Forbidden Configurations

Steven Karp
(USRA with R.P. Anstee, UBC)

CUMC
July 9th, 2008

What is an Extremal Problem?

Here are some examples of extremal problems:

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
Answer: 8

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
Answer: 8
- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed?

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
Answer: 8
- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed? Answer: 30

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
Answer: 8
- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed?
Answer: 30
- At most how many edges can a simple graph with p vertices have, if it has no triangles?

What is an Extremal Problem?

Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
Answer: 8
- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed?
Answer: 30
- At most how many edges can a simple graph with p vertices have, if it has no triangles?
Answer: $\left\lfloor\frac{p^{2}}{4}\right\rfloor$ (Turán's Theorem)

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

$$
\text { e.g. }\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

$$
\text { e.g. }\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

We can think of an m-rowed simple matrix as the incidence matrix of a collection of subsets of $\{1,2, \ldots, m\}$.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.
e.g. $\left[\begin{array}{cccccc}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

We can think of an m-rowed simple matrix as the incidence matrix of a collection of subsets of $\{1,2, \ldots, m\}$.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.
e.g. $\left[\begin{array}{cccccc}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

We can think of an m-rowed simple matrix as the incidence matrix of a collection of subsets of $\{1,2, \ldots, m\}$.

An m-rowed simple matrix has at most 2^{m} columns.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

$$
\text { e.g. } F=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

$$
\text { e.g. } F=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

$$
\text { e.g. } F=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

$$
\text { e.g. } F=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

$$
\text { e.g. } F=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Extremal Problem: If a simple matrix A has m rows and does not have the configuration F, at most how many columns can A have?

Answer: forb (m, F)

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

Definition. Suppose that F is a $\{0,1\}$-matrix, and m a positive integer. Then forb (m, F) is the greatest number of columns that an m-rowed simple matrix with no configuration F can have.

Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

Definition. Suppose that F is a $\{0,1\}$-matrix, and m a positive integer. Then forb (m, F) is the greatest number of columns that an m-rowed simple matrix with no configuration F can have.

Equivalently, forb (m, F) is the least integer such that every simple matrix with m rows and more than forb (m, F) columns has the configuration F.

Examples

$$
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)=1 .
$$

Examples

$\operatorname{forb}\left(m,\left[\begin{array}{ll}1 & 0\end{array}\right]\right)=1$.
forb $\left(m,\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right)=2 m+2$.

Examples

$$
\begin{aligned}
& \operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)=1 \\
& \text { forb }\left(m,\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right)=2 m+2 \\
& \text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1
\end{aligned}
$$

Some New Results for 2-Columned F

Others proved previously that

$$
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1 \text {, }
$$

Some New Results for 2-Columned F

Others proved previously that

$$
\begin{gathered}
\operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1, \\
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\left\lfloor\frac{3}{2} m\right\rfloor+1,
\end{gathered}
$$

Some New Results for 2-Columned F

Others proved previously that

$$
\begin{gathered}
\operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1, \\
\operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\left\lfloor\frac{3}{2} m\right\rfloor+1, \\
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\binom{m}{2}+m+2 \quad \forall m \geq 3 .
\end{gathered}
$$

Some New Results for 2-Columned F

Others proved previously that

$$
\begin{gathered}
\operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1, \\
\operatorname{forb}\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\left\lfloor\frac{3}{2} m\right\rfloor+1, \\
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\binom{m}{2}+m+2 \quad \forall m \geq 3 .
\end{gathered}
$$

What happens if we keep adding $\left[\begin{array}{ll}1 & 0\end{array}\right]$ on top?

Theorem. For $m \geq 3$,

$$
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2 \text { and } m .
$$

Theorem. For $m \geq 4$,

$$
\text { forb }\left(m,\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\binom{m}{3}+\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2,3 \text { and } m .
$$

Theorem. For $m \geq 5$,

$$
\text { forb }\left(m,\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\binom{m}{4}+\binom{m}{3}+\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2,3,4 \text { and } m .
$$

Theorem. For $m \geq k-1 \geq 3$,

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

Theorem. For $m \geq k-1 \geq 3$,

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

I asked, "What if I flip some digits in the second column?"
Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2 .
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

The bound and the construction remains the same!
New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

The bound and the construction remains the same!
New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

The bound and the construction remains the same!
New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2 .
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

If both columns have $k-1$ ones, then strange things happen.
For $m \geq k-1 \geq 3$,

If both columns have $k-1$ ones, then strange things happen.
For $m \geq k-1 \geq 3$,

Finding a good construction becomes a difficult Design Theory problem.

What if we flip the 1 at the bottom of the second column to a 0 ?
For $m \geq k-1 \geq 3$,

We get the same result as before.

New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2 .
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

We get the same result as before.

New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2 .
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

We get the same result as before.

New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

We get the same result as before.

New! Theorem. For $m \geq k-1 \geq 3$,

$$
\text { forb } \left.\left(m,\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\right\} k\right)=\binom{m}{k-2}+\cdots+\binom{m}{2}+m+2 .
$$

A construction: the m-rowed matrix with all columns of sum

$$
0,1,2, \ldots, k-2 \text { and } m .
$$

Sketch of Induction Proof:

For a given F, let A be a simple $m \times$ forb (m, F) matrix which does not have the configuration F.

Sketch of Induction Proof:

For a given F, let A be a simple $m \times$ forb (m, F) matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1
\end{array} 1 \cdots \cdots 111 .\right.
$$

where D is the matrix of columns repeated under the first row.

Sketch of Induction Proof:

For a given F, let A be a simple $m \times$ forb (m, F) matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
11 & 1 & \cdots & 1 \\
C & D & D & E
\end{array}\right]
$$

where D is the matrix of columns repeated under the first row.
Then C, D, E concatenated together is simple and $(m-1)$-rowed, and does not have the configuration F.

Sketch of Induction Proof:

For a given F, let A be a simple $m \times$ forb (m, F) matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
& 1 & 1 & \cdots & 1 \\
C & D & D & E
\end{array}\right]
$$

where D is the matrix of columns repeated under the first row.
Then C, D, E concatenated together is simple and $(m-1)$-rowed, and does not have the configuration F.

$$
\begin{aligned}
\therefore & \# \mathrm{col} \text { 's }(A)=\# \operatorname{col} \text { 's }(C, D, E)+\# \operatorname{col} \text { 's }(D) \\
& \text { forb }(m, F) \leq \text { forb }(m-1, F)+\# \operatorname{col} \text { 's }(D)
\end{aligned}
$$

Sketch of Induction Proof:

For a given F, let A be a simple $m \times$ forb (m, F) matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
& 11 & \cdots & 1 & 1 \\
C & D & D & E
\end{array}\right]
$$

where D is the matrix of columns repeated under the first row.
Then C, D, E concatenated together is simple and $(m-1)$-rowed, and does not have the configuration F.

$$
\begin{aligned}
\therefore & \# \mathrm{col} \text { 's }(A)=\# \mathrm{col} \text { 's }(C, D, E)+\# \operatorname{col} \text { 's }(D) \\
& \text { forb }(m, F) \leq \text { forb }(m-1, F)+\# \operatorname{col} \text { 's }(D)
\end{aligned}
$$

If we can get a good upper bound on $\#$ col's (D), then we can prove an upper bound on forb (m, F) by induction.

Thank You!

Thanks for your attention!

