Pulling absorbing and collapsing polymers from a surface
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Abstract

A self-interacting polymer with one end attached to a sticky surface has been studied by
means of a flat-histogram stochastic growth algorithm known as FlatPERM. We examined the
four-dimensional parameter space of the number of monomers up to 91, self-attraction, surface
attraction and force applied to a end of the polymer. Using this powerful algorithm the complete
parameter space of interactions and force has been considered. Recently it has been conjectured
that a hierarchy of states appears at low temperature/poor solvent conditions where a polymer
exists in finite number of layers close to a surface. We find re-entrant behaviour from stretched
phase into these layering phases when an appropriate force is applied to the polymer. We also
find that, contrary to what may be expected, the polymer desorbs from the surface when a
sufficiently strong critical force is applied and does not transcend through either a series of
de-layering transitions or monomer by monomer transitions. We discuss the problem mainly
from the point of view of the stress ensemble. However, we make some comparison with the
strain ensemble showing the broad agreement between the two ensembles while pointing out

subtle differences.
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1 Introduction

New experimental methods in the physics of macromolecules [1] have been used to study and
manipulate single molecules and their interactions. These methods make a contribution to our
understanding of such phenomena as protein folding or DNA un-zipping; one can push or pull
a single molecule and watch how it responds. It is possible to apply (and measure) forces large
enough to induce structural deformation of single molecules. One can monitor the mechanism
of some force-driven phase transition occurring at the level of a single molecule. Theoretical
understanding of this behaviour has attracted much attention [2, 3, 4].

The response of a single polymer to an external force under good solvent conditions [5] was
considered some time ago. The response under poor solvent conditions (below the #-point) was
examined later [6, 7, 8, 2, 3]. Here the self-attraction of the polymer competes with the force.
Another phenomenon commonly studied in polymer physics is the adsorption of a polymer tethered
to a “sticky” wall. The response of such a polymer to a force perpendicular to the wall has also
recently been considered [4, 9, 10]. However, when both the self-attraction (ie monomer-monomer
attraction), that can lead to polymer collapse, and the surface attraction, that leads to adsorption,
compete the response to an external force has not yet been elucidated (some interesting results
can be found in [11]). Certainly the full phase diagram has not been considered. Making such a
study now is all the more timely because of the very recent discovery [12] of a new low temperature
phenomenon of layering transitions (without a force). It is this layering phenomena that raises
the intriguing question about the response a low-temperature polymer may have to an external
force. In the layering state a polymer is tightly confined within a fixed number of layers above
the wall. Therefore, it may be especially interesting to examine such a situation experimentally.

We demonstrate for the first time how the full two-dimensional phase diagram of surface and
self-attraction changes as the force is increased. The desorbed regime, which changes it scaling
behaviour as soon as the force is made non-zero, simply grows as the force is increased; the rest
of the phase diagram remains relatively unaffected so long as the force is small. The second-order
phase transitions of adsorption and collapse become first order. After the force passes a critical
value, that depends on the zero temperature force required to pull a polymer from a wall, a re-
entrant behaviour occurs at low temperatures. For different values of the force, this re-entrant
behaviour occurs for both the adsorption and collapse of polymers, including the layering phases
mentioned above. We provide a full force-temperature diagram for all ratios of surface attraction
to self-attraction.

The most commonly used ensemble to discuss the behaviour of stretching polymers is the
stress ensemble (for constant force f) [13]; we mainly discuss the problem in this ensemble. We
also compare these results with results for the strain ensemble, finding broad agreement between

the two ensembles with some minor subtle differences.
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Figure 1: A diagram showing the two-dimensional version of the three-dimensional model simu-

lated.

2 Model and simulations

In our simulations we use a recently developed algorithm, FlatPERM [14], that is specifically de-
signed to obtain information about the whole phase diagram in one simulation run: it is effectively
a stochastic enumeration algorithm that estimates the complete density of states.

The model considered is a self-avoiding walk in a three-dimensional cubic lattice in a half-
space interacting via a nearest-neighbour energy —ep per monomer-monomer contact. A force f is
applied in the direction perpendicular to the boundary of the half-space (wall). The self-avoiding
walk is attached at one end to the wall with surface energy per monomer of —¢; for visits to the

wall. The total energy is given by

Eyn(mp, ms, h) = —my(pn)es — ms(pn)es — fh (2.1)

for a configuration ¢, of length (number of monomers) n depending on the number of non-
consecutive nearest-neighbour pairs (contacts) along the walk mj, the number of visits to the
planar surface mg, and the height A in the direction perpendicular to the boundary (wall) of the

half-space. Figure 1 shows a diagram of the two-dimensional analogue. For convenience, we define

ﬁb = ,66(), Bs = ﬂ&s and /Bf = Bf; (22)

where § = 1/kgT for temperature T' and Boltzmann constant kg. The partition function is given
by
Z’n(ﬂbvﬁs, /Bf) = Z Cn,mb,m‘g,h eﬁbmb+ﬂsms+ﬂfh (23)

mp,ms,h
with Cy, m, m,,n being the density of states. It is this density of states that is estimated directly
by the FlatPERM simulation. Our algorithm grows a walk monomer-by-monomer starting on the
surface. We obtained data for each value of n up to nm,e; = 91, and all permissible values of my,
mg, and h. The averaged number of contacts is calculated by

h
Zmb,ms N RUE Cn,mb Mg,k eﬂbmb +Bsms+P5

Zn(ﬂbaﬁsaﬁf) ’

(ms(Bv, Bs, By)) = (2.4)



in the same manner we calculate average values of my, and h.

Since the density of states depends on the h we can use our data to calculate results in the
strain ensemble. Usually the strain ensemble is defined for a constant end-to-end distance. We
rather only keep the vertical distance constant i.e. h. The partition function in this ensemble is
given by

Znh(Bo, Bs) = Y Crmymy,n €PomHBems (2.5)

mp,Ms
where summation are done for a given constant 4. Having calculated the partition function we can
look at the the average force in this ensemble and compare the phase diagrams in both ensembles.
For convenience and comparison with the stress ensemble we shall set 5 = 1. If the height were a

continuous variable the average force would be given by

_ 0log(Zyn h(Bs, Bs))

= 2.
(fn(Bp, Bs)) oh , (2.6)
but since we have discrete values of h the force is calculated from relation
(fh(ﬂba ﬂs» = log (Zn,h—|—1(/86’ ;Bs)) - log (Zn,h(ﬂba Bs)) . (27)

3 Results

3.1 Stress Ensemble

When f = 0 the phase diagram of the model contains various phases and transitions between them
[15, 16, 17, 12]. For small 8, and ;s there is a desorbed extended (DE) phase with the polymer
behaving as a free flexible polymer in solution. For (3, fixed and small, increasing S, leads to
a second-order phase transition (adsorption) where the polymer is adsorbed onto the wall and
behaves in a swollen (extended) two-dimensional fashion (AE). Alternately, if 5, is increased at
small 3; a second-order collapse transition occurs to a state resembling a dense liquid drop. This
phase is known as desorbed collapsed (DC) on the assumption that it has little contact with the
wall [15, 16]. However, it has been subsequently argued [18] that for large 3, and some positive (s
there is instead a polymer-surface transition to a Surface-Attached Globule (SAG) phase, where
the polymer is like a liquid drop partially wetting the wall. This transition will not be seen directly
by studying thermodynamic polymer quantities as it occurs as a singularity in the surface free
energy and not the bulk free energy of the polymer. Alternately, when (3, is large, so that the
polymer is already adsorbed onto the wall, increasing S will result in a two-dimensional (second-
order) transition to an adsorbed and collapsed phase (AC). Finally, at fixed large (35 increasing S,
through the SAG phase will also reach the AC phase. The transition from the SAG phase to this
AC phase is expected to be first order in the thermodynamic limit.

For finite length polymers the situation is more complicated. In recent work [12] the AC phase
was also referred to as the 1-layer phase because for very large £, and 8 < (3 there exists meta-

stable £-layer phases where the polymer is two-dimensionally collapsed and more-or-less restricted
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Figure 2: A plot of the maximum eigenvalue of matrixz of second derivatives of the free energy
for three values of By = 0.0,1.5 and 3.0. In the top far corner of the plot is the location of the
desorbed-extended phase when By = 0 and the ‘Stretched’ phase when By > 0. The location of
the 2-layer (2L), 3-layer (3L), adsorbed-collapsed (AC) and adsorbed-extended AE phases do not

seems to move greatly as (5 is increased.

to £ layers for small £. A series of first-order transitions between adjacent values of £ occur as
Bs is varied at fixed (. All these transition lines can be seen in the Figure 2 (a) which shows

a plot of the maximum eigenvalue of the (2 x 2) matrix of second derivatives in the variables



By and B, of log(Zy,(Bs, Bs,By)) for fixed By = 0. The local maxima indicate transitions. The
transitions between the layers are expected to coalesce in the thermodynamic limit to the first
order transition between the SAG and AC phases.

Using the evidence available in the literature [8, 2, 3, 4, 9, 10] let us now consider what we can
expect when f > 0. The first important feature to note is that the isotropic DE phase is replaced
by an anisotropic phase in which the height of the end point of the polymer scales linearly with
n; we denote this phase as the stretched phase. Consequently the transition from stretched to
adsorbed phases becomes first-order [4]. Likewise, at least in three dimensions [8], the transition
from the vertically stretched phase to the collapsed phase also becomes first-order. This implies
that the multi-critical point (where for f = 0 the DE, AE and DC phases meet) is now a triple
point: the meeting of three first order lines. The transition from the AE to AC phases should
not be effected by the application of a small force as the force acts in a direction perpendicular
to the plane of the collapse. Finally, it is intriguing to ask what happens to the layering phases
observed in [12]. One can imagine that the force simply extends a vertical ‘tail’ from a layered
block (see figure 3) and that as the force is increased the monomers are peeled off one at a time
with corresponding micro-transitions [11] for each monomer pulled until a vertical rod is achieved.

Instead we see at some point a sharp first order transition between the highly stretched vertical

Figure 3: A typical configuration resulting from the application of the critical force f. to a polymer

in the 2-layer adsorbed collapsed phase.

rod and a layered system with short tail.

In figures 2(b) and 2(c) we show plots of the maximum eigenvalue of the matrix of second
derivatives in the variables 5, and 3, of log(Z,(Bs, Bs, Bf)) at fixed B¢ (as in Figure 2(a)) but at
values of 3y being 1.5 and 3.0. It is clear that as (3; is increased the stretched phase that occurs
for small 8, and B, expands while the positions of the other phases and transitions move little.
We immediately note that these plots do not tell the whole story since physically one is usually

interested in fixing the force f rather than §;: fixing 8 implies that the force applied goes to zero



at low temperatures. It is for this reason that the re-entrant behaviour for absorbing polymers
[4, 12] is not seen directly in these plots. However, re-entrant behaviour does occur and occurs
for any ratio of surface to bulk interaction energies. Let us first consider the more traditional
force-temperature diagram and return to this point.

In figure 4 a plot of the force f.(T, a) needed to pull a polymer from the wall for a ranges of
temperatures and a parameter o which measures the relative strength of the surface (wall) and

self-interaction. We have parameterised the energies of surface and self-attraction as ¢, = —a

Figure 4: A plot of the force f. needed to pull a polymer from the surface against temperature
T and a parameter a. The parameter a controls the relative strength of wall attraction and self-
attraction with € = —a and €, = a — 1. The limiting cases of surface desorption and of pulling

a collapsed polymer are easily visible in the plot for « =1 and o = 0, respectively.

and €, = a — 1 respectively. Using this parameterisation for 0 < a < 1 gives the whole range of
attractive activities: the ratio of surface to bulk activities is given as 3;/8, = /(1 — @) and so is
fixed for fixed a. For o = 0 we have ¢, = 0 and &, = —1 which corresponds to pure self-attraction
while the other boundary of the parameter space with o = 1 gives ¢, = —1 and ¢, = 0 which is the
pure surface adsorption case. This extends the diagrams given in [4, 9] in which only adsorption
is considered. If a force smaller than f. is applied the polymer is in the phase appropriate to the
value of a: either collapsed or adsorbed or both. On the other hand for forces larger than f. the
polymer is in the ‘stretched’ phase.

We immediately note that the reentrant behaviour observed in the adsorption-only case [4, 9]
persists for all a. Fixing the force to be a value slightly larger than the zero temperature critical
force and then increasing the temperature leads to transitions from the stretched state to a non-
stretched phase and back again to the stretched state. This arises due to the entropy of the zero
temperature state; one can easily extend the arguments in [4] to demonstrate that re-entrant
behaviour can occur even when the zero-temperature configuration of the non-stretched state is

a Hamiltonian (fully packed) cube rather than a totally adsorbed polymer. The entropy of the



ground state changes with o and so the critical force required also changes. Consider the phase
diagram in the 3-8 plane for fixed f. As just discussed there are ranges of f where the stretched
phase appears at large 8, and 3;. As f is increased this appearance of the stretched phase moves
around the boundary of the plane from the 8 = 0 corner (with 3 large) to the s = 0 corner
(with B, large). In particular, consider a ray in the (-85 plane such that for f = 0 and low
temperatures the polymer is in a 2-layer phase for large but finite V. Then, there is some range of
values of f for which one would see a stretched phase, a layered phase and then another stretched
phase as the temperature is raised from zero.

If the critical force is zero then the curve in the T'— « plane corresponds to the phase boundary
of the DE phase with the apex of the curve around a ~ 1/2 being the location of the multi-critical
point. On the other hand for 7" = 0 there is a kink in the function f.(a) at exactly o = 1/2 which
is a consequence of the first order point coming from the transition from SAG/layer phases from
small a to the AC phase for larger a. There is the appearance of a kink joining the multi-critical
point to the zero temperature transition which is presumably the finite temperature effect of the

transition to the AC phase.

(a)

h=0.0

h=50.0

Figure 5: A plot of the mazimum eigenvalue of matriz of second derivatives of the free energy for
two position of the last monomer h = 0.0 (a) and 50.0 (b).



3.2 Strain Ensemble

In figure 5 we show the phase diagram in the strain ensemble for two different values of the height
of the last monomer (h = 0 and 50). The phase boundaries are in qualitative agreement with the
results for the stress ensemble for different 8 (compare figures 2 and 5). A more subtle issue is the
average force calculated in the strain ensemble as a function of height as compared to the average
height as a function of force in the stress ensemble. To make this comparison with the stress
ensemble let us first consider the schematic phase diagram in figure 6: recall that the two-layer
(2L) and three-layer (3L) phases disappear in the thermodynamic limit and are replaced by the
SAG phase. As such we will consider four points A, B, C, and D marked in figure 6 being in the
DE, 3L, AE and AC the phases respectively. The AC phase can also be thought of as a 1-layer
(1L) phase.
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Figure 6: The schematic phase diagram in stress ensemble for B = 0.0 (obtained from figure 2a).
The solid lines represent the phase boundaries that will survive in the thermodynamic limit: the
dotted sections cannot be estimated from the fluctuations but represent assumed behaviour. The
dashed lines between the layered phases will merge in the thermodynamic limit with the boundary
between the AC and 2L phases. The dashed-dotted line between the SAG and DC phases is a
surface phase transition and will disappear from the bulk free energy in the thermodynamic limat.

Points which feature in our discussion have coordinates (By,Bs) where A is (0,0), B is (1.5,0.8),
C is (0,2.2) and D is (1.5,2.2).

In figure 7 we show a plot of the average force (f)(h) calculated in the strain ensemble against



the height of the last monomer (k) for the four different points shown in figure 6. For comparison

strain ensemble
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Figure 7: Plot of the average force (f) acting on the last monomer against h in the strain ensemble.

in figure 8 we see a plot of the average height (h)(3¢) of the last monomer against 3¢ in the stress
ensemble for the same four points. Recall that we have set 8 = 1 giving 8y = f so that we have

essentially (h)(f) in this plot. One can immediately see that for each chosen point in the phase

stress ensemble
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Figure 8: Plot of the average height of the last monomer (h) against By in the stress ensemble.

space, the plots of (f)(h) in the strain ensemble are approximately the inverse functions of the
plots (h)(f) in the stress ensemble (as one might expect). For example, considering point C in
the adsorbed extended phase, where the polymer is in a two-dimensional excluded volume state

lying mostly in the surface of the system when under no stress, the average stress in the strain



ensemble is more or less constant for all heights less than 70 with a value of about 3. The value
of 3 coincides with the force necessary (see figure 8) to pull the polymer from the surface in the
stress ensemble. For heights larger than 70 the force increases sharply as is expected from the
stress ensemble where one requires these larger values of force to achieve average heights greater
than 70. The other points in the phase diagram have analogous related behaviour in the two
ensembles. Of course, since the height is a discrete variable the correspondence is not possible for
small average heights.

One feature seen in the strain ensemble but not the stress ensemble, which is presumably a
finite size effect, is the slight dip in the average force around heights of 75 for point D (see figure 7).
Point D is in the adsorbed-collapsed or 1-layer phase where the polymer acts as a two-dimensional
collapsed globule stuck on the surface of the system. This can be understood by considering the
number of monomers neither on the surface nor needed to achieve the fixed height. At points C
and D this achieves a maximum between 70 and 80 in the value of the height of the last monomer.
However, only at point D the favourable weighting of the nearest-neighbour bonds means that

these monomers can form a necklace of droplets along the tail of the polymer.

4 Summary

In this paper we have studied how the phase diagram of a self-attracting polymer that is also
attracted to and tethered to a flat wall changes as a vertical force is applied to the un-tethered
end of the polymer. We have accomplished this using a flat histogram Monte Carlo simulation that
is capable of studying the whole range of microscopic energies, temperature and polymer length
up to a maximum of 91. We demonstrate that re-entrant behaviour occurs at low temperature
and for a range of forces for all relative strengths of self and surface attraction. We also have
found that for small forces only the transition boundary of the “stretched” phase moves with
increasing force and the rest of the phase diagram is relatively unchanged. We conclude that
the novel layering meta-phases found for large but finite polymer length are unaffected by small

forces.
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