Large Forbidden Configurations and Design Theory

Richard Anstee
UBC Vancouver, Attila Sali
Rényi Institute

SIAM, Minneapolis, June 172014

Design Theory

Definition Given an integer $m \geq 1$, let $[m]=\{1,2, \ldots, m\}$. Definition Given integers $k \leq m$, let $\binom{[m]}{k}$ denote all k - subsets of [m].

Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.

A $t-(m, k, \lambda)$ design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).

Design Theory

Definition Given an integer $m \geq 1$, let $[m]=\{1,2, \ldots, m\}$. Definition Given integers $k \leq m$, let $\binom{[m]}{k}$ denote all k - subsets of [m].
Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.
A $t-(m, k, \lambda)$ design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).
Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ packing \mathcal{P} is a set of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are at most λ blocks $B \in \mathcal{P}$ containing S. (we will require a simple packing).

Theorem (Keevash 14) Let $1 / m \ll \theta \ll 1 / k \leq 1 /(t+1)$ and $\theta \ll 1$. Suppose that $\binom{k-i}{t-i}$ divides $\binom{m-i}{t-i}$ for $0 \leq i \leq r-1$. Then there exists a $t-(m, k, \lambda)$ simple design for $\lambda \leq \theta m^{k-t}$.

This covers a fraction θ of the possible range for
$\lambda \in\left(0,\binom{m}{k}\binom{k}{t} /\binom{m}{t}\right)$.
Corollary (Weak Packing) Assume $0<\alpha<k-t$. There exists a $t-\left(m, k, m^{\alpha}\right)$ packing \mathcal{P} with $|\mathcal{P}|$ being $\Theta\left(m^{t+\alpha}\right)$.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
e.g. K_{m}^{d} is the $m \times\binom{ m}{d}$ simple matrix which is the element-set incidence matrix of $\binom{[m]}{d}$.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns. e.g. K_{m}^{d} is the $m \times\binom{ m}{d}$ simple matrix which is the element-set incidence matrix of $\binom{[m]}{d}$.
Definition We define $\|A\|$ to be the number of columns in A.
Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns. e.g. K_{m}^{d} is the $m \times\binom{ m}{d}$ simple matrix which is the element-set incidence matrix of $\binom{[m]}{d}$.
Definition We define $\|A\|$ to be the number of columns in A.
Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

Avoid $(m, F)=\{A: A$ is m-rowed simple, $F \nprec A\}$
forb $(m, F)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, F)\}$

Let $s \cdot F$ denote $\overbrace{[F|F| \cdots \mid F]}^{s}$.

Let $s \cdot F$ denote $\overbrace{[F|F| \cdots \mid F]}^{s}$.
We are interested in forb $(m, s \cdot F)$. An example:

$$
\text { Let } F=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Let α be given. Then forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{3+\alpha}\right)$.

Let $s \cdot F$ denote $\overbrace{[F|F| \cdots \mid F]}^{s}$.
We consider forb $\left(m, s \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$. Note that $s \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]=\overbrace{\left[\begin{array}{ll}11 \cdots 1 \\ 1 & \cdots\end{array}\right]}$
A pigeonhole argument yields

$$
\text { forb }\left(m, s \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{s-2}{3}\binom{m}{2} .
$$

Let $s \cdot F$ denote $\overbrace{[F|F| \cdots \mid F]}^{s}$.
We consider forb $\left(m, s \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$. Note that $s \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]=\overbrace{\left[\begin{array}{ll}1 & 1 \cdots\end{array}\right]}^{1} \begin{array}{l}\cdots\end{array}]$
A pigeonhole argument yields

$$
\text { forb }\left(m, s \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{s-2}{3}\binom{m}{2} .
$$

For fixed s, we have that forb $\left(m, s \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $O\left(m^{2}\right)$.
What happens for s that grows with m ?
Weak Packing for $t=2$: Let $\alpha>0$ be given. There exist a constant $c_{\alpha}>0$ so that

$$
\begin{aligned}
& \qquad \operatorname{forb}\left(m, m^{\alpha} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \geq c_{\alpha} m^{2+\alpha} \\
& \text { i.e. forb }\left(m, m^{\alpha} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \text { is } \Theta\left(m^{2+\alpha}\right)
\end{aligned}
$$

Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Proof: We note that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \geq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
(note that each pair of rows of has $(m-1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$)
We can argue, using the pigeonhole argument,

$$
\text { forb }\left(m, m \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{m-2}{3}\binom{m}{2}
$$

Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Proof: We note that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \geq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$. (note that each pair of rows of has $(m-1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$)
We can argue, using the pigeonhole argument,

$$
\text { forb }\left(m, m \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}
$$

Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Proof: We note that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \geq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
(note that each pair of rows of has $(m-1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$)
We can argue, using the pigeonhole argument,

$$
\text { forb }\left(m, m \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}
$$

and so forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{3}\right)$.
Can we deduce the growth of forb $\left(m, m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$?

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-(m, 3, \lambda)$ design.

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-(m, 3, \lambda)$ design.
Thus $T_{m, \lambda}$ is an $m \times \frac{\lambda}{3}\binom{m}{2}$ simple matrix with all columns of column sum 3 and $T_{m, \lambda} \in \operatorname{Avoid}\left(m,(\lambda+1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-(m, 3, \lambda)$ design.
Thus $T_{m, \lambda}$ is an $m \times \frac{\lambda}{3}\binom{m}{2}$ simple matrix with all columns of column sum 3 and $T_{m, \lambda} \in \operatorname{Avoid}\left(m,(\lambda+1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$

Thus, choosing $\lambda=m^{1 / 2}-2$, we have forb $\left(m, m^{1 / 2} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{5 / 2}\right)$
or more generally, forb $\left(m, m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{2+\alpha}\right)$ for $0<\alpha \leq 1$.

Theorem

forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
Proof: Note $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3} K_{m}^{4}\right] \in \operatorname{Avoid}\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Thus forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \geq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
We can argue for $s>m$, using the pigeonhole argument,

$$
\text { forb }\left(m, s \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\frac{s-m}{6}\binom{m}{2}
$$

and so
forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.

Theorem

forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
Proof: Note $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3} K_{m}^{4}\right] \in \operatorname{Avoid}\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Thus forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \geq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
We can argue for $s>m$, using the pigeonhole argument,

$$
\text { forb }\left(m, s \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\frac{s-m}{6}\binom{m}{2}
$$

and so
forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
Thus forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{4}\right)$.

Let $\mathbf{1}_{t}$ denote the column of t 's. The following result follows from Keevash 14.

Weak Packing: Let α and t be given. There exist a constant $c_{\alpha, t}>0$ so that

$$
\text { forb }\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right) \geq c_{\alpha, t} m^{t+\alpha}
$$

i.e. forb $\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right)$ is $\Theta\left(m^{t+\alpha}\right)$

We form a matrix in $\operatorname{Avoid}\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right)$ by first taking all columns up to some appropriate size, and then use the Weak Packing that follows as a Corollary to Keevash' design result.

Main Upper Bound Proof

Lemma Let F be a simple matrix and let $s>1$ be given. forb $(m, s \cdot F) \leq \sum_{i=1}^{m-1}(s-1) \cdot$ forb $(m-i, F)$
Proof: We use the induction idea of A. and Lu 13.

Main Upper Bound Proof

Lemma Let F be a simple matrix and let $s>1$ be given. forb $(m, s \cdot F) \leq \sum_{i=1}^{m-1}(s-1) \cdot$ forb $(m-i, F)$

Proof: We use the induction idea of A. and Lu 13.
We will allow matrices to be non-simple in a restricted way

Allowing non-simple matrices

Let A be a (0,1)-matrix with $s \cdot F \nprec A$. Let x be a column of A.
Definition $\mu(\mathbf{x}, A)=$ multiplicity of \mathbf{x} as a column of A
Definition We say A is $(s-1)$-simple if $\mu(\mathbf{x}, A) \leq s-1 \quad \forall \mathbf{x}$.
Assume A is $(s-1)$-simple

$$
A=\left[\begin{array}{cc}
00 \cdots 0 & 11 \cdots 1 \\
G & H
\end{array}\right]
$$

If $\mu(\mathbf{y}, G)+\mu(\mathbf{y}, H) \geq s$, then set

Allowing non-simple matrices

Let A be a (0,1)-matrix with $s \cdot F \nprec A$. Let x be a column of A.
Definition $\mu(\mathbf{x}, A)=$ multiplicity of \mathbf{x} as a column of A
Definition We say A is $(s-1)$-simple if $\mu(\mathbf{x}, A) \leq s-1 \quad \forall \mathbf{x}$.
Assume A is $(s-1)$-simple

$$
A=\left[\begin{array}{ccc}
00 \cdots 0 & 11 \cdots 1 \\
G & H
\end{array}\right]=\left[\begin{array}{cccc}
00 & \cdots 0 & 11 & \cdots 1 \\
B & C & C & D
\end{array}\right]
$$

If $\mu(\mathbf{y}, G)+\mu(\mathbf{y}, H) \geq \boldsymbol{s}$, then set $\mu(\mathbf{y}, C)=\min \{\mu(\mathbf{y}, G), \mu(\mathbf{y}, H)\}$

Allowing non-simple matrices

Let A be a (0,1)-matrix with $s \cdot F \nprec A$. Let x be a column of A.
Definition $\mu(\mathbf{x}, A)=$ multiplicity of \mathbf{x} as a column of A
Definition We say A is $(s-1)$-simple if $\mu(\mathbf{x}, A) \leq s-1 \quad \forall \mathbf{x}$.
Assume A is $(s-1)$-simple

$$
A=\left[\begin{array}{ccc}
00 \cdots 0 & 11 \cdots 1 \\
G & H
\end{array}\right]=\left[\begin{array}{cccc}
00 & \cdots 0 & 11 & \cdots 1 \\
B & C & C & D
\end{array}\right]
$$

If $\mu(\mathbf{y}, G)+\mu(\mathbf{y}, H) \geq \boldsymbol{s}$, then set $\mu(\mathbf{y}, C)=\min \{\mu(\mathbf{y}, G), \mu(\mathbf{y}, H)\}$ Then $[B C D]$ is $(s-1)$-simple.

Allowing non-simple matrices

Let A be a $(0,1)$-matrix with $s \cdot F \nprec A$. Let x be a column of A.
Definition $\mu(\mathbf{x}, A)=$ multiplicity of \mathbf{x} as a column of A
Definition We say A is $(s-1)$-simple if $\mu(\mathbf{x}, A) \leq s-1 \quad \forall \mathbf{x}$.
Assume A is $(s-1)$-simple

$$
A=\left[\begin{array}{ccc}
00 \cdots 0 & 11 \cdots 1 \\
G & H
\end{array}\right]=\left[\begin{array}{cccc}
00 & \cdots 0 & 11 & \cdots 1 \\
B & C & C & D
\end{array}\right]
$$

If $\mu(\mathbf{y}, G)+\mu(\mathbf{y}, H) \geq \boldsymbol{s}$, then set $\mu(\mathbf{y}, C)=\min \{\mu(\mathbf{y}, G), \mu(\mathbf{y}, H)\}$
Then $[B C D]$ is $(s-1)$-simple.
Also $F \nprec C$ since each column y in C will appear s times in $[G H]=[B C D]$ and then $F \prec C$ will imply $s \cdot F \prec A$, a contradiction.

Main Upper Bound Proof

Lemma Let F be a simple matrix and let $s>1$ be given. forb $(m, s \cdot F) \leq \sum_{i=1}^{m-1}(s-1) \cdot$ forb $(m-i, F)$.

Proof: (continued)

$$
A=\left[\begin{array}{cccc}
00 & \cdots & 11 & \cdots 1 \\
B & C & C & D
\end{array}\right]
$$

$F \nprec C$ and so $\|C\| \leq(s-1) \cdot$ forb $(m-1, F)$.
Now repeat on the $(m-1)$-rowed $(s-1)$-simple matrix $B C D$ using

$$
\text { forb }(m, s \cdot F)=\|A\|=\|[B C D]\|+\|C\|
$$

$$
\text { Let } F=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

We have forb $(m, F)=4 m$, i.e. forb (m, F) is $O(m)$.

Theorem Let $\alpha>0$ be given. Using the Weak Packing, forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{2+\alpha}\right)$.
Proof:
forb $\left(m, m^{\alpha} \cdot F\right) \leq \sum_{i=1}^{m-1} m^{\alpha} \cdot$ forb $(m-i, F)=m^{\alpha} \sum_{i=1}^{m-1} 4(m-i)$.
Now $\left[\begin{array}{l}1 \\ 1\end{array}\right] \prec F$ and so $m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right] \prec m^{\alpha} \cdot F$ from which we have
forb $\left(m, m^{\alpha} \cdot F\right) \geq \operatorname{forb}\left(m, m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.

$$
\text { Let } \quad F=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then forb (m, F) is $O\left(m^{2}\right)$. As before $s \cdot \mathbf{1}_{3} \prec s \cdot F$ and so forb $(m, s \cdot F) \geq$ forb $\left(m, s \cdot \mathbf{1}_{3}\right)$.

Theorem Let $\alpha>0$ be given. Using the Weak Packing, forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{3+\alpha}\right)$.

There are a number of F which yield nice results assuming the Weak Packing. There are cases which do not yield the desired results.

$$
\text { Let } \quad F=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem (Frankl, Füredi, Pach 87) forb $(m, F)=\binom{m}{2}+2 m-1$ i.e. forb (m, F) is $O\left(m^{2}\right)$.

Theorem (A. and Lu 13) Let s be given. Then forb $(m, s \cdot F)$ is $\Theta\left(m^{2}\right)$.
Conjecture forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{2+\alpha}\right)$.
We can only prove that forb $\left(m, m^{\alpha} \cdot F\right)$ is $O\left(m^{3+\alpha}\right)$.

Thanks to Tao Jiang for the invite to this great minisymposium.

