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Dominoes and Matchings

The first set of problems I’d like to mention are really graph theory
problems disguised as covering a checkerboard with dominoes. Let
me start with the dominoes version
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The checkerboard
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The checkerboard completely covered by dominoes
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Black dominoes fixed in position. Can you complete?
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Black dominoes fixed in position. You can’t complete.
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Covering the checkerboard by dominoes is the same as finding a
perfect matching in the associated grid graph.
A perfect matching in a graph is a set M of edges that pair up all
the vertices. Necessarily |M| = |V |/2.

Theorem (A + Tseng 06) Let m be an even integer. Let S be a
selection of edges from the m ×m grid G 2

m. Assume for each pair
e, f ∈ S , we have d(e, f ) ≥ 3. Then G 2

m\S has a perfect
matching.
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Vertex deletion

Our first example considered choosing some edges and asking
whether they extend to a perfect matching. I have also considered
what happens if you delete some vertices. Some vertex deletions
are clearly not possible. Are there some nice conditions on the
vertex deletions so that the remaining graph after the vertex
deletions still has a perfect matching?

In the checkerboard interpretation we would be deleting some
squares from the checkerboard and asking whether the remaining
slightly mangled board has a covering by dominoes.
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The 8× 8 grid.
This graph has many perfect matchings.
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The 8× 8 grid with two deleted vertices.
.
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The black/white colouring revealed:
No perfect matching in the remaining graph.
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Deleting Vertices from Grid

Our grid graph (in 2 or in d dimensions) can have its vertices
coloured white W or black B so that every edge in the graph joins
a white vertex and a black vertex. Graphs G which can be coloured
in this way have V (G ) = W ∪ B and are called bipartite. Bipartite
graphs that have a perfect matching must have |W | = |B|.
Thus if we wish to delete black vertices B ′ and white vertices W ′

from the grid graph, we must delete an equal number of white and
black vertices (|B ′| = |W ′|).
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Deleting Vertices from Grid

But also you can’t do silly things. Consider a corner of the grid
with a white vertex. Then if you delete the two adjacent black
vertices then there will be no perfect matching. How do you avoid
this problem? Our guess was to impose some distance condition on
the deleted blacks (and also on the deleted whites).
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Deleting Vertices from Grid

Theorem (Aldred, A., Locke 07 (d = 2),
A., Blackman, Yang 10 (d ≥ 3)).
Let m, d be given with m even and d ≥ 2. Then there exist
constant cd (depending only on d) for which we set

k = cdm1/d
(

k is Θ(m1/d)
)
.

Let Gd
m have bipartition V (Gd

m) = B ∪W .
Then for B ′ ⊂ B and W ′ ⊂W satisfying
i) |B ′| = |W ′|,
ii) For all x , y ∈ B ′, d(x , y) > k ,
iii) For all x , y ∈W ′, d(x , y) > k ,
we may conclude that Gd

m\(B ′ ∪W ′) has a perfect matching.
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Hall’s Theorem for G 3
m

The grid G 3
m has bipartition V (G 3

m) = B ∪W . We consider
deleting some black B ′ ⊂ B vertices and white W ′ ⊂W vertices.
The resulting subgraph has a perfect matching if and only if for
each subset A ⊂W −W ′, we have |A| ≤ |N(A)− B ′| where N(A)
consists of vertices in B adjacent to some vertex in A in G 3

m.

If we let A be the white vertices in the green cube, then
|N(A)| − |A| is about 6× 1

2(12m)2.

If the deleted blacks are about cm1/3 apart then we can fit about
( 1
2c m2/3)3 inside the small green cube 1

2m × 1
2m × 1

2m.

We may choose c small enough so that we cannot find a perfect
matching.
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Jonathan Blackman on left
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Deleting Vertices from Triangular Grid

A convex portion of the triangular grid

A near perfect matching in a graph is a set of edges such that all
but one vertex in the graph is incident with one edge of the
matching. Our convex portion of the triangular grid has 61 vertices
and many near perfect matchings.
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Deleting Vertices from Triangular Grid
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and many near perfect matchings.
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Theorem (A., Tseng 06) Let T = (V ,E ) be a convex portion of
the triangular grid and let X ⊆ V be a set of vertices at mutual
distance at least 3. Then T\X has either a perfect matching (if
|V | − |X | is even) or a near perfect matching (if |V | − |X | is odd).

We have deleted 21 vertices from the 61 vertex graph, many at
distance 2.
fill
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Theorem (A., Tseng 06) Let T = (V ,E ) be a convex portion of
the triangular grid and let X ⊆ V be a set of vertices at mutual
distance at least 3. Then T\X has either a perfect matching (if
|V | − |X | is even) or a near perfect matching (if |V | − |X | is odd).

We have chosen 19 red vertices S from the remaining 40 vertices
and discover that there are 21 other vertices joined only to red
vertices and so the 40 vertex graph has no perfect matching.
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The Swimming Hole
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Extremal Combinatorics

One area I work in is the area of Extremal Set Theory. The typical
problem asks how many subsets of [m] = {1, 2, . . . ,m} can you
choose subject to some property? For example: how many subsets
of [m] can you choose such that every pair of subsets has a
nonempty intersection?

The answer is 2m−1 = 1
22m

found by noting that you cannot choose both a set A and its
complement [m]\A. Easy proof but clever!

Richard Anstee UBC, Vancouver Student Research



Extremal Combinatorics

One area I work in is the area of Extremal Set Theory. The typical
problem asks how many subsets of [m] = {1, 2, . . . ,m} can you
choose subject to some property? For example: how many subsets
of [m] can you choose such that every pair of subsets has a
nonempty intersection?

The answer is 2m−1 = 1
22m

found by noting that you cannot choose both a set A and its
complement [m]\A. Easy proof but clever!

Richard Anstee UBC, Vancouver Student Research



Extremal Combinatorics

One area I work in is the area of Extremal Set Theory. The typical
problem asks how many subsets of [m] = {1, 2, . . . ,m} can you
choose subject to some property? For example: how many subsets
of [m] can you choose such that every pair of subsets has a
nonempty intersection?

The answer is 2m−1 = 1
22m

found by noting that you cannot choose both a set A and its
complement [m]\A. Easy proof but clever!

Richard Anstee UBC, Vancouver Student Research



A foundational result in Extremal Graph Theory is as follows. Let
ex(m,G ) denote the maximum number of edges in a simple graph
on m vertices such that there is no subgraph G . Let ∆ denote the
triangle on 3 vertices.
The Turán graph T (m, k) on m vertices are formed by partitioning
m vertices into k nearly equal sets and joining any pair of vertices
in different sets.

Theorem (Mantel 1907) ex(m,∆) = |E (T (m, 2))| = bm2

4 c
Theorem (Turán 41) Let G denote the clique on k vertices (every
pair of vertices are joined). Then ex(m,G ) = |E (T (m, k − 1))|.
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Let χ(G ) denote the minimum number of colours required to
colour the vertices so that no two adjacent vertices have the same
colour. Then χ(T (m, `)) = `. Moreover its is relatively easy to see
that T (m, `) has the maximum number of edges of all graphs with
χ = `.

Also if χ(G ) = k, then G is not a subgraph of T (m, k − 1), i.e.
ex(m,G ) ≥ |E (T (m, k − 1))|.
Theorem (Erdős, Stone, Simonovits 46, 66) Let G be a simple
graph. Then

lim
m→∞

ex(m,G )(m
2

) = 1− 1

χ(G )− 1
.
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Hypergraphs → Simple Matrices

We say H = ([m], E) is a hypergraph if E ⊆ 2[m]. The subsets in E
are called hyperedges.

Consider a hypergraph H = ([4], E) with vertices [4] = {1, 2, 3, 4}
and with the following hyperedges :

E =
{
∅, {1, 2, 4}, {1, 4}, {1, 2}, {1, 2, 3}, {1, 3}

}
⊆ 2[4]

The incidence matrix A of the hyperedges E ⊆ 2[4] is:

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0



Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

Definition We define ‖A‖ to be the number of columns in A.
‖A‖ = 6 = |E|
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Subhypergraphs → Configurations

Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
∈ A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0
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ex(m,G )→ forb(m,F )

We consider the property of forbidding a configuration F in A.

Definition Let

forb(m,F )= max{‖A‖ : A m-rowed simple, no configuration F}

e.g. forb(m,

[
1 0
0 1

]
) = m + 1
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Some Main Results

Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

When a matrix A has a copy of Kk on some k-set of rows S , then
we say that A shatters S .

Richard Anstee UBC, Vancouver Student Research



Some Main Results

Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

When a matrix A has a copy of Kk on some k-set of rows S , then
we say that A shatters S .

Richard Anstee UBC, Vancouver Student Research



Let sh(A) = {S ⊆ [m] : A shatters S}

e.g.

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0


sh(A) = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}}

So |sh(A)| = 7 ≥ 6 = ‖A‖
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0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0
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Let sh(A) = {S ⊆ [m] : A shatters S}

Theorem (Pajor 85) ‖A‖ ≤ |sh(A)|.
Proof: Decompose A as follows:

A =

[
0 0 · · · 0 1 1 · · · 1

A0 A1

]

‖A‖ = ‖A0‖+ ‖A1‖.
By induction ‖A0‖ ≤ |sh(A0)| and ‖A1‖ ≤ |sh(A1)|.
|sh(A0) ∪ sh(A1)| = |sh(A0)|+ |sh(A1)| − |sh(A0) ∩ sh(A1)|
If S ∈ sh(A0) ∩ sh(A1), then 1 ∪ S ∈ sh(A).
So (sh(A0) ∪ sh(A1)) ∪

(
1+
(
sh(A0) ∩ sh(A1)

))
⊆ sh(A).

|sh(A0)|+ |sh(A1)| ≤ |sh(A)|.
Hence ‖A‖ ≤ |sh(A)|.
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Remark If A shatters S then A shatters any subset of S .

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Proof: Let A have no Kk .

Then sh(A) can only contain sets of size k − 1 or smaller.
Then

‖A‖ ≤ |sh(A)| ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Richard Anstee UBC, Vancouver Student Research



Remark If A shatters S then A shatters any subset of S .

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Proof: Let A have no Kk .
Then sh(A) can only contain sets of size k − 1 or smaller.
Then

‖A‖ ≤ |sh(A)| ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Richard Anstee UBC, Vancouver Student Research



Some Main Results

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

Corollary Let F be a k × ` simple matrix. Then
forb(m,F ) = O(mk−1).

Theorem (Füredi 83). Let F be a k × ` matrix. Then
forb(m,F ) = O(mk).

Problem Given F , can we predict the behaviour of forb(m,F )?
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Results for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0



Theorem (Vapnik and Chervonenkis 71, Perles and Shelah 72,
Sauer 72)

forb(m,K4) =

(
m

3

)
+

(
m

2

)
+

(
m

1

)
+

(
m

0

)
.
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Theorem (Vapnik and Chervonenkis 71, Perles and Shelah 72,
Sauer 72)

forb(m,K4) =

(
m

3

)
+

(
m

2

)
+

(
m

1

)
+

(
m

0

)
.
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Critical Substructures

We define F ′ to a critical substructure of F if F ′ is a configuration
in F and

forb(m,F ′) = forb(m,F ).

Note that for F ′′ which contains F ′ where F ′′ is contained in F ,
we deduce that

forb(m,F ′) = forb(m,F ′′) = forb(m,F ).
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Critical Substructures for K3,K4

The critical substructures for K3 follows from work of A, Karp 10
while the critical substructures for K4 follows from work of A,
Raggi 11. We need some difficult base cases to establish the
critical substructures for K5.

Dr. Miguel Raggi and Steven Karp
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Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).

Richard Anstee UBC, Vancouver Student Research



We can extend K4 and yet have the same bound

Using induction, Connor and I were able to extend the bound of
Sauer, Perles and Shelah, Vapnik and Chervonenkis. The base
cases of the induction were critical.

Connor Meehan after receiving medal
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We can extend K4 and yet have the same bound

[K4|1202] =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0


Theorem (A., Meehan 10) For m ≥ 5, we have
forb(m, [K4|1202]) = forb(m,K4).

We expect in fact that we could add many copies of the column
1202 and obtain the same bound, albeit for larger values of m.

Are these critical superstructures?
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Row and Column order could matter

on the trail with Ronnie Chen
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Let F =

[
1 0 1 0
0 1 0 1

]
.

We were able to show the following row and column ordered result:

Theorem (A., Chen 11) Let m be given. Let A be an m × n
simple matrix. Assume A has no submatrix F . Then
n ≤ 3

2m2 + m + 1. In addition there is an m × (32m2 − 3m) simple
matrix A with no submatrix F .
3
2m2 is the correct asymptotic bound on n for our F .
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Let F be the 2× ` matrix F =

[
1 0 1 · · · 0 0 0 · · ·
0 1 0 · · · 1 0 0 · · ·

]
.

We were able to show the following row and column ordered result:

Theorem (A., Estrin 12) Let m be given. Let A be an m × n
simple matrix. Assume A has no submatrix F . Then n is O(m2)
i.e. there exists a constant c` depending on ` so that n ≤ c`m

2.

O(m2) is the conjectured asymptotic bound on n for two rowed F .

Ron Estrin
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Thanks for listening!
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