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Introduction

Let {X; : + > 0} be a binary branching super-Brownian motion (SBM). Then
X;(dx) = X;(x)dx and the density is the unique positive weak solution to
(Konno-Shiga (1988) and Reimers (1989)):

0X;(x)
ot

*AXt + \/ Xt Wt t 2 07 X € R’ (1)

where W;(x) is the derivative of a space-time Gaussian white noise (GWN).
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X
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where W, (x) is the derivative of a space-time Gaussian white noise (GWN).

e The pathwise uniqueness for (1) is unknown.
Progress: Perkins, Sturm, Mytnik, etc.
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e Xiong (2012) studied the pathwise uniqueness to SPDE for the distribution
function process of the SBM.
Pathwise uniqueness to similar equation see Dawson and Li (2012).
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Introduction

Let {X; : + > 0} be a binary branching super-Brownian motion (SBM). Then
X;(dx) = X;(x)dx and the density is the unique positive weak solution to
(Konno-Shiga (1988) and Reimers (1989)):

0X;(x)
ot

*AXt + \/ Xt Wt t 2 07 X € R’ (1)

where W, (x) is the derivative of a space-time Gaussian white noise (GWN).

e The pathwise uniqueness for (1) is unknown.
Progress: Perkins, Sturm, Mytnik, etc.

e Xiong (2012) studied the pathwise uniqueness to SPDE for the distribution
function process of the SBM.
Pathwise uniqueness to similar equation see Dawson and Li (2012).

o This talk is to generalize the result of Xiong (2012) to the super-Lévy process
with general branching mechanism.
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e D(R) := {f : f is bounded right continuous increasing and f(—oc0) = 0}.
M(R) := {finite Borel measures on R}.
There is a 1-1 correspondence between D(R) and M(R) assigning a measure
to its distribution function. We endow D(RR) with the topology induced by this
correspondence from the weak convergence topology of M(R).
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M(R) := {finite Borel measures on R}.
There is a 1-1 correspondence between D(R) and M(R) assigning a measure
to its distribution function. We endow D(RR) with the topology induced by this
correspondence from the weak convergence topology of M(R).

e The branching mechanism ¢:

d(N) = bA 4+ cA? /2 + / Oo(e—ﬂ — 1+ z2\)m(dz).
0

e M(R)-valued {X;} process is called a super-Lévy process if

{ B, { exp[—(X,.f)]} = exp{— (. v},
Gulx) = Avi() £ $((x)), vo(x) = ()
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Our aim in this talk is that under a mild condition on A, {Y;}, defined by
Y (x) = X;(—00, x|, is the pathwise unique solution to

Yi(x) = Yo(x)—b/ de—\// / W (ds, du)

X
/ / / ZNo(ds, dz, du) + / A*Ys(x)ds, (2)
oJo Jo 0

where W(ds, du) is a GWN and Ny(ds, dz, du) compensated Poisson random
measure (CPRM), A* denotes the dual operator of A.
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Our aim in this talk is that under a mild condition on A, {Y;}, defined by
Y (x) = X;(—00, x|, is the pathwise unique solution to

Yi(x) = Yo(x)—b/ xds—i—\// / W (ds, du)

X
/ / / ZNo(ds, dz, du) + / A*Ys(x)ds, (2)
oJo Jo 0

where W(ds, du) is a GWN and Ny(ds, dz, du) compensated Poisson random
measure (CPRM), A* denotes the dual operator of A.

e Xiong (2012): A = A/2 and b = Ny = 0.

e Key approach: connecting (2) with a backward doubly SDE.
Xiong (2012) used an L>-argument. We use an L'-argument.

e For M (RR)-valued process {X;}, its distribution {¥;} is D(R)-valued.
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D(R)-valued process {Y;} is the distribution of a super-Lévy process iff there
is, on an enlarged probability space, a GWN {W(ds,du)} and a CPRM
{No(ds,dz, du)} so that {Y;} solves (2).
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D(R)-valued process {Y;} is the distribution of a super-Lévy process iff there
is, on an enlarged probability space, a GWN {W(ds,du)} and a CPRM
{No(ds,dz, du)} so that {Y;} solves (2).

Let (P;);>0 be the transition semigroup of a Lévy process with generator A.

For some continuous function (z,z) — p;(z), & € (0, 1) and C € B[0, c0),

Pi(x,dy) = p(y —x)dy and p,(x) <1 *C(1), t>0, x,y€R.

The condition holds if A is the generator of a stable process with index in (1, 2].
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D(R)-valued process {Y;} is the distribution of a super-Lévy process iff there
is, on an enlarged probability space, a GWN {W(ds,du)} and a CPRM
{No(ds,dz, du)} so that {Y;} solves (2).

Let (P;);>0 be the transition semigroup of a Lévy process with generator A.

For some continuous function (z,z) — p;(z), & € (0, 1) and C € B[0, c0),

Pi(x,dy) = p(y —x)dy and p,(x) <1 *C(1), t>0, x,y€R.

The condition holds if A is the generator of a stable process with index in (1, 2].

Under Condition 1, the pathwise uniqueness holds for (2) with ¥y € D(R).
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Proof of Theorem 2

e Define £ by

g(r):ﬂt+aB,+// zM(ds,dz)—i—// M (ds, dz) 3)
0 J{lzI<1} 0 J{[z|>1}

and independent of {W (ds, du)} and {No(ds, dz,du)} and £/ = £(r A1) — £(2).
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From (2),
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T— Y(T 5)— (X
—/ bYr_( ds+/ / / ds dz,du).(4)
t

Wr(ds,du) is the backward Itd’s integral, i.e., in the Riemann sum approxi-
mating the stochastic integral, taking right end-points_instead of the left ones.
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From (3) and (4), under Condition 1 forallx € Rand 0 < r <t < T we have a.s.

Yr (€ +x) = Yo(€h+x) — b/ i+ )dsto Yr(€r 4 2)dB

T— Yr—: £s+x '
+\[/ / ds ,du)

T— Y(T 5)— §A+x
/ / / Ny (ds, dz, du)
t_

- / / O[Yr_.y(é‘;; +x—2) — Yr_ (& 4+ x)|M(ds,dz). (5)
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From (3) and (4), under Condition 1 forallx € Rand 0 < r <t < T we have a.s.

Yr (€ +x) = Yo(€h+x) — b/ i+ )dsto Yr(€r 4 2)dB

T— Yr—: £S+X '
+\[/ / ds ,du)

Tr— Y(T 5)— gs +x ~
+ / / / zNT(ds, dz,du)
t— 0 0

T
- / / O[Yr_.v(é‘;; +x—2) — Yr_ (& 4+ x)|M(ds,dz). (5)

Remark:
(i) The fourth and fifth terms are time-reversed martingales.
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Yr (€ 4x) = Yo(&h+x)— b / i+ )dsto Yr(€r 4 2)dB
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+\[/ / ds ,du)

/I_T_ / / Y- (S Ny (355, dz, du)
- /t / V1€ = 2) = Ve (€ + 2| (ds, ). (5)

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all (z,x) € [r, T] x R.
t — Yr_, (& + x) is neither right continuous nor left continuous.
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From (3) and (4), under Condition 1 forallx € Rand 0 < r <t < T we have a.s.

Yr (€ +x) = Yo(€h+x) — b/ i+ )dsto Yr(€r 4 2)dB

T— Yr—: £s+x '
+\[/ / ds ,du)

/I_T_ / / Y- (S Ny (355, dz, du)
- /t / V1€ = 2) = Ve (€ + 2| (ds, ). (5)

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all (z,x) € [r, T] x R.

t — Yr_, (& + x) is neither right continuous nor left continuous.

(iii) The process defined by above general kind of SDE is unique.

(iv) Prove a generalized It6’s formula, which is initiated by Pardoux and Peng (1994).
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Further result: SPDE driven by «a-stable noise

The weak solution for the following SPDE was constructed by Mytnik (2002):

8X, (x)
ot

1 .
= 5AX,(x) +X_(x)°L, X9 >0, xeRY (6)

where L(ds, dx) is a one-sided, a-stable white noise without negative jumps,
l <a<min(2,(2/d)+1), >0, p:=af < (2/d)+ 1.
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Further result: SPDE driven by «a-stable noise

The weak solution for the following SPDE was constructed by Mytnik (2002):

8X, (x)
ot

1 .
= 5AX,(x) +X_(x)°L, X9 >0, xeRY (6)
where L(ds, dx) is a one-sided, a-stable white noise without negative jumps,
l <a<min(2,(2/d)+1), >0, p:=af < (2/d)+ 1.
e p = 1, the solution is a superprocess and the weak uniqueness holds.
e p # 1, the uniqueness for (6) and the properties of solution are unknown.

e We consider the case d = 1 and p € (0, «) here.
Other cases are being considered.
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e Equation (6) means:

(Xi,.f) = (Xo,f) + / (X5, f"Vds + / / YL(ds, dx). (7)
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e Equation (6) means:

(Xi.f) = (Xo.f) +;/ (Xs,f")ds / / L(ds,dx).  (7)

e {X;} satisfies SPDE (7) iff it satisfies

<Xz,f>:<Xoaf>+;/ (X, f")ds // //X v u)No(ds, dz, du, dv), (8

where Ny (ds, dz, du, dv) is a CPRM.
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e {X;} satisfies SPDE (7) iff it satisfies

<Xz,f>:<Xoaf>+;/ (Xs,f")ds // //X v u)No(ds, dz, du, dv), (8

where Ny (ds, dz, du, dv) is a CPRM.

e Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have:
X;(-) has a continuous version for ﬁxed .
Occupation density %;(x fo X)ds has a jointly continuous version.
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e Equation (6) means:

(Xt,.f) = Xo.f) + ;/ (X, f")ds / / VL(ds,dx).  (7)

e {X;} satisfies SPDE (7) iff it satisfies

<Xz,f>:<Xoaf>+;/ (Xs,f")ds // //X v u)No(ds, dz, du, dv), (8

where Ny (ds, dz, du, dv) is a CPRM.

e Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have:
X;(-) has a continuous version for ﬁxed .
Occupation density %(x fo X)ds has a jointly continuous version.

e Connecting (8) with a backward doubly SDE, (8) has a pathwise uniqueness
solution, which implies the weak uniqueness to (7).
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Thanks!

E-mail: xuyang@mail.bnu.edu.cn
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