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Design Theory

Definition Given an integer m ≥ 1, let [m] = {1, 2, . . . ,m}.
Definition Given integers k ≤ m, let

([m]
k

)
denote all k- subsets of

[m].

Definition Given parameters t,m, k, λ, a t-(m, k , λ) design D is a

multiset of subsets in
([m]

k

)
such that for each S ∈

([m]
t

)
there are

exactly λ blocks B ∈ D containing S .

A t-(m, k , λ) design D is simple if D is a set (i.e. no repeated
blocks).

Definition Given parameters t,m, k, λ, a t-(m, k , λ) packing P is

a set of subsets in
([m]

k

)
such that for each S ∈

([m]
t

)
there are at

most λ blocks B ∈ P containing S .
(we will require a simple packing).
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Theorem (Keevash 14) Let 1/m� θ � 1/k ≤ 1/(t + 1) and
θ � 1. Suppose that

(k−i
t−i

)
divides

(m−i
t−i

)
for 0 ≤ i ≤ r − 1. Then

there exists a t-(m, k , λ) simple design for λ ≤ θmk−t .

This covers a fraction θ of the possible range for

λ ∈
(

0,
(m
k

)(k
t

)
/
(m
t

))
.

Corollary (Weak Packing) Assume 0 < α < k − t. There exists a
t-(m, k,mα) packing P with |P| being Θ(mt+α).
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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

e.g.Kd
m is the m ×

(m
d

)
simple matrix which is the

element-set incidence matrix of
([m]

d

)
.

Definition We define ‖A‖ to be the number of columns in A.

Definition For a given (0,1)-matrix F , we say F ≺ A (or A
contains F as a configuration) if there is a submatrix of A which is
a row and column permutation of F

Avoid(m,F ) = {A : A is m-rowed simple, F 6≺ A}
forb(m,F ) = maxA{‖A‖ : A ∈ Avoid(m,F )}
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Let s · F denote

s︷ ︸︸ ︷
[F |F | · · · |F ].

We are interested in forb(m, s · F ). An example:

Let F =



1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


Let α be given. Then forb(m,mα · F ) is Θ(m3+α).
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Let s · F denote

s︷ ︸︸ ︷
[F |F | · · · |F ].

We consider forb(m, s ·
[
1
1

]
). Note that s ·

[
1
1

]
=

s︷ ︸︸ ︷[
1 1 · · · 1
1 1 · · · 1

]
A pigeonhole argument yields

forb(m, s ·
[

1

1

]
) ≤

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

s − 2

3

(
m

2

)
.

For fixed s, we have that forb(m, s ·
[
1
1

]
) is O(m2).

What happens for s that grows with m?

Weak Packing for t = 2: Let α > 0 be given. There exist a
constant cα > 0 so that

forb(m,mα ·
[

1

1

]
) ≥ cαm

2+α

i.e. forb(m,mα ·
[
1
1

]
) is Θ(m2+α)
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Theorem forb(m,m ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

Proof: We note that [K 0
mK

1
mK

2
mK

3
m] ∈ Avoid(m,m ·

[
1
1

]
).

Thus forb(m,m ·
[
1
1

]
) ≥

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

(note that each pair of rows of has (m − 1) ·
[
1
1

]
)

We can argue, using the pigeonhole argument,

forb(m,m ·
[

1

1

]
) ≤

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

m − 2

3

(
m

2

)
and so forb(m,m ·

[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

Thus forb(m,m ·
[
1
1

]
) is Θ(m3).

Can we deduce the growth of forb(m,mα ·
[
1
1

]
)?
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Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume m ≥ λ+ 2
and m ≡ 1, 3(mod 6). Then there exists a simple triple system, a
simple 2− (m, 3, λ) design.

Let Tm,λ denote the element-triple incidence matrix of a simple
2− (m, 3, λ) design.

Thus Tm,λ is an m × λ
3

(m
2

)
simple matrix with all columns of

column sum 3 and Tm,λ ∈ Avoid(m, (λ+ 1) ·
[
1
1

]
)

Thus, choosing λ = m1/2 − 2, we have

forb(m,m1/2 ·
[
1
1

]
) is Θ(m5/2)

or more generally, forb(m,mα ·
[
1
1

]
) is Θ(m2+α) for 0 < α ≤ 1.
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Theorem
forb(m, (m +

(m−2
2

)
) ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
+
(m
4

)
.

Proof: Note [K 0
mK

1
mK

2
mK

3
mK

4
m] ∈ Avoid(m, (m +

(m−2
2

)
) ·
[
1
1

]
).

Thus forb(m, (m +
(m−2

2

)
) ·
[
1
1

]
) ≥

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
+
(m
4

)
.

We can argue for s > m, using the pigeonhole argument,

forb(m, s ·
[

1

1

]
) ≤

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

(
m

3

)
+

s −m

6

(
m

2

)
and so
forb(m, (m +

(m−2
2

)
) ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
+
(m
4

)
.

Thus forb(m, (m +
(m−2

2

)
) ·
[
1
1

]
) is Θ(m4).
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Let 1t denote the column of t 1’s. The following result follows
from Keevash 14.

Weak Packing: Let α and t be given. There exist a constant
cα,t > 0 so that

forb(m,mα · 1t) ≥ cα,tm
t+α

i.e. forb(m,mα · 1t) is Θ(mt+α)
We form a matrix in Avoid(m,mα · 1t) by first taking all columns
up to some appropriate size, and then use the Weak Packing that
follows as a Corollary to Keevash’ design result.
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Main Upper Bound Proof

Lemma Let F be a simple matrix and let s > 1 be given.
forb(m, s · F ) ≤

∑m−1
i=1 (s − 1) · forb(m − i ,F )

Proof: We use the induction idea of A. and Lu 13.

We will allow matrices to be non-simple in a restricted way
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Allowing non-simple matrices

Let A be a (0,1)-matrix with s · F 6≺ A. Let x be a column of A.

Definition µ(x,A)=multiplicity of x as a column of A

Definition We say A is (s − 1)−simple if µ(x,A) ≤ s − 1 ∀x.

Assume A is (s − 1)−simple

A =

[
0 0 · · · 0 1 1 · · · 1

G H

]

=

[
0 0 · · · 0 1 1 · · · 1
B C C D

]

If µ(y,G ) + µ(y,H) ≥ s, then set

µ(y,C ) = min{µ(y,G ), µ(y,H)}

Then [BCD] is (s − 1)−simple.
Also F 6≺ C since each column y in C will appear s times in
[GH] = [BCD] and then F ≺ C will imply s · F ≺ A, a
contradiction.
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Richard Anstee UBC Vancouver, Attila Sali Rényi Institute Large Forbidden Configurations and Design Theory



Allowing non-simple matrices

Let A be a (0,1)-matrix with s · F 6≺ A. Let x be a column of A.

Definition µ(x,A)=multiplicity of x as a column of A

Definition We say A is (s − 1)−simple if µ(x,A) ≤ s − 1 ∀x.

Assume A is (s − 1)−simple

A =

[
0 0 · · · 0 1 1 · · · 1

G H

]
=

[
0 0 · · · 0 1 1 · · · 1
B C C D

]
If µ(y,G ) + µ(y,H) ≥ s, then set µ(y,C ) = min{µ(y,G ), µ(y,H)}
Then [BCD] is (s − 1)−simple.
Also F 6≺ C since each column y in C will appear s times in
[GH] = [BCD] and then F ≺ C will imply s · F ≺ A, a
contradiction.
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Main Upper Bound Proof

Lemma Let F be a simple matrix and let s > 1 be given.
forb(m, s · F ) ≤

∑m−1
i=1 (s − 1) · forb(m − i ,F ).

Proof: (continued)

A =

[
0 0 · · · 0 1 1 · · · 1
B C C D

]
F 6≺ C and so ‖C‖ ≤ (s − 1) · forb(m − 1,F ).
Now repeat on the (m − 1)−rowed (s − 1)−simple matrix BCD
using

forb(m, s · F ) = ‖A‖ = ‖[BCD]‖+ ‖C‖
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Let F =


1 1
1 0
0 1
0 0


We have forb(m,F ) = 4m,

i.e. forb(m,F ) is O(m).

Theorem Let α > 0 be given. Using the Weak Packing,
forb(m,mα · F ) is Θ(m2+α).

Proof:
forb(m,mα · F ) ≤

∑m−1
i=1 mα · forb(m− i ,F ) = mα

∑m−1
i=1 4(m− i).

Now
[
1
1

]
≺ F and so mα ·

[
1
1

]
≺ mα · F from which we have

forb(m,mα · F ) ≥ forb(m,mα ·
[
1
1

]
).
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Let F =



1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


Then forb(m,F ) is O(m2). As before s · 13 ≺ s · F and so

forb(m, s · F ) ≥ forb(m, s · 13).

Theorem Let α > 0 be given. Using the Weak Packing,
forb(m,mα · F ) is Θ(m3+α).
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There are a number of F which yield nice results assuming the
Weak Packing. There are cases which do not yield the desired
results.

Let F =


1 0
1 0
0 1
0 1


Theorem (Frankl, Füredi, Pach 87) forb(m,F ) =

(m
2

)
+ 2m − 1

i.e. forb(m,F ) is O(m2).

Theorem (A. and Lu 13) Let s be given. Then forb(m, s · F ) is
Θ(m2).

Conjecture forb(m,mα · F ) is Θ(m2+α).

We can only prove that forb(m,mα · F ) is O(m3+α).
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Thanks to Tao Jiang for the invite to this great minisymposium.
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