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Figure 1. BFACF moves on a part of a square or simple cubic lattice polygon.
Moves of type I are positive elementary moves when 2 edges are added, and
negative elementary moves when 2 edges are removed. Moves of type II do not
change the length of the polygon, and are called neutral elementary moves.

1. Introduction

The BFACF algorithm [1, 2, 5] is a Metropolis style Monte Carlo algorithm [17] that
samples self-avoiding walks with fixed endpoints in the grand canonical ensemble in
the hypercubic lattice Zd. The algoritm uses the local elementary moves in Figure 1
to sample walks along a Markov Chain from the (non-Boltzman) distribution

Pβ =
n eβn

∑

n≥0

n cn(x,y)eβn
(1)

where β is a parameter and cn(x,y) is the total number of self-avoiding walks of length
n from the lattice site x to the lattice site y.

The BFACF algorithm has also been used to sample unrooted polygons in the
square and cubic lattices (see for example references [3, 4, 11, 12, 20, 21] and it has
been generalised to lattice ribbons [19].

The BFACF algorithm can be used to sample knotted lattice polygons of fixed
knot type [16] (also see [10] for a review) and has recently been used to determine the
entropy and length of minimal knots in the cubic lattice [24, 25].

Despite its widespread use, the BFACF algorithm appears to have only been used
in simple hypercubic lattices . In this paper our aim is to extend the elementary moves
of the BFACF algorithm (see Figure 1) in the simple cubic lattice (hereafter referred
to as the SC) to the body-centred and face-centred cubic lattices (hereafter referred
to as the BCC and FCC lattices respectively). In addition, we examine the ergodicity
properties of the proposed elementary moves when applied to unrooted self-avoiding
polygons in the BCC and FCC lattices.

The BFACF algorithm is known to have elementary moves with non-trivial
ergodicity properties in the cubic lattice [16, 8]. In this paper we prove an analogous
result for the BCC and FCC lattices.

BFACF moves on walks or polygons (see Figure 1) have been generalised by re-
interpretation as plaquette atmospheres (see [13]) — namely the ways in which edges
can be added, deleted or shuffled around plaquette† adjacent to edges in the polygon.
Examining the set of such possible moves has proved extremely useful (see [13]) and
inspired generalisations of the Rosenbluth algorithm [23] to the GARM [22] and GAS
algorithms [14, 15].

† Unit squares in the lattice bounded by four lattice edges
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There are natural analogues of these plaquette atmospheres on the BCC and FCC
lattices and the new elementary moves follow immediately from the definitions of these
atmospheres; see Sections 3.1 and 4.1. While these moves are quite easy to define,
some work is required to demonstrate their ergodicity properties.

In reference [15] an implementation of the BFACF elementary moves using the
GAS algorithm was used to determine the shortest knots of given type in the simple
cubic lattice. In this paper we extend those results by adding data for the BCC
and FCC lattices, implementing the new BFACF-style elementary moves using the
GAS algorithm. The minimal lengths of a selection of knot types in these lattices are
displayed in Table 1. Knot types are indicated in the first column, while the next
three columns give the lengths of the shortest knots of given type in each lattice. The
last three columns are the number of distinct polygons (or “population”) of the lattice
knots of minimal length.

Table 1. Minimal Knots in Cubic Lattices

Minimal Length Population
Knot SC BCC FCC SC BCC FCC
01 4 4 3 3 12 8
31 24 18 15 3328 1584 64
41 30 20 20 3648 12 2796
51 34 26 22 6672 14832 96
52 36 26 23 114912 4872 768
61 40 28 27 6144 72 19008
62 40 28 27 32832 8256 5040
63 40 30 28 35522 3312 102720

3+
1 #3+

1 40 30 26 30576 14520 960
3+
1 #3−1 40 30 26 143904 24048 960

In Section 2 we review the ergodicity properties of the BFACF elementary moves
in the simple cubic lattice. We recall that the irreducibility classes of these moves,
when applied to unrooted simple cubic lattice polygons, are the knot types of the
polygons as embeddings of the circle in R3. This result, in particular, implies that
two unrooted cubic lattice polygons ω1 and ω2 are in the same knot type if and only
if there is a sequence of (reversible) BFACF elementary moves which will take ω1 to
ω2 [16]. We generalise this result to the BCC and the FCC lattices.

In Section 3 we define an analogous set of elementary moves for polygons in the
BCC lattice. We examine the properties of these moves and prove that the projection
of any (unrooted) BCC polygon can subdivided by application of the BCC elementary
moves. A corollary of this result is that polygons can be made contact free — roughly
speaking the polygon can be “inflated” so that non-consecutive vertices do not lie close
to each other. This result is then used to sweep the BCC polygon into a sublattice
isomorphic to the simple cubic lattice. In this sublattice the BCC elementary moves
reduce to the usual BFACF moves. This is sufficient to show that the BCC elementary
moves are irreducible on the classes of unrooted BCC polygons of given knot type.

Polygons in the FCC lattice are examined in Section 4. In this lattice the
analogous of the cubic lattice BFACF moves is a single reversible elementary move
which increases or decreases the length of an FCC lattice polygon by one. The proof
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proceeds similarly to the BCC case, albeit with more cases. Again we show that
any FCC lattice polygon can be made contact free and be swept onto a sublattice
isomorphic to the simple cubic lattice. The usual set of simple cubic lattice BFACF
moves can be performed on the polygon (in this sublattice) by compositions of the
FCC elementary move. Similarly, this is sufficient to show that the FCC elementary
moves are irreducible on the classes of unrooted FCC polygons of given knot type.

In Section 5 we show how the elementary moves may be used in a BFACF-style
algorithm. This implementation samples from the distribution of polygons similar
to that in equation (1). In addition, we note that the elementary moves can be
implemented using the Metropolis algorithm instead, or using GAS-style sampling.
We conclude the paper with a few final comments.

2. Knotted Lattice Polygons

Let S be the circle; we consider an injective map f : S → R3, to be an embedding of
the circle in Euclidean three space (that is, f is an injection, and is a homeomorphism
onto its image). A polygon in the simple cubic lattice (SC), or the BCC lattice, or the
FCC lattice, is a piecewise linear embedding of S into R3. Any such embedding of S
is a knot, and if the embedding is a lattice polygon, then the embedding is a lattice
knot. In this way cubic lattice polygons are lattice knots.

Two oriented embeddings f and g are ambient isotopic if there is an orientation-
preserving isotopy H : R3 × I → R3 × I (where I = [0, 1]) with H(y, t) ≡ (ht(y), t)
such that h0 is the identity (h0 ◦ f = f) and the composition h1 ◦ f = g. In other
words, two lattice polygons are ambient isotopic if there is a continuous deformation
of R3 which takes the embedding f of the first polygon onto the embedding g of the
second polygon.

Two lattice polygons in any cubic lattice (ie the SC, BCC or FCC lattices) are
said to be equivalent if they are ambient isotopic. These equivalence classes of oriented
embeddings of the circle into the cubic lattices define the knot types of lattice knots,
see for example references [9] for a reviews and definitions of lattice knots.

In this paper we prove that there exists piecewise linear realisations of orientation-
preserving ambient isotopies between lattice knots of the same knot type in the
BCC and FCC lattices. These isotopies can be constructed as sequences of local
deformations of the lattice knots in terms of BFACF-style elementary moves. This is
an extension of a similar result for polygons on the simple cubic lattice in [16]. In
that result, the piecewise linear orientation-preserving isotopies are realised in steps
using the elementary moves of the BFACF algorithm, illustrated in Figure 1. By
constructing the isotopies in this way in reference [16] the following result is proven:

Theorem 1 (Thm 3.11 from [16]) The irreducibility classes of the BFACF algo-
rithm, when applied to unrooted polygons [in the simple cubic lattice], are the knot
types of the polygons as piecewise linear embeddings in R3. ♦

This, in particular, follows by proving that for every pair of (oriented) polygons
(ω, ν) of the same knot type, there exists a finite sequence of elementary moves of
either type I or II in Figure 1, such that these moves change ω into ν. Each move is
a local deformation of the polygon and the ambient space around it, and is itself an
isotopy. The sequence of moves is a composition of these local isotopies, and is itself
a realisation of an isotopy H : R3 × I → R3 × I such that H(y, t) ≡ (ht(y), t) where
h0 is the identity and h1ω = ν.
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In other words, the equivalence classes of polygons induced by the simple cubic
lattice BFACF elementary moves in Figure 1 coincides with the knot types of the
polygons, proving that the irreducibility classes of the BFACF algorithm are the knot
types of unrooted polygons in the simple cubic lattice. In this paper, we extend this
result to the BCC and FCC lattices — these extensions are Theorems 6 and 10 below.

2.1. Lattice Knot Projections

The BCC and FCC lattices are generated by finite sets of basis vectors {ci} and {ei}.
Once the origin O of the lattice is set, then vertices are defined by linear combinations∑

i pici and
∑

i piei respectively in the BCC and FCC, where the pi ∈ Z are finite
signed integers. Thus, in each case the vertices have integer Cartesian coordinates.

Two vertices u and v are adjacent if the difference u − v is a basis vector of the
lattice. In this case an edge uv is defined between the vertices. The vertices u and v
are the end-vertices of the edge uv. We consider a lattice to be the collection of all
its vertices and edges. Two vertices are adjacent if they are the endpoints of the same
edge. Two edges are adjacent (or incident on one another) if they share exactly one
end-vertex.

A lattice polygon is defined as a sequence or list of n adjacent edges
〈u0u1,u1u2, . . . ,un−1u0〉, such that all vertices {u0,u1, . . . ,un−1} are distinct.

The length of the polygon is the number of edges n it contains (but its geometric
length will generally be different from this, since the edges do not necessarily have
length equal to one).

The BCC lattice is Eulerian with girth 4, and all lattice polygons in it have even
length. The FCC lattice is Eulerian of girth 3, and polygons of length longer or equal
to 3 can be realised in this lattice.

A lattice edge uiuj in the BCC lattice is said to be parallel to the ci direction,
or in the ci direction if uj − ui = ci. Similarly, one may define edges to be in the
ei direction in the FCC lattice. When a lattice edge in the BCC is parallel to the
ci direction (or to the ei direction in the FCC), then we shall frequently abuse our
notation by denoting it by its direction ci (or by ei).

A line segment in a lattice polygon is a maximal non-empty sequence of adjacent
edges in the polygon of the form cici . . .ci (in the BCC lattice), or eiei . . .ei (in the
FCC lattice). We say that these line segments are in the ci of ei directions respectively.

In what follows, we shall work with the projections of lattice polygons ωinto
geometric planes A along a direction u. To define these projections, consider two
independent (unit) vectors co-planar with A, and let z = x× y be a vector normal to
A. A vector u is transverse to A if u · z 6= 0.

The three vectors {x,y,u} is the basis of a (non-orthogonal) coordinate system S
in R3. Points in the polygon ω can be identified by their coordinates in S, for example,
ω is a piecewise linear curve parametrised by t and each point ω(t) has coordinates
(xt,yt,ut).

The projection of ω into A along u is defined by the set of points (xt,yt) in A for
all values of the parameter t.

A multiple point in the projection of ω into A along u is a point in the projection
which is the image two or more distinct points in ω. A multiple point is a double point
if it is the image of exactly two points.

In the case of lattice polygons, projections of polygons will be subgraphs of the
projection of the lattice into a plane normal to a given lattice axes. For example, the
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Figure 2. Nine of the 12 plaquettes adjacent to an edge in the BCC lattice. Note
that the six on the right are planar, while the three on the left are non-planar. The
remaining three (undisplayed) polygons are mirror-images of the three non-planar
polygons.

projection of a simple cubic lattice polygon along the Z-direction into the XY -plane
is a square lattice, and a cubic lattice polygon will project into a subgraph of this
square lattice. This projection is a lattice knot projection in the square lattice; see
reference [16].

In the BCC and FCC lattices we shall take projections of lattice polygons
onto symmetry planes of the lattice, along directions which are transverse but not
necessarily orthogonal to the symmetry planes.

3. BFACF-Style Elementary Moves in the BCC Lattice

In this section, we propose the local elementary moves of a BFACF-style algorithm in
the BCC lattice and we show that they are sufficient to realise a piecewise linear
orientation preserving isotopy on unrooted BCC polygons of the same knot type
embedded in R3. In particular, this implies that the irreducibility classes of the
BCC elementary moves coincide with the knot types of unrooted BCC polygons as
determined by their embeddings in three space.

3.1. BFACF style moves in the BCC lattice

In section 2.1 the notion of lattice polygons and projections of polygons were defined
in general. We note in particular that the basis vectors of the BCC lattice are points
in R3 with Cartesian coordinates given by pc1 + qc2 + rc3 + sc4 where p, q, r, s ∈ Z,
and where the vectors ci are given by

c1 = (1, 1, 1), c2 = (1, 1,−1), c3 = (1,−1, 1), c4 = (1,−1,−1),
c5 = (−1,−1,−1), c6 = (−1,−1, 1), c7 = (−1, 1,−1), c8 = (−1, 1, 1).

Observe that c5 = −c1, c6 = −c2, c7 = −c3 and c8 = −c4. The vectors ci the
generating or basis vectors of the BCC and they all have (geometric) length

√
3.
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Figure 3. A projection of the BCC lattice and a BCC lattice polygon into the
XY -plane. The projection of the BCC lattice is a square lattice rotated at 45o

degrees with the Cartesian axes, and with edge-length
√

2. The polygon projects
to a subgraph of the projected lattice.

Two vertices, u and v, are adjacent if they are separated by a single basis vector
ci. Lattice edges will be in the ci directions in the BCC, and each lattice edge ci will
be an edge in minimal length polygons of length 4 in the BCC lattice. These minimal
length polygons containing ci bound 12 faces in the BCC, and these faces are not
square and may not be planar in 6 of the cases. Nevertheless, we shall refer to them
as lattice plaquettes – see Figure 2.

The (orthogonal) projection of the BCC lattice into the XY -plane is a geometric
square lattice with edge lengths

√
2 and rotated at 45o with respect to the X-axis. A

polygon in the BCC projects to a subgraph of this square lattice. This is illustrated
in Figure 3.

We define elementary moves on polygons in the BCC lattice by considering the
12 plaquettes adjacent to every edge ci (see Figure 2). Collectively, these plaquettes
composed the plaquette atmosphere of the polygon [13]. In the simple cubic lattice,
each edge is incident on at most 4 atmospheric plaquettes, and elementary moves of
the BFACF algorithm are obtained by selecting an atmospheric plaquette and then
exchanging edges along it boundary to update the polygon.

In particular, by taking the alternate path around the boundary of atmospheric
plaquette BFACF moves in Figure 1 is obtained. A type I move on the simple cubic
lattice performed by replacing a single edge incident on an atmospheric plaquette P
in the polygon by the 3 edges in the alternative path around the boundary of P .
This move is reversible, and together the move and its reverse defines type I moves.
Similarly, a type II move on the cubic lattice replaces a pair of edges on incident on
an atmospheric plaquette P with the other two edges in P .

The 12 atmospheric plaquettes incident on edges in BCC polygons will similarly
be used to determine the set of elementary moves on BCC lattice polygons. A similar
analysis to the above gives the following set of elementary moves on polygons in the
BCC lattice:

BCC Elementary Moves:

• Replace an edge c1 by c2c1c6 (and all permutations of these vectors in the set
of vectors ci). This move increases the length of the polygon by 2. Conversely,
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I: .................................................................... ........... ...............................................................................
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.................
.....................................

......................

c1

.................
.................

..................
.................

...........................................................
c6

....
....

....
....

.

•
•

.................
.................

..................
.................

.....................................
......................

c1
II: .................................................................... ........... ...............................................................................

•
•

.......................................................................................................... .............
.........c2 .................................................................................................. ......................

c3 ...........
...........

...........
...........

...........
...........

............
...........

............
............................
...................... c8

....
....

....
....

.

Figure 4. Replacing c1 by three edges as shown defines an elementary move
which increases the length of a polygon in the BCC lattice by two. This defines
a positive plaquette atmospheric move on the polygon. Reversing the move gives
a negative plaquette atmospheric move which reduces the length of the polygon
by two edges by replacing three edges on the right by the single edge on the
left. All the possible permutations of the vectors ci gives the complete collection
of positive and negative plaquette atmospheric moves. Observe that closing the
vectors on the right with the dotted line gives a square in case I, and a non-planar
quadrilateral in case II.

replace c2c1c6 by c1 (and all permutations of these vectors) to obtain a move
reducing the length of the polygon by 2. This moves is illustrated (generically)
by case I in Figure 4. Observe that the vectors {c2, c1, c6} are coplanar, so
that c1c2c1c6 forms a planar quadrilateral — a square. Hence, we call this the
planar BCC positive and negative plaquette atmospheric moves, or the planar
BCC positive and negative elementary moves.

• Replace an edge c1 by c2c3c8 (and all permutations of these vectors). This move
increases the length of the polygon by 2. Conversely, replace c2c3c8 by c1 (and
all permutations of these vectors) to obtain a move reducing the length of the
polygon by 2. This move is illustrated by case II in Figure 4. Observe that the
set of vectors {c2, c3, c8} is not coplanar; hence closing them off with c1 bounds
a non-planar quadrilateral or atmospheric plaquette. These are the non-planar
BCC positive and negative plaquette atmospheric moves, or the non-planar BCC
positive and negative elementary moves.

• Replace c1c6 by c6c1 (and all other permutations of these vectors). This is a
neutral move, illustrated as case I in Figure 5. Note that these two pairs of
edges form a square and so this move occurs in a plane in three space. These are
the planar BCC neutral plaquette atmospheric moves, or the planar BCC neutral
elementary moves.

• Replace c1c6 by c3c2 (all other permutations of these vectors). This is a neutral
move, illustrated as case II in Figure 5. Now, these two pairs of edges form a non-
planar quadrilateral or atmospheric plaquette and so this move does not occur
in a plane in three space. More generally, these are the non-planar BCC neutral
plaquette atmospheric moves, or the non-planar BCC neutral elementary moves.

Projecting the moves of Figures 4 and 5 into the XY -plane gives the (two
dimensional) square lattice BFACF moves shown in Figure 1, but in the rotated square
lattice of Figure 3 instead. Thus, by executing the BCC positive, negative and neutral
plaquette atmospheric moves of Figures 4 and 5 on a polygon in the BCC, the image
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Figure 5. Replacing c6c1 by either I: c1c6 or by II: c3c8 defines neutral plaquette
atmospheric moves. Observe that c1+c6 = c3+c8 . All the other possible neutral
moves are obtained by using all the possible permutations of the ci in the above.
Observe that by closing the vectors on the right into a quadrilateral along the
dotted lines (which follows the path of c6c1 between the bullets) gives a square
in case I and a non-planar quadrilateral in case II.

of these moves in the projected square lattice include, as a subset, all the (usual simple
square lattice) BFACF moves on the projected polygon.

3.2. Stretching polygons in the BCC lattice

We first outline our approach before we prove our main results. The proof of our main
BCC lattice result in Theorem 6, is presented in two parts. We first show that any
BCC lattice polygon can be swept onto a sublattice of the BCC which is isotopic to
the simple cubic lattice (as an oriented embedded graph in three space). Then we
show that in this sublattice we use the ergodicity properties of the simple cubic lattice
BFACF algorithm [16] to complete the proof (see Theorem 1).

In other words, we shall show that any BCC lattice polygon can be swept into
a sublattice L with basis vectors {c1, c3, c4, c5, c7, c8}, and then show that a subset
of the BCC elementary moves simulates a simple cubic lattice BFACF algorithm in
this sublattice (which is not orthogonal but is nevertheless isotopic to the simple cubic
lattice).

Our approach would be to demonstrate that the BCC elementary moves are
sufficient to replace polygon edges outside the sublattice L with edges in L, while
avoiding any self-intersections in the polygon as it is updated in this process. This
is achieved by stretching the polygon to create sufficient space for executing BCC
elementary moves (see Figure 6).

The stretching of a polygon will proceed by identifying a maximal line which
intersect the projected polygon in its right-most and top-most projected edges. The
polygon will be recursively stretched in directions normal to the maximal line by
stretching parts of it across the maximal, while inserting edges to maintain its
connectivity. We show that this can be done using the BCC elementary moves.

In particular, project the BCC lattice along the Z-direction onto the XY -plane,
and let ω be a BCC polygon with projection Pω in the XY -plane. Then the image of
the lattice and the polygon is the square lattice and a graph embedded in the square
lattice illustrated in Figure 3. The maximal line K of Pω is the line x + y = k with k
the maximum value such that K has a non-empty intersection with Pω.

9
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Figure 6. Translating a line segment with a single positive move and then a
sequence of neutral moves in the BCC lattice, projected into the XY -plane. Since
the projection of the polygon is to a square lattice, the BCC elementary moves
project to square lattice BFACF elementary moves.

K is the image of a plane Pr projecting parallel to the Z-axis into the XY -plane.
We say that Pr is maximal if it intersects ω and if it projects to the maximal line.

The maximal line K intersects the projection Pω in projected line segments which
lifts to line segments and isolated vertices in ω ∩ Pr.

These definitions can now be used to stretch a polygon in a consistent way without
creating self-intersections.

3.2.1. Stretching a polygon in its maximal line: Suppose L is a line given by x+y = l
(with l ∈ N) which intersects the projected polygon Pω. The maximal line K has
equation x + y = k, and necessarily, k ≥ l.

We say BCC basis vectors ci are transverse to the plane Pr if they are not parallel
to Pr. Let ci be transverse to Pr — then ci ∈ {c1, c2, c5, c6}; the other lattice vectors
lie in Pr. Each line segment in this intersection can be translated one step in the ci

direction by BCC elementary moves using the construction in Figure 6. We restrict
such translations to be in the ci direction (with i = 1 or i = 2) in what follows. This
will translate all line segments of non-zero length in the plane Pr in the ci direction.

This leaves the case of isolated vertices in Pr ∩ω. The edges incident to and from
these vertices will be of the form c1c6 or c2c5 (since K is maximal). In this case one
may perform the move c1c6 → c1c1c6c5 or c2c5 → c2c1c5c6 to translate the isolated
vertex in the c1 direction. A similar construction will translate the segment in the c2

direction instead.
Observe that no self-intersections can occur since all parts of the polygon in Pr∩ω

are translated in parallel in the ci direction (with i = 1 or i = 2).
Once all line segments in the maximal plane Pr are translated in the c1 (or

c2) direction, the polygon ω is said to have been stretched in the plane Pr in the
direction c1.

On completion of this construction, the maximal line K is translated to the line
L by translating the plane Pr in the −ci direction. This plane is denoted by Qr and is
parallel to P2. Then Qr projects to L with formally x+y = ` = k−1 in the XY -plane.
L lifts to Qr, and Qr ∩ ω is a collection of line segments and isolated vertices of ω.

Observe that the departing edges from Qr to the maximal side arriving in Pr are
all in the ci direction, since the polygon was stretched in that direction in the previous
step.

In addition, the Pr contains no line segments, since these were translated into
the ci direction. Furthermore, edges incident arriving in Pr from the opposite of the
maximal side are parallel or anti-parallel to cj with j = 1 or j = 2.

10



3.2.2. Stretching a BCC polygon We proceed by recursively executing the stretching
of ω in the ci direction in the plane Qr. The intersection Qr ∩ω is a collection of line
segments and isolated vertices in ω.

If Qr = Pr, where Pr projects to the maximal line K, then the situation is as
described in the last section: We must consider two different cases in translating parts
of the polygon in Pr in the ci direction. The first case involves line segments in Pr ∩ω,
the second case involves isolated vertices in Pr ∩ω. Such a isolated vertices must have
incident edges c1c6 or c2c5 (so as not to collide with Pr). These two cases were already
dealt with above.

In the event that Qr 6= Pr, suppose that the stretching was recursively done
starting in Pr and moving the plane in the −ci direction so that the last stretching
was done in the ci direction in the plane Q′

r = Qr + ci. Without loss of generality,
one may suppose that the stretching is done in the i = 1 direction. Then all edges
between Qr and Q′

r are parallel or anti-parallel to c1.
There are three different cases to consider. The first case involves line segments

in Qr ∩ω, and the second case involves isolated vertices in Qr ∩ω with incident edges
c1c6 or c2c5. These two cases are done by translating the vertices and edges in the c1

direction similarly to those line segments and isolated vertices in the plane Pr above:
Since line segments projects to lines in the square lattice and BCC moves to BFACF
moves in the square lattice, these line segments can be translated by applying BCC
moves in the c1 direction. Translating isolated vertices in the second case is similarly
done.

The third and final case involves isolated vertices v of the polygon in Qr with
edges on either side of Qr. Suppose that these vertices are to be moved in the c1

direction. Then the arrangements must be c1vc1, or c2vc1; the middle vertex v in
these cases lies in Qr , and the second edge moves from Qr to a plane Q′

r = Qr + c1.
In the cases c1vc1 the edges are left unchanged, since the departing edges to Q′

r

are already in the c1 direction. The case c2vc1 is updated to c1wc2, with w in the
plane Q′

r. Observe that w is always not occupied in Q′
r before the move, because all

arriving edges from Qr to Q′
r are in the c1 direction before the moves are done.

In each case, these constructions give a polygon with departing edges from Qr

to Q′
r in the ci direction. Observe that the relative orientation of edges are again

maintained, and that the moves are possible without any self-intersections in ω.
The implementation of the stretching is recursive. Start in the plane Qr = Pr

which projects to the maximal line, and stretch the polygon a number of times in the
ci direction transverse to Qr. Then define Q′

r = Qr and Qr → Qr − ci recursively.
This will stretch the polygon any desired length in each plane Qr intersecting parallel
to Pr without creating an intersection in the polygon.

The effect of the construction is to cut ω along a plane Qr and to move the
two parts of ω on either side of the polygon any number of steps in the ci direction
transverse to Qr apart while inserting edges parallel or anti-parallel to ci to reconnect
it into a single polygon.

Observe that the construction does not change the knot type of ω, and that it is
the realisation of an ambient isotopy on the complementary space of the polygon. We
say that we have stretched the polygon ω in the ci direction along the plane Qr. This
completes the construction.

Observe that a similar construction will enable one to stretch ω in directions
transverse to lattice planes in the BCC transverse to any of the basis vectors ci of
the BCC. This follows by exchanging the lattice basis vectors, such that a rotation of

11
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Figure 7. Stretching a projection of a BCC polygon. In this illustration, a
polygon was stretched recursively in the projected directions until each projected
edge was doubled.

the polygon preserving its chirality, is done in the above analysis. These observations
complete the proof of the following theorem:

Theorem 2 Let ω be an (unrooted) polygon in the BCC lattice with projection Pω in
the XY - Y Z- or XZ-plane. Let L be a line in the AB-plane with formula A± B = `
where (A, B) is one of (X, Y ), (Y, Z) or (X, Z).

Suppose L intersects the projection Pω and that ` is an integer. Suppose also that
L lifts to the plane Qr parallel to the normal of the projection plane. Then ω can be
stretched along the plane Qr in a direction ci transverse to Qr by performing the BCC
elementary moves in Figures 4 and 5 on ω. ♦

In Figure 7 we illustrate that a polygon can be recursively stretched until each
projected edge has been replaced by two edges in the same projected direction. This
is called the subdivision of the projected image of the polygon.

3.3. Contact free polygons

In this section we show that a given BCC polygon can be swept onto a sublattice
L with basis vectors {c1, c3, c4, c5, c7, c8}. This sublattice is isotopic to the simple
cubic lattice, and once the polygon is contained in it, then a subset of the BCC moves
reduces the usual BFACF moves.

In order to sweep a polygon ω into L, it is necessary to avoid self-intersections
in the polygon when executing the necessary elementary moves. Such possible self-
intersections are avoided by stretching the polygon, using the recursive subdivision
explained in the previous section.

Two vertices v and w, non-adjacent in a polygon ω (ie not connected by an edge
in ω), form a contact if v − w = cj for some value of j.

Such a contact is said to be a contact in the direction cj . A polygon ω is contact
free if it has no contacts. Observe that every contact is a lattice edge and projects to
a line segment in the XY -plane. We show that by subdividing a polygon using the
constructions outlined in the previous sections, one can make it contact free.

Lemma 3 By applying the BCC elementary moves in Figures 4 and 5 to an unrooted
polygon in the BCC lattice, it can be transformed into a contact free polygon.

Proof: Use BCC elementary moves to remove all contacts in the polygon ω as follows.
If ω has contacts in the ci direction, then subdivide the polygon such that the

stretching is done in the ci direction. Since all edges in the ci direction will be doubled

12



up (effectively the scale of the polygons is changed such that every edge is replaced by
two edges in a line segment of length 2), this removes all contacts in the ci direction.
If there are still contacts in the cj direction (for some other j), then subdivide the
polygon in the cj direction.

Observe that if there no contacts in the ci direction, then stretching the polygon
in the cj direction cannot create new contacts in the ci direction.

This follows because the creation of a contact in the ci direction will require the
translation of parts of the polygon relative to one another in the ci direction, which
does not occur when stretching in the cj direction.

Repeat the process of subdivision, until all contacts are removed and a contact
free polygon is obtained. ♦

3.4. Pushing contact free BCC polygons into a simple cubic sublattice

Our goal is to show that every polygon in the BCC lattice can be changed into a
polygon in sublattice L which is isotopic to the simple cubic lattice by the applying
the BCC elementary moves.

We defined L to be that sublattice of the BCC with basis vectors
{c1, c3, c4, c5, c7, c8}. L is a non-orthogonal lattice, and if ω is polygon in L, then
the subset of elementary moves in the BCC lattice which only involve the edges in the
basis of L reduces to the usual simple cubic lattice moves.

By lemma 3 one can show that BCC polygons can be made contact free and so
we only have to examine contact free polygons in this section.

If ω is a contact free polygon in the BCC, then it is pushed into L by removing
from it all edges in the c2 or c6 directions. The method of proof is as follows: Replace
very edge in the c2 direction by the three edges c1c4c7 and every edge in the c6

direction by three edges c5c8c3.
All that remains is to show that one can arrange matters such that self-

intersections will not occur.

Theorem 4 By applying the classes of BCC elementary moves in Figures 4 and 5 to
unrooted polygons in the BCC lattice, any such polygon can be swept into a polygon
in the sublattice L.

Proof: Let ω be a contact free polygon and subdivide it twice in each of the c1, c5,
c3 and c7 directions. Then the shortest distance in the c1 direction between vertices
u,v not connected by an edge of the polygon is at least 3 steps. Similarly for the c5,
c3 and c7 directions.

We now show that edges in line segments in the c2 or c6 directions can be swept
into the sublattice L.

Replace edges in the c2 or c6 directions as follows:

• If c2c2c2 . . .c2 is a sequence of consecutive edges in the c2 direction, then replace
them by c1c4c7c1c4c7 . . .c1c4c7.

• Similarly, replace any sequence of consecutive edges c6c6c6 . . .c6 by the sequence
c5c8c3c5c8c3 . . .c5c8c3.

These changes can be achieved by positive non-planar BCC elementary moves on
the BCC polygon. Observe that these substitutions insert new vertices in the c1, c5

and c7 and c3 directions, adjacent to existing vertices in ω, but that no contacts can
be created since other vertices in these directions are a distance of at least three away.

13



The only intersections that can arise in the above construction do so at the
endpoints of a sequence c2c2c2 . . .c2 or c6c6c6 . . .c6. These are avoided as follows:

• If the edges at the beginning of the sequence c2c2c2 . . .c2 is c5c2 . . ., then the
substitution c2 → c1c4c7 on the first c2 will cause an intersection (or a “spike”)
c5c1c4c7 . . .. If instead a neutral non-planar elementary move c5c2 → c4c7 is
executed here, then the spike is avoided while the edge in the c2 direction is
removed.

• A similar argument holds if the sequence of c2’s ends as . . .c2c3, in which case
one finds c2c3 → c1c4.

• Similar arguments can be used to deal with the case of line segments of the form
c6c6 . . .c6.

• Lastly, if the line-segment has length one and is of the form c5c2c3, then one
obtains the negative BCC elementary move c5c2c3 → c5c1c4c7c3 → c4.

• A similar argument holds for segments of the form c1c6c7.

Completion of these elementary moves produces a polygon with no edges in the
c2 or c6 direction. This is exactly a polygon in the sublattice L. This completes the
proof. ♦

3.5. Irreducibility classes of the BCC elementary moves

By Theorem 4 all BCC lattice polygons can be changed into lattice polygons in the
lattice L which is isotopic to the simple cubic lattice. Since this process is reversible,
one only has to consider polygons in L and the effects of the BCC elementary moves
on these polygons in this sublattice.

Restricting the BCC elementary moves to the sublattice L implies that all
elementary moves including either the directions c2 or c6 must be excluded. Observe
that if both c2 or c6 are excluded from the set of BCC elementary moves (for example,
c1 ↔ c2c1c6 or c1 ↔ c2c3c8, are excluded) then the remaining moves reduce to the
standard simple cubic lattice BFACF moves in Figure 1 in L.

Thus if we restrict ourselves to this subset of possible moves on polygons in L then
we have the following lemma, which is a direct corollary of Theorem 1 or Theorem 3.11
in reference [16].

Lemma 5 The BCC elementary moves, restricted to the sublattice L, applied to
unrooted polygons in L, have irreducibility classes which coincides with the knot types
of the polygons as piecewise linear embeddings in R3. ♦

Since every unrooted polygon in the BCC lattice can be (reversibly) reduced to a
polygon in L, the following theorem is an immediate corollary of Theorem 4 and the
last lemma.

Theorem 6 The irreducibility classes of the BCC elementary moves, applied to
unrooted polygons in the BCC lattice, coincides with the knot types of the polygons
as piecewise linear embeddings in R3. ♦

This completes the proof. In other words, it follows that the set of BCC
elementary moves, applied to unrooted polygons in the BCC lattice, is irreducible
within the knot type of the polygon.
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Figure 8. The four plaquettes adjacent to an edge in the FCC lattice.

4. BFACF-Style Elementary Moves in the FCC Lattice

In this section we introduce local elementary moves of a BFACF-style algorithm on
the FCC lattice; in fact there is only a single move that replaces two edges by a single
edge and vice-versa. As was done for the BCC moves described above, we show that
this new move is sufficient to realise a piecewise linear orientation preserving isotopy
between two unrooted FCC polygons of the same knot type. This demonstrates that
the irreducibility classes of the FCC elementary move coincide with the knot types of
unrooted FCC polygons as determined by their embeddings in three space.

Local elementary moves in the FCC lattice have been explored previously in the
literature, see for example references [7], however, the ergodicity properties of these
elementary moves in the FCC have not been studied for knotted polygons.

4.1. The FCC elementary move

Vertices of the face centered cubic (FCC) lattice are points in R3 with positions given
by the linear combinations pd1 + qd2 + rd3 + sd4 + td5 + ud6 where p, q, r, s, t, u∈ Z,
and where the vectors dj is given

d1 = (1, 1, 0), d2 = (1,−1, 0), d3 = (1, 0, 1),
d4 = (1, 0,−1), d5 = (0, 1, 1), d6 = (0, 1,−1),
d7 = (−1,−1, 0), d8 = (−1, 1, 0), d9 = (−1, 0,−1),
d10 = (−1, 0, 1), d11 = (0,−1,−1), d12 = (0,−1, 1)

We have labelled these vectors so that di+6 = −di. We define adjacent, lattice edges,
end-vertices, lattice polygon and line segment on the FCC lattice in the same way that
we did on the BCC lattice. Note that a polygon of n edges on the FCC has geometric
length n

√
2.

Observe that the sublattice generated by any set of three different non-coplanar
vectors in the generating set of the FCC is isotopic to the simple cubic lattice. For
example, the set {d1,d3,d5} generates a sublattice of the FCC which is isotopic to
the cubic lattice (and may be viewed as a non-orthogonal simple cubic lattice).
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Figure 9. Translating a line segment in the di direction in a polygon in the dj

direction using the elementary move in the FCC lattice.

Similarly, there are sets of three coplanar vectors which generate a two-
dimensional triangular lattice; for example, the set {d1,d3,d12} are the basis vectors
of a triangular lattice in a plane with normal vector d1 × d3 (and observe that
d12 = d3 − d1).
FCC Elementary Move:

• See Figure 8. Any vector di in the FCC lattice is incident to four triangular
plaquettes. That is, there are four different pairs of vectors (dj,dk) so that
di = dj +dk. The substitution of di by djdk is a positive atmospheric FCC move,
or a positive FCC elementary move and it increases the length of the polygon
by one edge. Similarly the reverse move, replacing djdk by di is a negative
atmospheric FCC move or a negative FCC elementary move and it decreases the
length of the polygon by one.

4.2. Stretching polygons by using the FCC elementary move

In examining the irreducibility classes of the FCC elementary move, we shall follow
the same strategy used for the BCC lattice in Section 3.

We first show that FCC polygons can be stretched, then made contact free, and
finally swept into a simple cubic sublattice of the FCC. In this simple cubic sublattice
of the FCC, the usual simple cubic lattice BFACF moves can be performed on the
polygon by using combinations of the FCC elementary moves. Theorem 1 can then
be used to complete the proof that the irreducibility classes of the elementary move
coincides with the knot types of the polygon.

The basic construction in the proof is illustrated in Figure 9. By using the
elementary move, the construction in Figure 9 shows that one can translate an entire
line segment (in the di direction one step in the dj direction, provided that dj 6= ±di.

This construction can be performed regardless of the orientation of the edges
incident at the ends of the line segments, provided that the set of target vertices in
the dj direction are not occupied by the polygon.

Let {di,dj,dk} be a triple which form a triangular plaquette in the FCC lattice
(so dk = dj −di). Note that these three vectors generate a triangular sublattice T in
the FCC; this sublattice is a geometric plane A with normal di × dj.

Consider the (non-orthogonal) projection of an FCC polygon ω into the plane
A along a lattice direction dl which is transverse to the plane A (that is, dl is not
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Figure 10. The vectors {di,dj,dk} generate a triangular lattice in the plane
A. The Cartesian coordinate system (X,Y ) is set up with X-direction given by

di + dj and Y -direction given by dk . Observe that |dn| =
√

2, so that k =
√

3/2

and ` = 1/
√

2.

coplanar with vectors {di,dj,dk}). We say that this projection is taken along dl into
the didj-plane A.

In general, the projection of an FCC lattice polygon ω along dl into the plane A
is a lattice knot projection into a triangular lattice which is the projection of the FCC
onto A. Define a two dimensional cartesian coordinate system in the plane A with
Y -direction given by dk and X-direction by di + dj. This is illustrated in Figure 10.

If Pω is the projection of the polygon ω in the plane A along a transverse lattice
direction dl, then Pω is a finite graph in the triangular lattice in A.

Hence, there exists a right-most line K parallel to the Y -axis (see Figure 10)
which intersects the projection Pω. We say that the line K is the maximal or right-
most line cutting the projection Pω. The right-most line is itself the projection of a
plane Pr projected with ω along the (non-orthogocal) directopm dl. The intersection
of this plane with the FCC lattice is a triangular sublattice of the FCC, generated by
the set of basis vectors {dk,dl}.

Line segments in ω are projected to line segments or to points in K, and these
projected images lift back up to parts of the polygon in the intersection Pr ∩ ω of
the plane and the polygon. Each line segment in this intersection can be translated
one step in the dj (or di) direction (transverse to the plane Pr) by using the basic
constructions in Figure 9. If all the line segments in the plane which projects to the
maximal or right-most line K are moved in the dj direction, then we say that the
polygon is stretched in the dj direction from the plane Pr.

Observe that once a polygon has been stretched in the plane Pr, then there are no
line segments in the polygon contained in Pr. This, in particular, implies that Pr ∩ ω
is a collection of isolated vertices in ω. At each such vertex ω either passes through
the plane to its right in the dj direction, or it turns to stay to the left of Pr. Projected
images are illustrated in Figure 11.

Next we stretch the polygon in a plane Pr recursively starting in its right-most
line K, and then successively moving left. Line segments in Pr ∩ ω can be moved
in the dj direction using the construction in Figure 9. Since all the edges incident
with Pr on the maximal side of Pr are in the dj direction, these constructions can be
performed without creating any self-intersection.
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Figure 11. The projection of the polygon close to the maximal or right-most line
K during the stretching of the polygon in the dj direction. The conformations
of edges incident with the plane Pr are in general one of the cases above. In two
cases the polygon passes through the Pr . In the third case it touches it in one
vertex before turning back. In this last case the vectors dn and dl must make
an angle of 60o with one another. Cases as in (a) are removed as illustrated,
while case (c) is left unchanged. In case (b) the edge in the dn direction is passed
through the plane Pr in the direction dj. See Figure 12 for more details.

This leaves the cases of isolated vertices in Pr ∩ω. The situation is as illustrated
in Figure 11: All the parts of the polygon to the right of Pr K been stretched in the
dj direction, and the next step is to move parts of the polygon which has isolated
vertices in Pr in the dj direction.

In Figure 11(a) we depict a situation in which the two vectors an and al must
make a 60o angle with one another at the vertex in Pr. In this case we can remove
these two edges from the polygon by making a negative atmospheric move replacing
them with a single edge as shown. Thus we can eliminate this situation and we do
not need to consider it in the discussion below.

Next, we address the situation depicted in Figure 11(b). We need to translate
the edge dn in the dj direction. This is done as illustrated in Figure 12 (see also
Figure 11). If the vertex marked by ◦ in the left-most figure in Figure 12 is vacant
(that is, not occupied by the polygon), then we can use two elementary moves to
change the conformation dndj to djdn; so the vector dn is translated in the dj

direction, as desired.
On the other hand, if the vertex marked by ◦ is occupied by another part of

the polygon, then there are only two possibilities. First, it may correspond to the
conformation depicted in Figure 11(a), in which case the elementary move can be
used to remove the occupied vertex.

Otherwise it is the situation shown in the middle of Figure 12. In this case let Q
be the plane coplanar with {dj,dn} and consider the line S = Q ∩ Pr. Move along
S in Pr until an open vertex ◦ is enountered as shown the second and third parts of
Figure 12.
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Figure 12. The case in Figure 11(b). If Q is a plane coplanar with {dj,dn}
then S is the line S = Q ∩ Pr . If one moves along S in the vertical sense here,
then eventually one must encounter an open vertex ◦. In this case the moves
in Figure!11(b) can be systematically performed on each of the isolated vertices
along S, starting at the top. This will translate all the edges on the left of S
through the plane Pr towards the right in the dj direction.

Since the polygon is finite we eventually must find a vacant vertex — as shown
in the rightmost past of Figure 12. The edge (depicted as dl) can then be translated
in the dj direction. This (effectively) moves the vacant vertex back along Pr and so
one recursively apply this construction until we finally move the desired edge, dn, in
the dj direction, using the construction in Figure 11(b).

The stretching of the polygon in a new plane, Qr, in the transverse (to Qr)
direction dj, proceeds by first finding the right most line in the projection, and lifting
it to the plane Pr (parallel to Qr). The polygon is then stretched one step in the dj

direction in Pr. Then Pr is moved closer to Qr one step in the −dj direction and the
polygon is stretched recursively until it is finally Pr is coincident with Qr in which
case the polygon is stretched one step in the dj direction on one side of Qr.

The effect of this construction is to cut the polygon along the plane Qr into a left
part and right part. The right part is then translated in the dj direction and the two
parts are reconnected by inserting inserting edges in the dj direction.

In topological terms this construction is an (orientation preserving) ambient
isotopy of three space, and it does not change the knot type of the polygon. We
say that the polygon ω was stretched in the dj direction transverse to the plane Qr .

This construction proves the following lemma:

Lemma 7 Let ω be any FCC lattice polygon and let Qr be a lattice plane intersecting
ω. Then ω can be stretched, using the FCC elementary move, in Qr in the dj direction
if dj is transverse to Qr .

Proof: Since Qr is a lattice plane, determine a plane A transverse to it which intersects
the FCC in a triangular lattice. Orient he projected polygon as above, and then use
the elementary moves to stretch the polygon in Qr in the desired direction as described
by the construction above. ♦

4.3. Contact free FCC lattice polygons

As was the case for the BCC lattice, care must be taken to ensure that different pieces
of the polygon do not come too close together while we try to sweep it onto a simple
cubic sublattice. Thus we define contacts on the FCC lattice in the same way we did
on the BCC lattice; two non-adjacent vertices u and v in a polygon ω form a contact
if u− v = dj for some j. That is, these vertices are a distance

√
2 apart in the FCC.
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A polygon ω is contact free if it has no contacts. We next show that we can use
the FCC elementary move to transform any polygon into a contact free polygon.

Lemma 7 shows that any given polyon can be stretched in the dj direction
transverse to a plane Qr (which intersects the FCC lattice in a triangular sublattice).

If a polygon is stretched in every transverse direction in every lattice plane Q
which intersects it in a triangular lattice, then the effect is to double the length of
every edge of the polygon. That is, each edge gets replaced by two edges. This is a
subdivision of the polygon ω. One may repeat this stretching several times to stretch
each edge any number of times.

If polygon has a contact in the dj direction, then it is removed if the polygon
is subdivided once since all distances between vertices in the polygon is increased by
at least a factor of 2 in a subdivision of the polygon. In addition, a contact in the
dj direction cannot be created if the polygon is stretched in the di direction, since
the relative orientations of vertices and edges in the dj direction is maintained if the
stretching is in the di direction.

Thus, one may remove all contacts from a polygon by stretching or by subdivision.
This leaves a contact free polygon, and we proved the following lemma.

Lemma 8 By subdividing an FCC polygon, it is possible to transform it into a contact
free polygon, using the FCC elementary move.

Proof: Consider a (non-orthogonal) projection Pω of an FCC polygon ω into a lattice
plane A along a lattice direction transverse to A, where A intersects the FCC in a
triangular lattice Lt with basis vectors (say) di, dj and dk.

The projection Pω cuts the plane A into one infinite face and a set of finite faces
(or areas). Each finite face has an area measured in units of the elementary triangle
in the triangular lattice.

Since di is a basis vector of the sublattice Lt, a subdivision of ω in the di direction
increases the area of each finite face in the projection in the plane A by at least one
unit elementary triangle. This is similarly true when subdividing in the dj and dk

directions.
Contacts in the FCC polygon which are oriented in the di, dj and dk directions

will project in the plane A as edges in Lt. A subdivision in the direction of a given
contact will remove it from the projection, and thus also from the polygon itself.

If subdivisions in the di direction removed all contacts in this direction, then
subsequent subdivision in other directions will not create contacts in the di direction
(since this would require the translation of parts of the polygon in the di direction,
and this cannot occur).

Hence, by using subdivisions of ω in each of the six independent directions of the
FCC lattice, all contacts are removed from the polygon, and it becomes contact free.
This completes the proof. ♦

4.4. Pushing contact free FCC polygons into a simple cubic sublattice

Let L be that sublattice of the FCC with basis vectors {d1,d3,d5,d7,d9,d11}. Then
L is ambient isotopic to the simple cubic lattice.

If ω is a polygon in L, then the (simple cubic lattice) BFACF move (see
Figure 1) can be performed on ω in L by composing two FCC elementary moves
in order to execute each single BFACF move. For example, the positive BFACF move
d1 → d3d1d9 can be performed in the two step sequence d1 → d3d6 → d3d1d9.
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In other words, the irreducibility properties of FCC lattice polygons in the
sublattice L is determined by the irreducibility properties of the simple cubic lattice
BFACF moves, and by Theorem 1. We shall use these facts to complete the proof
that the irreducibility classes of the FCC elementary move on unrooted FCC lattice
polygons coincide with the knot types of the polygons as piecewise linear embeddings
in three space.

The strategy is as follows: If ω is an FCC lattice polygon, then it will be moved
to a polygon in the sublattice L, from where it will be put in standard position λ
given its knot-type K. Since the composition of all the FCC elementary moves is a
continuous piecewise linear orientation preserving isotopy of three space, we know that
the polygon λ in standard position has the same knot type K, and moreover, that
every polygon can be moved to λ using a finite number of FCC elementary moves.

It only remains to prove that every FCC lattice polygon can be moved to a
polygon in L.

Lemma 9 By using the FCC elementary move, any FCC lattice polygon ω can be
swept into a sublattice L of the FCC, where L is ambient isotopic to the simple cubic
lattice.

Proof: Since every polygon can be made contact free, it is enough to assume that ω is
contact free. We next prove that every such contact free polygon can be moved into
the lattice L.

If ω is embedded in L, then we are done.
Otherwise, ω has some edges in directions from the set {d2,d4,d6,d8,d10,d12}.

Since ω is contact free, the FCC elementary move can be performed on each of each
of the edges in ω without creating self-intersections.

Proceed along the polygon and remove edges in the d10 d2, d4, d6, d8, d10 and
d12 directions systematically by replacing them as follows:

d2 → d3d11, d4 → d1d11, d6 → d9d5,
d8 → d9d5, d10 → d7d5, d12 → d3d7.

If during this process a contact is created, then the polygon is again swept in the
{d1,d3,d5} directions. Each contact will have a non-zero projection along at least
one of these directions, and will then be removed without inserting any new edges
in any directions apart from those in the simple cubic sublattice L. Finally, these
elementary moves will move ω into the sublattive L. ♦

A direct corollary of this lemma is

Theorem 10 The irreducibility classes of the FCC elementary move, applied to
unrooted polygons in the FCC, coincides with the knot types of the polygons as piecewise
linear embeddings in R3.

Proof: Observe that since L is a sublattice of the FCC which is isotopic to the
simple cubic lattice, the irreducibility classes of the FCC elementary move applied
to unrooted polygons in C coincides with the knot types of the polygons as piecewise
linear embeddinds in R3. This follows directly from the observation above that all
BFACF moves on a polygon in L can be induced by using the FCC elementary move,
and from Theorem 1 or Theorem 3.11 in reference [16].

By Lemma 9 any unrooted polygon in the FCC can be (reversibly) swept into the
sublattice L using the FCC elementary move.
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Standard BFACF elementary moves in the sublattic L can be performed by
combining FCC elementary moves. For exampl, the positive move d1 → d3d1d9 in L is
a BFACF move, and it is performed in two steps in the FCC by d1 → d3d12 → d3d1d9,
since d1 = d3 + d12 and d12 = d1 + d9. The other cases, and neutral and negative
SC BFACF moves can similarly be checked.

Hence, since the standard SC BFACF moves in Figure 1 can be performed
on the polygon in L, using composite FCC elementary moves, the theorem follows
immediately. ♦

5. Conclusions and implementation

In this paper we have shown that the BFACF elementary moves on simple cubic
lattice polygons can be generalised to similar moves on the BCC and FCC lattices.
For the BCC lattice, we propose a set of four elementary moves (two are neutral, and
two are positive/negative), while on the FCC lattice we propose a single (reversible)
elementary move (of type positive/negative).

We proved that, on the BCC and FCC lattices, these moves are suitable to give
irreducibility classes of unrooted polygons that coincide with the knot types of the
polygons. This is, we have generalised Theorem 3.11 in reference [16] to both the
FCC and BCC lattices. For the BCC lattices, our method of proof relied on all four
proposed elementary moves and so we know that these moves are sufficient. It is
not clear that any of these are necessary, or that a smaller set of similarly defined
elementary moves may be sufficient.

Using the proposed moves we have implemented the GAS algorithm [14] to sample
knotted polygons on both the FCC and BCC lattices. We give some results in Table 1
and further numerical results will be published elsewhere.

5.1. The GAS implementation of the BCC and FCC elementary moves

In the GAS implementation [14] of the algorithm, lattice polygons of (fixed) knot type
K are sampled along a Markov Chain by executing the elementary (or atmospheric)
moves on the polygons. Let φ = 〈φn〉 = 〈φ0, φ1, φ2, . . .〉 be a realisation of a sequence
started in the initial state φ0, which is a polygon of length `(φ0) and of knot type K.

A state φn+1 from φn is generated as follows: Let A+(φn) be the set of all
positive atmospheric or elementary moves on the polygon φn, and similarly, A0(φn)
and A−(φn) the set of all neutral and negative atmospheric moves on φn. These are
the positive, neutral and negative atmospheres of φn.

Define the sizes of the of the positive, neutral and negative atmospheres of φn by
a+(φn), a0(φn) and a−(φn). If `(φn) = N , then each of these statistics has a mean
value denoted by 〈a+〉N , 〈a0〉N and 〈a−〉N .

Next, define a set of parameters of the GAS algorithm by

βN =
〈a−〉N
〈a+〉N

. (2)

With these definitions, one may now determine φn+1.
The state φn+1 is obtained from φn by selecting with probability P+ a positive

atmospheric move, with probability P0 a neutral atmospheric move, and with
probability P− a negative atmospheric move, and executing it on φn to obtain φn+1.
In each case, once a determination is made to execute a move, the move is selected
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uniformly from amongst the available moves in each of the sets A+(φn), A0(φ) and
A−(φn).

The probabilities P+, P0 and P− are given by

P+ =
βN a+(φn)

a−(φn) + a0(φn) + βN a+(φn)
;

P0 =
a0(φn)

a−(φn) + a0(φn) + βN a+(φn)
;

P− =
a1(φn)

a−(φn) + a0(φn) + βN a+(φn)
,

where N = `(φn) is the length of the polygon φn, and βN is estimated by updating it
recursively in the simulation.

This implementation give a sequence φ = 〈φ〉M of M + 1 states sampled from
polygons of knot type K. The analysis of the data sequence depends on a weight W (φ)
of the sequence, which is defined as follows: Define σ(n, n + 1) = −1 if φn → φn+1

via a positive atmospheric move, and σ(n, n + 1) = 1 if φn → φn+1 via a negative
atmospheric move. Then the weight of the sequence φ is given by

W (φ) =
[

a−(φ0) + a0(φ0) + β`(φ0)a+(φ0)
a−(φL) + a0(φL) + β`(φL)a+(φL)

] |φ|−1∏

n=0

β
σ(n,n+1)
`(φn) , (3)

where `(φn) is the length (number of edges) in polygon φn, and where L = |φ| is the
length (number of states) in the sequence φ.

The expected value of the weight of sequences ending in states of length N is
〈W (φ)〉N , and the basic GAS theorem states that∑

|τ |=N 〈W (τ )〉N∑
|ρ|=M 〈W (ρ)〉M

=
pN (K)
pM(K)

, (4)

where τ are all possible sequences of states ending in a state of length |τ | = N , and ρ
are all the possible sequences of states ending in a state of length |ρ| = M .

In this implementation, the FCC and BCC elementary moves described in this
paper will give an approximate enumeration algorithm, and estimates of the number
of polygons of knot type K and length n, pn(K), can be obtained. This approach
produced the data in table 1.

5.2. The BFACF-style implementation of the BCC and FCC elementary moves

The GAS algorithm is by no means a standard simulation method (though the authors
hope that it might become more popular), and so we finish the paper by discussing how
the proposed moves may be implemented in a BFACF-style algorithm, as implemented
in reference [2, 5]; further implementations can be found in references [6, 18].

In general the BFACF algorithm is applied to either a self-avoiding walk or self-
avoiding polygons and so we will discuss the implementation of the BCC and FCC
moves to sample either walks or polygons. Since these moves do not translate the
endpoints of a self-avoiding walk, assume that the walk is rooted at its endpoints.
The simple cubic lattice moves are not irreducible on the state space S0x of walks
with fixed endpoints 0 (the origin) and a lattice site x [8, 16] unless those endpoints
are a distance of at least 2 apart (for details, see reference [8]). We believe that a
similar result will hold for the BCC and FCC moves we have proposed, but we have
not yet investigated this.
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Let ωn be the current walk or polygon (or “state”) of length |ωn| edges. Choose
an edge s from ωn with uniform probability. Enumerate the possible elementary moves
on s; in the BCC lattice there are 12 possible moves while in the FCC there are 4
possible moves. At most one these elementary moves is a negative atmospheric move
(will shorten the polygon or walk), while the remaining moves are positive or neutral.

Choose one of the possible moves so that a particular positive move is done with
probability P+, a particular negative move is carried out with probability P− and a
particular neutral elementary move is performed with probability P0. This produces
a state ω′

n. If this state is self-avoiding then we accept it and set ωn+1 = ω′
n and

otherwise we reject it and set ωn+1 = ωn. It remains to specify the probabilities P+,
P− and P0, and hence a probability is attached to each of these moves. This must be
done differently on each lattice.

Consider a polygon or walk in the BCC lattice and a given edge s. The possible
moves we can perform on s depend on the conformation of the of s and its predecessor
and successor edges. In particular, the moves on a given edge are in one the following
classes:

• All the possible moves on the edge s are positive elementary moves increasing the
length of the walk or polygon; this gives 12 positive elementary moves on s.

• The possible elementary moves include 11 positive and 1 neutral move; denote
this as (11, 1, 0).

• The possible elementary moves include 10 positive and 2 neutral moves; denoted
by (10, 2, 0).

• The possible elementary moves include 9 positive, 2 neutral and 1 negative moves;
denoted by (9, 2, 1).

• Similarly, the following combinations are possible (9, 3, 0), (8, 4, 0), (7, 4, 1) and
(6, 6, 0).

In addition, one has the Boltzmann type relation P+ = e−2βP− relating the
probability of making a positive elementary move, to that of making a negative
elementary move. The cases above sets up a set of bounds on the different probabilities:

12P+ ≤ 1; 11P+ + P0 ≤ 1;
10P+ + 2P0 ≤ 1; 9P+ + 3P0 ≤ 1;
9P+ + 2P0 + P− ≤ 1; 8P+ + 4P0 ≤ 1;
7P+ + 4P0 + P− ≤ 1; 6P+ + 6P0 ≤ 1.

We need to maximise the value of P+ while satisfying these bounds . Since β > 0 and
P+ = e−2βP−, it follows that P+ ≤ P−. If we additionally assume that P+ ≤ P0 ≤ P−,
then the first six inequalities are redundant and one can simply study the last two
(that is, the bottom row). Maximising then gives

P+ =
e−2β

3(1 + 3e−2β)
, P0 =

1 + e−2β

6(1 + 3e−2β)
, P− =

1
3(1 + 3e−2β)

. (5)

Note that P0 = 1
2
(P+ + P−).

The situation is simpler on the FCC lattice due to the simplicity of the elementary
move. When an edge s is selected from the polygon there are only two possibilities:

• the four possible moves on the edge s are positive elementary moves
• three of the possible elementary moves are positive and one is a negative

elementary move.
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This gives the following set of inequalities for the probabilities P+, and P−:

4P+ ≤ 1; 3P+ + P1 ≤ 1.

Since there are no neutral moves in the FCC algorithm we do not require P0 (or we
can simply set P0 = 0). Again we have a Boltzmann factor relating the probabilities,
namely P+ = e−βP− with β > 0. Since P+ ≤ P− the first of these equations is
redundant, and the second gives

P+ =
e−β

1 + 3e−2β
, P− =

1
1 + 3e−β

. (6)

With the above choices of {P+, P0, P−} on either the BCC or FCC lattices, the
algorithm for polygons runs as described below. The algorithm for walks is identical
after the initialisation step.

1. Initialise the algorithm by choosing the first polygon, ω0, to be a polygon of given
length and desired knot type K. Define the parameter β. The length of this
initial polygon is not crucial except that it must be sufficiently long to embed a
knot of type K.

2. Let ωn be the current polygon of length |ωn| edges. With uniform probability,
1/|ωn|, choose an edge s in ωn. Enumerate all possible elementary moves which
can be performed on that edge.

3. With probability P+ perform a (particular) positive atmospheric move, uniformly
selected from amongst all the possible positive moves. Similarly, with respectively
probabilities P0 or P−, perform a particular neutral or negative move. If the sum
of these probabilities is less than 1, then the remaining default move is to leave
the polygon unchanged.

4. Step 3 induces a proposed polygon ω′
n. If the proposed polygon is not self-

avoiding, or if (by default) no elementary move occurred, then ω′
n = ωn.

5. Put ωn+1 = ω′
n to find the next state, and continue at step 2 above.

In this implementation the transition probability of obtaining a polygon τ from
a given polygon ω, Pω→τ , is given by

Pω→τ =





[P+/|ω|], if the elementary move is positive;
[P−/|ω|], if the elementary move is negative;
[P0/|ω|], if the elementary move is neutral,

(7)

since the edge S is selected with a priori probability 1/|ω| before the elementary move
is performed. These transition probabilities satisfy the condition of detailed balance
between states ω and τ given by

|ω|Pω→τ = |τ |Pτ→ω, (8)

with the result that, in the BFACF-style implementation, the algorithm will sample
asymptotically from the distribution

Pβ(ω) =
|ω|eβ|ω|

∑
τ |τ |eβ|τ | =

|ω|eβ|ω|
∑

n n pn(K)eβn
, (9)

where pn(K) is the number of polygons of length n edges and knot type K, since the
algorithm is ergodic on the class of unrooted polygons with fixed knot type K. This
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is not the canonical Boltzmann distribution over the state space of unrooted polygons
with knot type K given by

P ′
β(ω) =

eβ|ω|
∑

τ |τ |eβ|τ | =
eβ|ω|

∑
n n pn(K)eβn

. (10)

Note that denominator is finite when β < − log µK where µK is the growth constant
of polygons of given knot type defined by

lim sup
n→∞

[pn(K)]1/n = µK . (11)

This limit is known to exist for the unknot, but its existence for other knot types is a
long standing open problem.

5.3. Metropolis-style implementation of BCC and FCC elementary moves

A simpler implementation of the BCC and FCC elementary moves uses the Metropolis
algorithm. In this case steps 2 and 3 above are modified as follows: Choose an edge
s with uniform probability 1/|ωn| in the current polygon, and select (uniformly) one
of the 12 possible elementary plaquettes on the edge in the BCC lattice, or one of
4 possible elementary plaquettes on it in the FCC lattice. Then choose one of the
elementary plaquettes uniformly and attempt the elementary move it defines. If the
resulting object is self-avoiding polygon ω′

n of length |ω′
n| edges, then accept it with

probability min{1, eβ(|ω′
n|−|ωn|)} as the next state ωn+1.

Otherwise, put ωn+1 = ωn. In this implementation one can show that the
condition of detailed balance is given by equation by equation (8), and if β < − logµK ,
the algorithm samples asymptotically from the distribution Pβ(s) in equation (9).
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