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What is an Extremal Problem?
Here are some examples of extremal problems:

I At most how many queens can we place on a chessboard so
that no two attack each other?

Answer: 8

I At most how many 2× 1 dominoes can we place on a
chessboard which has two opposite corners removed?

Answer: 30

I At most how many edges can a simple graph with p vertices
have, if it has no triangles?

Answer:

⌊
p2

4

⌋
(Turán’s Theorem)
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Definition. A simple matrix is a {0,1}-matrix with no repeated
columns.

∅ {1} {1, 3, 4} {3, 4} {2, 4} {2, 3, 4}

We can think of an m-rowed simple matrix as the incidence matrix
of a collection of subsets of {1, 2, . . . ,m}.

An m-rowed simple matrix has at most 2m columns.
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Definition. A simple matrix is a {0,1}-matrix with no repeated
columns.

Definition. Suppose that F is a {0,1}-matrix (not necessarily
simple). A simple matrix A has the configuration F if A has a
submatrix which is a row and column permutation of F .

Extremal Problem: If a simple matrix A has m rows and does not
have the configuration F , at most how many columns can A have?

Answer: forb(m, F )
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Examples

forb(m,
[
1 0

]
) = 1.

forb(m,


1
1
0
0

) = 2m + 2.

forb(m,

[
1 0
0 1

]
) = m + 1.
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Some New Results for 2-Columned F

Others proved previously that

forb(m,

[
1 0
0 1

]
) = m + 1,

forb(m,

1 0
1 0
0 1

) =

⌊
3

2
m

⌋
+ 1,

forb(m,


1 0
1 0
1 0
0 1

) =

(
m

2

)
+ m + 2 ∀m ≥ 3.

What happens if we keep adding
[
1 0

]
on top?
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Line

New!

Theorem. For m ≥ 3,

forb(m,


1 0
1 0
1 0
0 1

) =

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2 and m.
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Line

New!

Theorem. For m ≥ 4,

forb(m,


1 0
1 0
1 0
1 0
0 1

) =

(
m

3

)
+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, 3 and m.
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Line

New!

Theorem. For m ≥ 5,

forb(m,



1 0
1 0
1 0
1 0
1 0
0 1

) =

(
m

4

)
+

(
m

3

)
+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, 3, 4 and m.
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Line

New!

Theorem. For m ≥ k − 1 ≥ 3,

forb(m,



1 0
1 0
1 0
...

...
1 0
1 0
1 0
0 1




k ) =

(
m

k − 2

)
+ · · ·+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, . . . , k − 2 and m.
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Line

New!

Theorem. For m ≥ k − 1 ≥ 3,

forb(m,



1
1
1
...
1
1
1
0




k ) =

(
m

k − 2

)
+ · · ·+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, . . . , k − 2 and m.
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I asked, “What if I flip some digits in the second column?”

New!

Theorem. For m ≥ k − 1 ≥ 3,

forb(m,



1 0
1 0
1 0
...

...
1 0
1 0
1 0
0 1




k ) =

(
m

k − 2

)
+ · · ·+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, . . . , k − 2 and m.
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The bound and the construction remains the same!

New! Theorem. For m ≥ k − 1 ≥ 3,

forb(m,



1 1
1 0
1 0
...

...
1 0
1 0
1 0
0 1




k ) =

(
m

k − 2

)
+ · · ·+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, . . . , k − 2 and m.
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If both columns have k − 1 ones, then strange things happen.

New! Theorem.

For m ≥ k − 1 ≥ 3,

forb(m,



1 1
1 1
1 1
...

...
1 1
1 1
1 0
0 1




k ) =

Finding a good construction becomes a difficult Design Theory
problem.
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What if we flip the 1 at the bottom of the second column to a 0?

New! Theorem.

For m ≥ k − 1 ≥ 3,

forb(m,



1 1
1 1
1 1
...

...
1 1
1 1
1 0
0 1




k ) =

Finding a good construction becomes a difficult Design Theory
problem.
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We get the same result as before.

New! Theorem. For m ≥ k − 1 ≥ 3,

forb(m,



1 1
1 1
1 1
...

...
1 1
1 1
1 0
0 0




k ) =

(
m

k − 2

)
+ · · ·+

(
m

2

)
+ m + 2.

A construction: the m-rowed matrix with all columns of sum

0, 1, 2, . . . , k − 2 and m.
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Sketch of Induction Proof:
For a given F , let A be a simple m× forb(m, F ) matrix which does
not have the configuration F .

We permute the columns of A so that it looks like[
0 0 · · · 0 0 1 1 · · · 1 1

C D D E

]
,

where D is the matrix of columns repeated under the first row.

Then C , D, E concatenated together is simple and (m − 1)-rowed,
and does not have the configuration F .

∴ #col’s(A) = #col’s(C , D, E ) + #col’s(D)

forb(m, F ) ≤ forb(m − 1, F ) + #col’s(D)

If we can get a good upper bound on #col’s(D), then we can
prove an upper bound on forb(m, F ) by induction.
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If we can get a good upper bound on #col’s(D), then we can
prove an upper bound on forb(m, F ) by induction.
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Sketch of Induction Proof:
For a given F , let A be a simple m× forb(m, F ) matrix which does
not have the configuration F .

We permute the columns of A so that it looks like[
0 0 · · · 0 0 1 1 · · · 1 1

C D D E

]
,

where D is the matrix of columns repeated under the first row.

Then C , D, E concatenated together is simple and (m − 1)-rowed,
and does not have the configuration F .

∴ #col’s(A) = #col’s(C , D, E ) + #col’s(D)

forb(m, F ) ≤ forb(m − 1, F ) + #col’s(D)

If we can get a good upper bound on #col’s(D), then we can
prove an upper bound on forb(m, F ) by induction.
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Thank You!

Thanks for your attention!
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