S_i)$ is an independent set, and the indicator polynomials f_S are degree at most d then

$$|\mathcal{I}| \leq \binom{m}{d} + \binom{m}{d-1} + \dots + \binom{m}{0}$$

= $\Theta(m^d).$

不同 医子宫 医子宫下的

Assume we have an independent set $\mathcal{I} = (S_i)$. **Theorem** If $\mathcal{I} = (S_i)$ is an independent set, and the indicator polynomials f_S are degree at most d then

$$|\mathcal{I}| \leq \binom{m}{d} + \binom{m}{d-1} + \dots + \binom{m}{0}$$

= $\Theta(m^d).$

In our case the indicator polynomials have degree k-1 and so $|\mathcal{I}|$ is $O(m^{k-1})$.

(4月) (4日) (4日) 日

Theorem forb $(m, F_B(t))$ is $\Theta(m^{k-1})$.

Proof: Assume A is a matrix with no $F_B(t)$. For a given set $S \in \mathcal{T} \subseteq {\binom{[m]}{k}}$ there are at most 2t columns with violations of the two chosen columns in short supply on S. Let $\mathcal{I} = (S_i)$ be a maximal independent set with indicator polynomials f_{S_i} . Thus we may remove $2t|\mathcal{I}|$ or $O(m^{k-1})$ columns and remove all violations on the two chosen $k \times 1$ columns for each $S \in \mathcal{T}$ and so on each $S \in \mathcal{T}$ there will be an absent column. The resulting matrix has at most $O(m^{k-1})$ columns and so A has at most $O(m^{k-1})$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト …

There is one more k-rowed configuration F, for each k, with forb(m, F) being $\Theta(m^{k-1})$. Let k = 4 and let D be the $k \times (11)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ which for k = 4 becomes

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot \\ 0 & & \\ 0 &$$

向下 イヨト イヨト

There is one more k-rowed configuration F, for each k, with forb(m, F) being $\Theta(m^{k-1})$. Let k = 4 and let D be the $k \times (11)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ which for k = 4 becomes

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot \\ 0 & & \\ 0 &$$

If a matrix A has no $F_D(t)$ then each 4-set of rows $\{i_1, i_2, i_3, i_4\}$ in some ordering has one of the following occur:

 $\begin{array}{ccc} & no \\ i_1 & 0 \\ i_2 & 0 \\ i_3 & 0 \\ i_4 & 0 \end{array}$

通 とう ほう ううせい

We have one more k-rowed configuration F, for each k, with forb(m, F) being $O(m^{k-1})$. Let D be the $k \times (2^k - 2^{k-2} - 1)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ which for k = 4 becomes

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot \\ 0 & & \\ 0 &$$

If a matrix A has no F then each 4-set of rows $\{i_1, i_2, i_3, i_4\}$ in some ordering has one of the following occur:

no

$$i_1$$
 0
 i_2 0 or at least two columns are in short supply
 i_3 0
 i_4 0

向下 イヨト イヨト

We have one more k-rowed configuration F, for each k, with forb(m, F) being $O(m^{k-1})$. Let k = 4 and let D be the $k \times 11$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_4 (t+1) \cdot D]$ which becomes

$$F_D(t) = \begin{bmatrix} 0 & & \\ 0 & (t+1) \cdot \\ 0 & & \\ 0 &$$

If a matrix A has no F then each 4-set of rows $\{i_1, i_2, i_3, i_4\}$ in some ordering has one of the following occur:

$$\begin{array}{cccc} & \text{no} & & \leq t \\ i_1 & 0 & & 0 \\ i_2 & 0 \text{ or at least two columns are in short supply or } & 0 \\ i_3 & 0 & & 0 \\ i_4 & 0 & & 1 \end{array}$$

伺下 イヨト イヨト

The case of one column in short supply makes the proof much more difficult. We can find ways to eliminate $O(m^3)$ columns and make a column absent on many 4-sets of rows. But some are left.

A typical situation if we avoid $F_D(t)$ could be:

$$\leq t \leq t \leq t \leq t \leq t \leq t$$
 no
 $i_1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$
 $i_2 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
 $i_3 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
 $i_4 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$
 $i_5 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$

We only need a few of these columns to get our reduction in degree. Note that

御 と く ヨ と く ヨ と

|S| = 5

$$f_{\mathcal{S},\alpha}(\mathbf{x}) = \prod_{j=1}^{5} (x_{i_j} - \alpha_j)$$

For a 5 × 1 vector α , we check that degree of $f_{S,\alpha}(\mathbf{x})$ is 5 with leading term

$$\prod_{j=1}^{5} x_{i_j}$$

Consider $\sum y_i f_{S,\alpha(i)}(\mathbf{x})$ for some 5×1 columns $\alpha(1), \alpha(2), \ldots$. We can cancel the terms of degree 5 if $\mathbf{1}^T \mathbf{y} = 0$.

伺 ト イヨト イヨト

|S| = 5

$$f_{\mathcal{S},\alpha}(\mathbf{x}) = \prod_{j=1}^{5} (x_{i_j} - \alpha_j)$$

The terms of degree 4 in $f_{S,\alpha}(\mathbf{x})$ are

$$\alpha_r \prod_{j \in S \setminus r} x_j = \begin{cases} \prod_{j \in S \setminus r} x_j & \text{if } \alpha_r = 1\\ 0 & \text{otherwise} \end{cases}$$

Consider $\sum y_i f_{S,\alpha(i)}(\mathbf{x})$ for some 5×1 columns $\alpha(1), \alpha(2), \ldots$ Let M denote the matrix whose columns are the vectors $\alpha(1), \alpha(2), \ldots$ We can cancel the terms of degree 4 if $M\mathbf{y} = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

We are trying to find solutions to $M\mathbf{y} = \mathbf{0}$ with $\mathbf{1}^T \mathbf{y} = 0$. We are able to get two easy solutions to $M\mathbf{y} = \mathbf{0}$:

If we add the two solutions together, we obtain a solution **y** whose sum of coefficients is 0 i.e. $\mathbf{1}^T \mathbf{y} = 0$.

イロト イポト イヨト イヨト

Adding the two previous solutions together we obtain a solution to $M\mathbf{y} = \mathbf{0}$ with $\mathbf{1}^T \mathbf{y} = 0$:

у	-1	+1	-1	+1	-1	+1
i_1	1	1	1	1	0	0
i ₂	1	1	0	0	0	0
i3	0	1	1	0	0	0
i ₄	0	0	0	0	0	0
i ₅	1	1	1	0	0	1

We obtain an indicator polynomial $f(\mathbf{x})$ of degree 3 with $f(\bar{\gamma}) \neq 0$ if and only if γ violates one of the 6 listed columns on 5 rows. Note that $f(\mathbf{x})$ is an indicator polynomial for the 6 columns in short supply on the 5 rows but is not an indicator polynomial for all columns in short supply (or absent) on the 5 rows.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem forb $(m, F_D(t))$ is $O(m^3)$.

Proof: Assume A has no $F_D(t)$ and that we have deleted $O(m^3)$ columns. Consider the cases above for $S \in {[m] \choose 5}$ and for which we have an indicator polynomial of degree at most 3 counting some violations (6 in example above).

Then we can create a maximal independent set $\mathcal{I} = (S_i)$ as before and given that the indicator polynomials are of degree at most 3, we can eliminate $O(m^3)$ columns. Further eliminations of $O(m^3)$ columns are required before there is guaranteed to be an absent column on each 4-set of $\binom{[m]}{4}$ at which point we conclude that $O(m^3)$ columns remain and so A has at most $O(m^3)$ columns.

・ 同下 ・ ヨト ・ ヨト

Theorem Let k, t be given positive integers with $k \ge 2, t \ge 1$. Let D be the $k \times (2^k - 2^{k-2} - 1)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ Then

forb $(m, F_D(t))$ is $\Theta(m^{k-1})$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ 三

Theorem Let k, t be given positive integers with $k \ge 2, t \ge 1$. Let D be the $k \times (2^k - 2^{k-2} - 1)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1's in rows 1 and 2. We take $F_D(t) = [\mathbf{0}_k (t+1) \cdot D]$ Then

forb $(m, F_D(t))$ is $\Theta(m^{k-1})$

Theorem Let k be given and assume F is a k-rowed configuration which is not a configuration in $F_B(t)$ (for any choice of B as a $k \times (k + 1)$ simple matrix with one column of each column sum and for any t) and not in $F_D(t)$ (for any t). Then forb(m, F) is $\Theta(m^k)$.

(4月) (4日) (4日) 日

Where could we go from here?

Linear algebra does work for the following case for which we already had an alternate proof.

no configuration
$$F = (t+1) \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 forces $\begin{bmatrix} 1 & t \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$ forces $\begin{bmatrix} t & \leq t \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$

on any 4 rows. We can form a degree 2 indicator polynomial

$$f(\mathbf{x}) = x_1 x_2 - x_2 x_3 + x_3 x_4 - x_1 x_4$$

伺下 イヨト イヨト

Where could we go from here?

Linear algebra does work for the following case for which we already had an alternate proof.

no configuration
$$F = (t+1) \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 forces $\begin{bmatrix} 1 & t \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$ forces $\begin{bmatrix} t & \leq t \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$

.

・ 同 ト ・ ヨ ト ・ ヨ ト …

on any 4 rows. We can form a degree 2 indicator polynomial

$$f(\mathbf{x}) = x_1 x_2 - x_2 x_3 + x_3 x_4 - x_1 x_4$$

Theorem Let $t \ge 1$ be given. Then forb(m, F) is $\Theta(m^2)$.

Now if A has no configuration
$$F = (t+1) \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\leq t \leq t \leq t \leq t \leq t \leq t \leq t$$

this forces 1 0 0 or 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 1 0

on any 4 rows. I have no idea how to use indicator polynomials for this case but we can conjecture a result.

Now if A has no configuration
$$F = (t+1) \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\leq t \leq t \leq t \leq t \leq t \leq t \leq t$$
this forces $1 \quad 0 \quad 0 \quad \text{or } 0 \quad 1 \quad 1$

$$\begin{array}{c} 0 & 1 & 0 \quad 0 \quad 0 \\ 0 & 1 & 0 \quad 1 \quad 0 \quad 1 \\ 0 & 0 \quad 1 \quad 1 \quad 1 \quad 0 \end{array}$$

on any 4 rows. I have no idea how to use indicator polynomials for this case but we can conjecture a result.

Conjecture Let $t \ge 2$ be given. Then forb(m, F) is $\Theta(m^2)$.

Thanks for the invite to Banff!

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

æ

Thanks for the invite to Banff!

Thanks to the organizers Chris Godsil, Peter Sin and Qing Xiang!

Thanks to all the participants for a wonderful conference!

A (10) × (10) × (10) ×

The building blocks of our constructions are I, I^c and T:

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I_4^c = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note that

$$\begin{bmatrix} 1\\1 \end{bmatrix} \notin I, \quad \begin{bmatrix} 0\\0 \end{bmatrix} \notin I^c, \quad \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \notin T$$

- * 同 * * ミ * * ミ *

The building blocks of our constructions are I, I^c and T:

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I_4^c = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note that

$$\begin{bmatrix} 1\\1 \end{bmatrix} \notin I, \quad \begin{bmatrix} 0\\0 \end{bmatrix} \notin I^c, \quad \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \notin T$$

Note that forb $(m, \begin{bmatrix} 1\\1 \end{bmatrix}) = \text{forb}(m, \begin{bmatrix} 0\\0 \end{bmatrix}) = \text{forb}(m, \begin{bmatrix} 1&0\\0&1 \end{bmatrix}) = m+1$

Richard Anstee Balin Fleming UBC, Vancouver Forbidden Configurations and Indicator Polynomials

- ∢ ≣ →

Definition Given an $m_1 \times n_1$ matrix A and a $m_2 \times n_2$ matrix B we define the product $A \times B$ as the $(m_1 + m_2) \times (n_1 n_2)$ matrix consisting of all $n_1 n_2$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m^p/p^p)$ i.e. $\Theta(m^p)$ columns.

- 本間 と イヨ と イヨ と 三 ヨ

Definition Given an $m_1 \times n_1$ matrix A and a $m_2 \times n_2$ matrix B we define the product $A \times B$ as the $(m_1 + m_2) \times (n_1 n_2)$ matrix consisting of all $n_1 n_2$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m^p/p^p)$ i.e. $\Theta(m^p)$ columns.

- 本間 と イヨ と イヨ と 三 ヨ

The Conjecture

Definition Let x(F) denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$. Thus x(F) + 1 is the smallest value of p such that F is a configuration in every p-fold product $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Conjecture

Definition Let x(F) denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}.$

Thus x(F) + 1 is the smallest value of p such that F is a configuration in every p-fold product $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{\times(F)})$.

In other words, our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Conjecture

Definition Let x(F) denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}.$

Thus x(F) + 1 is the smallest value of p such that F is a configuration in every p-fold product $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) forb(m, F) is $\Theta(m^{\times(F)})$.

In other words, our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions. The conjecture has been verified for $k \times I F$ where k = 2 (A, Griggs, Sali 97) and k = 3 (A, Sali 05) and I = 2 (A, Keevash 06) and for k-rowed F with bounds $\Theta(m^{k-1})$ or $\Theta(m^k)$ plus other cases.

イロト イポト イヨト イヨト