
Dynamical Systems and Chaos — 620-341 2003 Assignment 1 — Solutions

Assignment 1

1. Consider the dynamical system on the circle S1 defined by:

θn+1 = α θn.

Describe the dynamics of the system for values of α ≥ 0. Please include discussion of:

• fixed points (and their nature — i.e. attracting, repelling or neutral),

• periodic points (and their nature),

• “sensitive dependence on initial conditions”,

and anything else you feel is relevant.

Total = 10 marks

• If α = 0 then θ = 0 is fixed and all other θ are eventually fixed.

1 mark

• If 0 < α < 1 then θn = αnθ0 for all n ∈ Z+. Hence all orbits converge to θ = 0
and θ = 0 is an attracting fixed point.

1 mark

• If α = 1 then all θ ∈ S1 are fixed.

1 mark

• If α > 1 then things are more complicated. For α ∈ N things are as I describe
them below. For more general α one needs to be quite a bit more careful. I was
happy to give full marks for what follows. For those of you that did carefully
investigate non-integer α, I generally gave full marks.

• First find fixed points — this is equivalent to solving:

αθ = θ mod 1

αθ − θ = k ∈ Z

Hence the fixed points are given by θ∗ = k

α−1
. Since θ ∈ [0, 1), it follows that

there are bα − 1c (i.e. the smallest integer less than α − 1) fixed points.
If α = 3.5 (for example) the fixed points are {0, 1/2.5, 2/2.5} = {0, 0.4, 0.8}. Since
θn+1 = αθn+1 the derivative is α at all points, and so all fixed points are repelling.

3 marks
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• Find points of period n:

αnθ = θ mod 1

αnθ − θ = k ∈ Z

Hence the period-n periodic points are given by k

αn
−1

, and so there are bαn − 1c
such points. Since θn+1 = αθn+1 the derivative is α at all points, and so all
periodic points are repelling.

2 marks

• To see “sensitive dependence on initial conditions” pick two points x, y ∈ S1

such that |x0 − y0| = ε > 0. Under n-applications of the mapping |xn − yn| =
|αnx0 − αny0| = αnε. Provided α > 1, we can blow up the initial error, ε
, by repeated iterations, to make it as big as we want — so it can reach a size
comparable with the system size. So two points that start close together will have
orbits that diverge by a large amount after some (finite) number of iterations.

2 marks

/ C � B .

2. Consider the dynamical system on the circle S1 defined by:

θn+1 = 2 θn.

• Prove that the set of all periodic points of this system is dense in the circle S1.

• Also prove that the set of points that are not eventually periodic is also dense in
S1.

Total = 5 marks

• We first have to find all the periodic points. This means we find have to solve

θn = θ0

which is the same as solving:

2nθ = θ mod 1

2nθ − θ = k ∈ Z

θ =
k

2n − 1
.

Since θ ∈ [0, 1), the variable k takes the values {0, 1, . . . , 2n − 1}.
1 mark
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• The points of period n are evenly spaced around the circle, and so they partition
the circle into arcs of length 1/(2n − 1). If we pick any two points on the circle
x 6= y such that |x − y| = ε > 0, then we can pick n sufficiently large so that
1/(2n − 1) < ε. This means that one of the endpoints of the arcs (that partition
the circle) must lie between x and y. Hence there is a periodic point that lies
between x and y. Since x and y were arbitary choices, no matter which two
(distinct) points we pick there will always be a periodic point between them.
Hence periodic points are dense in S1.

2 marks

• We see that the set of periodic points are all rational numbers. If we instead
choose some irrational point, then we can prove that it is not-periodic.

– Pick ϕ ∈ S1 \ Q. If ϕ is periodic or eventually periodic then ∃n, m such that
2nϕ = 2mϕ mod 1.

2nϕ − 2mϕ = k ∈ Z

ϕ =
k

2n − 2m

which contradicts the irrationality of ϕ and so it cannot be periodic nor
eventually periodic.

– We can now proceed by noting that the irrational numbers are dense in the
reals and so by the above construction, the irrational numbers for a dense set
of non-periodic points in S1.

– Or if we want a little more detail (not assuming any density results) — Pick
x < y ∈ S1. By writing (and truncating) the decimal expansion of x and y
we can find two rational numbers, x̄ < ȳ, between x and y. We can construct
an irrational number φ between x̄ and ȳ:

φ = x̄ + (ȳ − x̄)/
√

2

We know (from above) that this point is neither periodic nor eventually pe-
riodic. Since our choices of x and y were arbitary, it follows that the set of
aperiodic points is dense in S1.

2 marks

/ C � B .

3. An experimental investigation of rates of convergence: Using a computer investigate
(numerically) how quickly an orbit is attracted to a fixed point.

Procedure: Each of the functions listed below has a fixed point and the orbit of
x0 = 0.2 is attracted to it. For each function listed below use a computer (I have

Assignment 1 — Solutions 3



Dynamical Systems and Chaos — 620-341 2003 Assignment 1 — Solutions

provided an applet on the subject homepage) to compute the orbit of x0 = 0.2 until it
reaches the fixed point — or within 10−5 of it.

For each function you should make note of:

(a) the location of the fixed point, p,

(b) the derivative at the fixed point, f ′(p),

(c) is the fixed point attracting or neutral,

(d) the number of iterations it took for the orbit of 0.2 to reach (within 10−5) p.

The functions in question are:

(a) f(x) = x2 + 0.25

(b) f(x) = x2

(c) f(x) = x2 − 0.26

(d) f(x) = x2 − 0.75

(e) f(x) = 0.4x(1 − x)

(f) f(x) = x(1 − x)

(g) f(x) = 1.6x(1 − x)

(h) f(x) = 2x(1 − x)

(i) f(x) = 2.4x(1 − x)

(j) f(x) = 3x(1 − x)

(k) f(x) = 0.4 sinx

(l) f(x) = sin x

Results: When you have collected the data, compare each of the functions. Describe
what you observe — in particular the relationship between the speed of convergence
and f ′(p).

Total = 5 marks

• We first construct a table of all the relevant information:
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Function fixed point f ′(x) iterations
x2 + 0.25 0.5 1 99987

x2 0 0 3
x2 − 0.26 -0.214142. . . -0.428285. . . 9
x2 − 0.75 -0.5 -1 lots!

0.4x(1 − x) 0 0.4 11
x(1 − x) 0 1 99985

1.6x(1 − x) 0.375 0.4 13
2x(1 − x) 0.5 0 5

2.4x(1 − x) 0.58333. . . -0.4 11
3x(1 − x) 0.66666. . . -1 lots! (548240689)
0.4 sinx 0 0.4 11

sin x 0 1 lots!

2 marks

• From the table we immediately see that the closer the absolute value of the deriva-
tive is to 1 the longer the system takes to converge to the fixed point.

– If the derivative is 0 then convergence is very fast — less than 10 steps

– If |f ′(x)| < 1 then convergence is fast — around 10 steps.

– If f ′(x) = ±1 then the convergence is slow — but there appears to be a lot
of variation. Both sin(x) and x2 − 0.75 seem to take an eternity to converge
— this is because around x = 0, sin(x) is extremely well approximated by
sin(x) ≈ x. Similarly around x = −0.5, x2 − 0.75 is well approximated by
−1 − x. Whereas the other functions with derivative 1 are less linear.

3 marks
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