Multi-dimensional Brownian Motion with Darning

Shuwen Lou

University of Washington

June 18, 2012

> < 国 > < 国</p>

Outline

- Motivation: What is a "darning" process?
- Examples of darning processes
- Main results: heat kernel estimates of multi-dimensional Brownian motion with darnin

> < 国 > < 国</p>

What is a "darning" process?

Answer

We either

- "patch" the boundaries of multiple processes together, or
- "collapse" some part of the state space of a process to a singleton.

Examples and pictures of darning processes will be given soon.

イロト イポト イヨト イヨ

How to construct a darning process?

Answer

Very roughly speaking, in terms of Dirichlet forms.

Examples of darning processes

Example (Circular Brownion motion)

Idea:"Gluing" the two endpoints of an absorbing Brownian motion on an interval I := (0, 1).

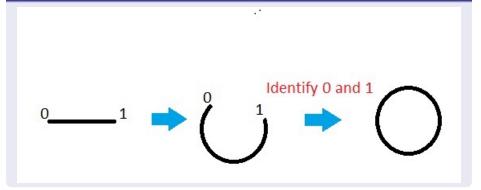
The Dirichlet form of circular Brownian motion is

$$\begin{cases} \mathcal{F} = \left\{ u : u \in BL(I), u(0+) = u(1-) \right\} \cap L^2(I), \\ \mathcal{E}(u,v) = \frac{1}{2} \int_I u'(x)v'(x)dx, \end{cases}$$

where $BL(I) = \{u : u \text{ is absolutely continuous on } I \text{ with } \int_{I}^{I} (u')^2 dx < \infty \}.$

イロト イ押ト イヨト イヨト

Picture of circular Brownian motion



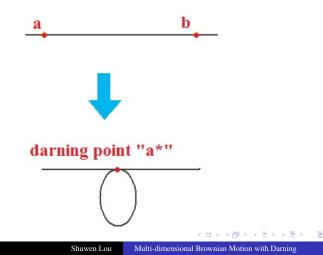
Examples of darning processes Small time heat kernel estimate

Circular Brownian motion Brownian motion with a "knot"

Examples of darning processes

Example (Brownian motion with a "knot")

Idea: Identifying two points on \mathbb{R} as a singleton.



(Continued)

Suppose we identify two points *a* and *b* on \mathbb{R} . The Dirichlet form of such a process is

$$\begin{cases} \mathcal{F} = \left\{ u : u \in W^{1,2}(\mathbb{R}), u(a) = u(b) \right\}, \\ \mathcal{E}(u,v) = \frac{1}{2} \int_{\mathbb{R}} u'(x)v'(x)dx. \end{cases}$$

Remark

In the same way we may identify up to countably many non-accumulating points on \mathbb{R} so that the "knot" has multiple loops.

イロト イポト イヨト イヨト

Why do we have to define a multi-dimensional Brownian motion as a "darning process"?

Answer

Even for the simplest case of $\mathbb{R}^2 \sqcup \mathbb{R}$, a standard 2-dimensional Brownian motion never hits a singleton!

イロト イ理ト イヨト イヨト

Solution

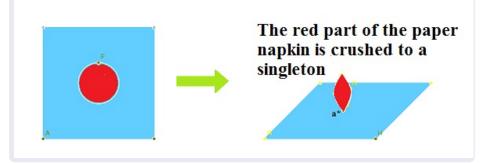
By "collapsing" the closure of an open set to a single point, one gets a "2-dimensional Brownian Motion" that does hit a singleton, which is called a *Brownian motion with darning*.

The red area is collapsed to a singleton

Examples of darning processes Small time heat kernel estimate

Circular Brownian motion Brownian motion with a "knot"

Another picture of this process



(日)

What is heat kernel estimate?

Answer

A Markov process has a transition semigroup: $\mathbb{P}^{x}(X_t \in \cdot) := P_t(x, \cdot)$, which is a probability measure for every fixed pair of (t, x). In many cases, it is very hard to give the explicit expression of $P_t(x, \cdot)$.

We usually denote the density of $P_t(x, \cdot)$ by p(t, x, y). Our goal is to find a function f(t, x, y) such that there exists some constant C > 0 such that

$$\frac{1}{C} \cdot f(t, x, y) \asymp p(t, x, y) \asymp C \cdot f(t, x, y), \quad \text{for all } t, x, y.$$

イロト イポト イヨト イヨト

Proposition (Small time heat kernel estimate)

There exist constants C_1 , $C_2 > 0$, such that

$$p(t, x, y) \asymp \begin{cases} \frac{1}{\sqrt{t}} e^{-\frac{C_1 |x-y|^2}{t}}, & |y|_g \le 1; \\ \frac{1}{t} e^{-\frac{C_2 |x-y|^2}{t}}, & |y|_g > 1, \end{cases}$$

for all $x \in \mathbb{R}$, $y \in \mathbb{R}^2 \setminus B_{\epsilon}$, $t \in [0, 1]$.

🗇 🕨 🖉 🕨 🖉 🗎

Theorem (Small time heat kernel estimate)

There exist constants $C_i > 0$, $3 \le i \le 5$, such that for all $t \in [0, 1]$, $x, y \in \mathbb{R}^2 \setminus B_{\epsilon}$,

$$p(t, x, y) \approx \begin{cases} \frac{1}{\sqrt{t}} e^{-\frac{C_3 |x-y|_g^2}{t}} + \frac{1}{t} \left(1 \wedge \frac{|x|_g}{\sqrt{t}}\right) \left(1 \wedge \frac{|y|_g}{\sqrt{t}}\right) & e^{-\frac{C_4 |x-y|_e^2}{t}}, \\ |x|_g < 1, \ |y|_g < 1; \\ \frac{1}{t} e^{-\frac{C_5 |x-y|_g^2}{t}}, & otherwise. \end{cases}$$

イロト イポト イヨト イヨト

Theorem (Large time heat kernel estimate)

There exist constants $C_6 > 0$ such that

$$p^{(X)}(t,x,y) \asymp \frac{1}{\sqrt{t}} e^{-\frac{C_6|x-y|^2}{t}}, \qquad t \in [0,\infty), \quad x,y \in \mathbb{R}.$$

母▶★臣▶★臣

Theorem (Large time heat kernel estimate)

There exists constant $C_7 > 0$ *such that*

$$p^{(X)}(t,x,y) \asymp \frac{1}{\sqrt{t}}e^{-\frac{C_7|x-y|_g^2}{t}}, \qquad t>1, \quad x\in\mathbb{R}, \quad y\in\mathbb{R}^2.$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Theorem (Large time heat kernel estimate)

There exist constants $C_i > 0$, $8 \le i \le 10$, such that for all t > 1, $x, y \in \mathbb{R}^2 \setminus B_{\epsilon}$,

$$p^{(X)}(t,x,y) \approx \begin{cases} \frac{1}{t}e^{-\frac{C_8|x-y|_g^2}{t}} + \frac{1}{\sqrt{t}}e^{-\frac{C_9|x|_g^2+|y|_g^2}{t}}, & |x|_g > \sqrt{t}, \ |y|_g > \sqrt{t}; \\ \frac{1}{\sqrt{t}}e^{-\frac{C_{10}|x-y|_g^2}{t}}, & otherwise. \end{cases}$$

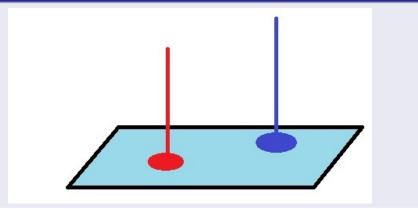
□▶★□▶★□▶

Other obtained results related to small time HKE

- Hölder continuity of parabolic functions
- Counter example to parabolic Harnack inequality
- Case of multiple straight lines
- Case of a "handle" attached to a plane

▶ < Ξ ▶ <</p>

Picture of the case of multiple straight lines



Picture of a "handle" attached to a plane

