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INTEGRATION

Chapter 1

Calculus is built on two operations — differentiation and integration.

• Differentiation — as we saw last term, differentiation allows us to compute and
study the instantaneous rate of change of quantities. At its most basic it allows
us to compute tangent lines and velocities, but it also led us to quite sophisticated
applications including approximation of functions through Taylor polynomials and
optimisation of quantities by studying critical and singular points.

• Integration — at its most basic, allows us to analyse the area under a curve. Of
course, its application and importance extend far beyond areas and it plays a central
role in solving differential equations.

It is not immediately obvious that these two topics are related to each other. However, as
we shall see, they are indeed intimately linked.

1.1Ĳ Definition of the Integral

Arguably the easiest way to introduce integration is by considering the area between the
graph of a given function and the x-axis, between two specific vertical lines — such as is
shown in the figure above. We’ll follow this route by starting with a motivating example.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

§§ A Motivating Example

Let us find the area under the curve y = ex (and above the x–axis) for 0 ď x ď 1. That is,
the area of

 
(x, y)

ˇ̌
0 ď y ď ex, 0 ď x ď 1

(
.

This area is equal to the “definite integral”

Area =

ż 1

0
exdx

Do not worry about this notation or terminology just yet. We discuss it at length below.
In different applications this quantity will have different interpretations — not just area.
For example, if x is time and ex is your velocity at time x, then we’ll see later (in Exam-
ple 1.1.18) that the specified area is the net distance travelled between time 0 and time 1.
After we finish with the example, we’ll mimic it to give a general definition of the integralşb

a f (x)dx.

Example 1.1.1

We wish to compute the area of
 
(x, y)

ˇ̌
0 ď y ď ex, 0 ď x ď 1

(
. We know, from our

experience with ex in differential calculus, that the curve y = ex is not easily written in
terms of other simpler functions, so it is very unlikely that we would be able to write the
area as a combination of simpler geometric objects such as triangles, rectangles or circles.

So rather than trying to write down the area exactly, our strategy is to approximate the
area and then make our approximation more and more precise1. We choose2 to approx-
imate the area as a union of a large number of tall thin (vertical) rectangles. As we take
more and more rectangles we get better and better approximations. Taking the limit as
the number of rectangles goes to infinity gives the exact area3.

As a warm up exercise, we’ll now just use four rectangles. In Example 1.1.2, below,
we’ll consider an arbitrary number of rectangles and then take the limit as the number of
rectangles goes to infinity. So

1 This should remind the reader of the approach taken to compute the slope of a tangent line way way
back at the start of differential calculus.

2 Approximating the area in this way leads to a definition of integration that is called Riemann integra-
tion. This is the most commonly used approach to integration. However we could also approximate the
area by using long thin horizontal strips. This leads to a definition of integration that is called Lebesgue
integration. We will not be covering Lebesgue integration in these notes.

3 If we want to be more careful here, we should construct two approximations, one that is always a little
smaller than the desired area and one that is a little larger. We can then take a limit using the Squeeze
Theorem and arrive at the exact area. More on this later.

2



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• subdivide the interval 0 ď x ď 1 into 4 equal subintervals each of width 1/4, and

• subdivide the area of interest into four corresponding vertical strips, as in the figure
below.

The area we want is exactly the sum of the areas of all four strips.

x

y
y = ex

1
4

1
2

3
4

1

Each of these strips is almost, but not quite, a rectangle. While the bottom and sides are
fine (the sides are at right-angles to the base), the top of the strip is not horizontal. This
is where we must start to approximate. We can replace each strip by a rectangle by just
levelling off the top. But now we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/4. As x
runs from 0 to 1/4, the height y runs from e0 to e1/4. It would be reasonable to choose the
height of the approximating rectangle to be somewhere between e0 and e1/4. Which height

x

y y = ex

1
4

e0
e1/4

should we choose? Well, actually it doesn’t matter. When we eventually take the limit of
infinitely many approximating rectangles all of those different choices give exactly the
same final answer. We’ll say more about this later.

In this example we’ll do two sample computations.

• For the first computation we approximate each slice by a rectangle whose height is
the height of the left hand side of the slice.

– On the first slice, x runs from 0 to 1/4, and the height y runs from e0, on the left
hand side, to e1/4, on the right hand side.

3



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

– So we approximate the first slice by the rectangle of height e0 and width 1/4,
and hence of area 1

4 e0 = 1
4 .

– On the second slice, x runs from 1/4 to 1/2, and the height y runs from e1/4 and
e1/2.

– So we approximate the second slice by the rectangle of height e1/4 and width
1/4, and hence of area 1

4 e1/4.

– And so on.

– All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

[
1 + e1/4 + e1/2 + e3/4

]1
4
= 1.5124

– This particular approximation is called the “left Riemann sum approximation
to

ş1
0 exdx with 4 subintervals”. We’ll explain this terminology later.

– This particular approximation represents the shaded area in the figure on the
left below. Note that, because ex increases as x increases, this approximation is
definitely smaller than the true area.

x

y
y = ex

1
4

2
4

3
4

4
4

x

y y = ex

1
4

2
4

3
4

4
4

• For the second computation we approximate each slice by a rectangle whose height
is the height of the right hand side of the slice.

– On the first slice, x runs from 0 to 1/4, and the height y runs from e0, on the left
hand side, to e1/4, on the right hand side.

– So we approximate the first slice by the rectangle of height e1/4 and width 1/4,
and hence of area 1

4 e1/4.

– On the second slice, x runs from 1/4 to 1/2, and the height y runs from e1/4 and
e1/2.

4



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

– So we approximate the second slice by the rectangle of height e1/2 and width
1/4, and hence of area 1

4 e1/2.

– And so on.

– All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

[
e1/4 + e1/2 + e3/4 + e1]1

4
= 1.9420

– This particular approximation is called the “right Riemann sum approximation
to

ş1
0 exdx with 4 subintervals”.

– This particular approximation represents the shaded area in the figure on the
right above. Note that, because ex increases as x increases, this approximation is
definitely larger than the true area.

Example 1.1.1

Now for the full computation that gives the exact area.

Example 1.1.2

Recall that we wish to compute the area of
 
(x, y)

ˇ̌
0 ď y ď ex, 0 ď x ď 1

(
and that our

strategy is to approximate this area by the area of a union of a large number of very thin
rectangles, and then take the limit as the number of rectangles goes to infinity. In Exam-
ple 1.1.1, we used just four rectangles. Now we’ll consider a general number of rectangles,
that we’ll call n. Then we’ll take the limit n Ñ 8. So

• pick a natural number n and

• subdivide the interval 0 ď x ď 1 into n equal subintervals each of width 1/n, and

• subdivide the area of interest into corresponding thin strips, as in the figure below.

The area we want is exactly the sum of the areas of all of the thin strips.

x

y
y = ex

1
n

2
n

· · · n
n

5



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Each of these strips is almost, but not quite, a rectangle. As in Example 1.1.1, the only
problem is that the top is not horizontal. So we approximate each strip by a rectangle, just
by levelling off the top. Again, we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/n. As x runs
from 0 to 1/n, the height y runs from e0 to e1/n. It would be reasonable to choose the height
of the approximating rectangle to be somewhere between e0 and e1/n. Which height should
we choose?

Well, as we said in Example 1.1.1, it doesn’t matter. We shall shortly take the limit
n Ñ 8 and, in that limit, all of those different choices give exactly the same final answer.
We won’t justify that statement in this example, but there will be an (optional) section
shortly that provides the justification. For this example we just, arbitrarily, choose the
height of each rectangle to be the height of the graph y = ex at the smallest value of x in
the corresponding strip4. The figure on the left below shows the approximating rectangles
when n = 4 and the figure on the right shows the approximating rectangles when n = 8.

x

y
y = ex

1
4

2
4

3
4

4
4

x

y
y = ex

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

Now we compute the approximating area when there are n strips.

• We approximate the leftmost strip by a rectangle of height e0. All of the rectangles
have width 1/n. So the leftmost rectangle has area 1

n e0.

• On strip number 2, x runs from 1
n to 2

n . So the smallest value of x on strip number 2
is 1

n , and we approximate strip number 2 by a rectangle of height e1/n and hence of
area 1

n e1/n.

• And so on.

• On the last strip, x runs from n´1
n to n

n = 1. So the smallest value of x on the last strip
is n´1

n , and we approximate the last strip by a rectangle of height e(n´1)/n and hence
of area 1

n e(n´1)/n.

4 Notice that since ex is an increasing function, this choice of heights means that each of our rectangles is
smaller than the strip it came from.

6



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

The total area of all of the approximating rectangles is

Total approximating area =
1
n

e0 +
1
n

e1/n +
1
n

e2/n +
1
n

e3/n + ¨ ¨ ¨+ 1
n

e(n´1)/n

=
1
n

(
1 + e1/n + e2/n + e3/n + ¨ ¨ ¨+ e(n´1)/n

)

Now the sum in the brackets might look a little intimidating because of all the exponen-
tials, but it actually has a pretty simple structure that can be easily seen if we rename
e1/n = r. Then

• the first term is 1 = r0 and

• the second term is e1/n = r1 and

• the third term is e2/n = r2 and

• the fourth term is e3/n = r3 and

• and so on and

• the last term is e(n´1)/n = rn´1.

So

Total approximating area =
1
n

(
1 + r + r2 + ¨ ¨ ¨+ rn´1

)

The sum in brackets is known as a geometric sum and satisfies a nice simple formula:

1 + r + r2 + ¨ ¨ ¨+ rn´1 =
rn ´ 1
r´ 1

provided r ‰ 1

Equation 1.1.3 (Geometric sum).

The derivation of the above formula is not too difficult. So let’s derive it in a little aside.

§§§ Geometric Sum

Denote the sum as

S = 1 + r + r2 + ¨ ¨ ¨+ rn´1

Notice that if we multiply the whole sum by r we get back almost the same thing:

rS = r
(

1 + r + r2 + ¨ ¨ ¨+ rn´1
)

= r + r2 + r3 + ¨ ¨ ¨+ rn

This right hand side differs from the original sum S only in that

• the right hand side, which starts with “r+ ”, is missing the “1+ ” that S starts with,
and

7



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• the right hand side has an extra “+rn ” at the end that does not appear in S.

That is

rS = S´ 1 + rn

Moving this around a little gives

(r´ 1)S = (rn ´ 1)

S =
rn ´ 1
r´ 1

as required. Notice that the last step in the manipulations only works providing r ‰ 1
(otherwise we are dividing by zero).

§§§ Back to Approximating Areas

Now we can go back to our area approximation armed with the above result about geo-
metric sums.

Total approximating area =
1
n

(
1 + r + r2 + ¨ ¨ ¨+ rn´1

)

=
1
n

rn ´ 1
r´ 1

remember that r = e1/n

=
1
n

en/n ´ 1
e1/n ´ 1

=
1
n

e´ 1
e1/n ´ 1

To get the exact area5 all we need to do is make the approximation better and better
by taking the limit n Ñ 8. The limit will look more familiar if we rename 1/n to X. As n
tends to infinity, X tends to 0, so

Area = lim
nÑ8

1
n

e´ 1
e1/n ´ 1

= (e´ 1) lim
nÑ8

1/n
e1/n ´ 1

= (e´ 1) lim
XÑ0

X
eX ´ 1

(with X = 1/n)

Examining this limit we see that both numerator and denominator tend to zero as X Ñ
0, and so we cannot evaluate this limit by computing the limits of the numerator and
denominator separately and then dividing the results. Despite this, the limit is not too
hard to evaluate; here we give two ways:

5 We haven’t proved that this will give us the exact area, but it should be clear that taking this limit will
give us a lower bound on the area. To complete things rigorously we also need an upper bound and
the squeeze theorem. We do this in the next optional subsection.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• Perhaps the easiest way to compute the limit is by using l’Hôpital’s rule6. Since both
numerator and denominator go to zero, this is a 0/0 indeterminate form. Thus

lim
XÑ0

X
eX ´ 1

= lim
XÑ0

d
dX X

d
dX (e

X ´ 1)
= lim

XÑ0

1
eX = 1

• Another way7 to evaluate the same limit is to observe that it can be massaged into
the form of the limit definition of the derivative. First notice that

lim
XÑ0

X
eX ´ 1

=

[
lim
XÑ0

eX ´ 1
X

]´1

provided this second limit exists and is nonzero. This second limit should look a
little familiar:

lim
XÑ0

eX ´ 1
X

= lim
XÑ0

eX ´ e0

X ´ 0

which is just the definition of the derivative of ex at x = 0. Hence we have

lim
XÑ0

X
eX ´ 1

=

[
lim
XÑ0

eX ´ e0

X ´ 0

]´1

=

[
d
dX

eX
ˇ̌
ˇ
X=0

]´1

=
[
eX ˇ̌

X=0

]´1

= 1

So, after this short aside into limits, we may now conclude that

Area = (e´ 1) lim
XÑ0

X
eX ´ 1

= e´ 1

Example 1.1.2

1.1.1 §§ Optional — A More Rigorous Area Computation

In Example 1.1.1 above we considered the area of the region
 
(x, y)

ˇ̌
0 ď y ď ex, 0 ď

x ď 1
(

. We approximated that area by the area of a union of n thin rectangles. We then
claimed that upon taking the number of rectangles to infinity, the approximation of the

6 If you do not recall L’Hôpital’s rule and indeterminate forms then we recommend you skim over your
differential calculus notes on the topic.

7 Say if you don’t recall l’Hôpital’s rule and have not had time to revise it.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

area became the exact area. However we did not justify the claim. The purpose of this
optional section is to make that calculation rigorous.

The broad set-up is the same. We divide the region up into n vertical strips, each of
width 1/n and we then approximate those strips by rectangles. However rather than an
uncontrolled approximation, we construct two sets of rectangles — one set always smaller
than the original area and one always larger. This then gives us lower and upper bounds
on the area of the region. Finally we make use of the squeeze theorem8 to establish the
result.

• To find our upper and lower bounds we make use of the fact that ex is an increasing
function. We know this because the derivative d

dx ex = ex is always positive. Conse-
quently, the smallest and largest values of ex on the interval a ď x ď b are ea and eb,
respectively.

• In particular, for 0 ď x ď 1/n, ex takes values only between e0 and e1/n. As a result,
the first strip

 
(x, y)

ˇ̌
0 ď x ď 1/n, 0 ď y ď ex (

– contains the rectangle of 0 ď x ď 1/n, 0 ď y ď e0 (the lighter rectangle in the
figure on the left below) and

– is contained in the rectangle 0 ď x ď 1/n, 0 ď y ď e1/n (the largest rectangle in
the figure on the left below).

Hence

1
n

e0 ď Area
 
(x, y)

ˇ̌
0 ď x ď 1/n, 0 ď y ď ex ( ď 1

n
e1/n

x

y y = ex

1
n

e0
e1/n

x

y y = ex

1
n

2
n

· · · n
n

e0
e1/n
e2/n

8 Recall that if we have 3 functions f (x), g(x), h(x) that satisfy f (x) ď g(x) ď h(x) and we know that
limxÑa f (x) = limxÑa h(x) = L exists and is finite, then the squeeze theorem tells us that limxÑa g(x) =
L.

10
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• Similarly, for the second, third, . . . , last strips, as in the figure on the right above,

1
n

e1/n ď Area
 
(x, y)

ˇ̌
1/n ď x ď 2/n, 0 ď y ď ex ( ď 1

n
e2/n

1
n

e2/n ď Area
 
(x, y)

ˇ̌
2/n ď x ď 3/n, 0 ď y ď ex ( ď 1

n
e3/n

...
...

...
1
n

e(n´1)/n ď Area
 
(x, y)

ˇ̌
(n´1)/n ď x ď n/n, 0 ď y ď ex ( ď 1

n
en/n

• Adding these n inequalities together gives

1
n

(
1 + e1/n + ¨ ¨ ¨+ e(n´1)/n

)

ď Area
 
(x, y)

ˇ̌
0 ď x ď 1, 0 ď y ď ex (

ď 1
n

(
e1/n + e2/n + ¨ ¨ ¨+ en/n

)

• We can then recycle equation (1.1.3) with r = e1/n, so that rn =
(
e1/n
)n

= e. Thus we
have

1
n

e´ 1
e1/n ´ 1

ď Area
 
(x, y)

ˇ̌
0 ď x ď 1, 0 ď y ď ex ( ď 1

n
e1/n e´ 1

e1/n ´ 1

where we have used the fact that the upper bound is a simple multiple of the lower
bound:

(
e1/n + e2/n + ¨ ¨ ¨+ en/n

)
= e1/n

(
1 + e1/n + ¨ ¨ ¨+ e(n´1)/n

)
.

• We now apply the squeeze theorem to the above inequalities. In particular, the limits
of the lower and upper bounds are limnÑ8

1
n

e´1
e1/n´1

and limnÑ8
1
n e1/n e´1

e1/n´1
, respec-

tively. As we did near the end of Example 1.1.2, we make these limits look more
familiar by renaming 1/n to X. As n tends to infinity, X tends to 0, so the limits of the
lower and upper bounds are

lim
nÑ8

1
n

e´ 1
e1/n ´ 1

= (e´ 1) lim
X=1/nÑ0

X
eX ´ 1

= e´ 1

(by l’Hôpital’s rule) and

lim
nÑ8

1
n

e1/n e´ 1
e1/n ´ 1

= (e´ 1) lim
X=1/nÑ0

¨ XeX

eX ´ 1

= (e´ 1) lim
XÑ0

eX ¨ lim
X=Ñ0

X
eX ´ 1

= (e´ 1) ¨ 1 ¨ 1
Thus, since the exact area is trapped between the lower and upper bounds, the
squeeze theorem then implies that

Exact area = e´ 1.
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1.1.2 §§ Summation Notation

As you can see from the above example (and the more careful rigorous computation), our
discussion of integration will involve a fair bit of work with sums of quantities. To this
end, we make a quick aside into summation notation. While one can work through the
material below without this notation, proper summation notation is well worth learning,
so we advise the reader to persevere.

Writing out the summands explicitly can become quite impractical — for example, say
we need the sum of the first 11 squares:

1 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112

This becomes tedious. Where the pattern is clear, we will often skip the middle few terms
and instead write

1 + 22 + ¨ ¨ ¨+ 112.

A far more precise way to write this is using Σ (capital-sigma) notation. For example, we
can write the above sum as

11ÿ

k=1

k2

This is read as

The sum from k equals 1 to 11 of k2.

More generally

Let m ď n be integers and let f (x) be a function defined on the integers. Then we
write

nÿ

k=m

f (k)

to mean the sum of f (k) for k from m to n:

f (m) + f (m + 1) + f (m + 2) + ¨ ¨ ¨+ f (n´ 1) + f (n).

Similarly we write

nÿ

i=m

ai

to mean

am + am+1 + am+2 + ¨ ¨ ¨+ an´1 + an

for some set of coefficients tam, . . . , anu.

Notation 1.1.4.

12
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Consider the example

7ÿ

k=3

1
k2 =

1
32 +

1
42 +

1
52 +

1
62 +

1
72

It is important to note that the right hand side of this expression evaluates to a number9; it
does not contain “k”. The summation index k is just a “dummy” variable and it does not
have to be called k. For example

7ÿ

k=3

1
k2 =

7ÿ

i=3

1
i2 =

7ÿ

j=3

1
j2

=
7ÿ

`=3

1
`2

Also the summation index has no meaning outside the sum. For example

k
7ÿ

k=3

1
k2

has no mathematical meaning; it is gibberish.
A sum can be represented using summation notation in many different ways. If you

are unsure as to whether or not two summation notations represent the same sum, just
write out the first few terms and the last couple of terms. For example,

15ÿ

m=3

1
m2 =

m=3hkkikkj
1
32 +

m=4hkkikkj
1
42 +

m=5hkkikkj
1
52 + ¨ ¨ ¨+

m=14hkkikkj
1

142 +

m=15hkkikkj
1

152

16ÿ

m=4

1
(m´ 1)2 =

m=4hkkikkj
1
32 +

m=5hkkikkj
1
42 +

m=6hkkikkj
1
52 + ¨ ¨ ¨+

m=15hkkikkj
1

142 +

m=16hkkikkj
1

152

are equal.
Here is a theorem that gives a few rules for manipulating summation notation.

Let n ě m be integers. Then for all real numbers c and ai, bi, m ď i ď n.

(a)
nř

i=m
cai = c

( nř
i=m

ai

)

(b)
nř

i=m
(ai + bi) =

( nř
i=m

ai

)
+

( nř
i=m

bi

)

(c)
nř

i=m
(ai ´ bi) =

( nř
i=m

ai

)
´
( nř

i=m
bi

)

Theorem 1.1.5 (Arithmetic of Summation Notation).

9 Some careful addition shows it is 46181
176400 .
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Proof. We can prove this theorem by just writing out both sides of each equation, and
observing that they are equal, by the usual laws of arithmetic10. For example, for the first
equation, the left and right hand sides are

nÿ

i=m

cai = cam + cam+1 + ¨ ¨ ¨+ can and c
( nÿ

i=m

ai

)
= c(am + am+1 + ¨ ¨ ¨+ an)

They are equal by the usual distributive law. The “distributive law” is the fancy name for
c(a + b) = ca + cb.

Not many sums can be computed exactly11. Here are some that can. The first few are
used a lot.

(a)
nř

i=0
ari = a 1´rn+1

1´r , for all real numbers a and r ‰ 1 and all integers n ě 0.

(b)
nř

i=1
1 = n, for all integers n ě 1.

(c)
nř

i=1
i = 1

2 n(n + 1), for all integers n ě 1.

(d)
nř

i=1
i2 = 1

6 n(n + 1)(2n + 1), for all integers n ě 1.

(e)
nř

i=1
i3 =

[
1
2 n(n + 1)

]2
, for all integers n ě 1.

Theorem 1.1.6.

10 Since all the sums are finite, this isn’t too hard. More care must be taken when the sums involve an
infinite number of terms. We will examine this in Chapter 3.

11 Of course, any finite sum can be computed exactly — just sum together the terms. What we mean by
“computed exactly” in this context, is that we can rewrite the sum as a simple, and easily evaluated,
formula involving the terminals of the sum. For example

nÿ

k=m

rk =
rn+1 ´ rm

r´ 1
provided r ‰ 1

No matter what finite integers we choose for m and n, we can quickly compute the sum in just a few
arithmetic operations. On the other hand, the sums,

nÿ

k=m

1
k

nÿ

k=m

1
k2

cannot be expressed in such clean formulas (though you can rewrite them quite cleanly using integrals).
To explain more clearly we would need to go into a more detailed and careful discussion that is beyond
the scope of this course.
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§§§ Proof of Theorem 1.1.6 (Optional)

Proof. (a) The first sum is
nÿ

i=0

ari = ar0 + ar1 + ar2 + ¨ ¨ ¨+ arn

which is just the left hand side of equation (1.1.3), with n replaced by n + 1 and then
multiplied by a.

(b) The second sum is just n copies of 1 added together, so of course the sum is n.

(c) The third and fourth sums are discussed in the appendix of the CLP-1 text. In that
discussion certain “tricks” are used to compute the sums with only simple arithmetic.
Those tricks do not easily generalise to the fifth sum.

(c’) Instead of repeating that appendix, we’ll derive the third sum using a trick that gen-
eralises to the fourth and fifth sums (and also to higher powers). The trick uses the
generating function12 S(x):

S(x) = 1 + x + x2 + ¨ ¨ ¨+ xn =
xn+1 ´ 1

x´ 1

Equation 1.1.7.

Notice that this is just the geometric sum given by equation 1.1.3 with n replaced by
n + 1.

Now, consider the limit

lim
xÑ1

S(x) = lim
xÑ1

(
1 + x + x2 + ¨ ¨ ¨+ xn

)
= n + 1 but also

= lim
xÑ1

xn+1 ´ 1
x´ 1

now use l’Hôpital’s rule

= lim
xÑ1

(n + 1)xn

1
= n + 1.

This is not so hard (or useful). But now consider the derivative of S(x):

S1(x) = 1 + 2x + 3x2 + ¨ ¨ ¨+ nxn´1

=
d
dx

[
xn+1 ´ 1

x´ 1

]
use the quotient rule

=
(x´ 1) ¨ (n + 1)xn ´ (xn+1 ´ 1) ¨ 1

(x´ 1)2 now clean it up

=
nxn+1 ´ (n + 1)xn + 1

(x´ 1)2 .

12 Generating functions are frequently used in mathematics to analyse sequences and series, but are be-
yond the scope of the course. The interested reader should take a look at “Generatingfunctionology”
by Herb Wilf. It is an excellent book and is also free to download.
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Hence if we take the limit of the above expression as x Ñ 1 we recover

lim
xÑ1

S1(x) = 1 + 2 + 3 + ¨ ¨ ¨+ n

= lim
xÑ1

nxn+1 ´ (n + 1)xn + 1
(x´ 1)2 now use l’Hôpital’s rule

= lim
xÑ1

n(n + 1)xn ´ n(n + 1)xn´1

2(x´ 1)
l’Hôpital’s rule again

= lim
xÑ1

n2(n + 1)xn´1 ´ n(n + 1)(n´ 1)xn´2

2

=
n2(n + 1)´ n(n´ 1)(n + 1)

2
=

n(n + 1)
2

as required. This computation can be done without l’Hôpital’s rule, but the manipu-
lations required are a fair bit messier.

(d) The derivation of the fourth and fifth sums is similar to, but even more tedious than,
that of the third sum. One takes two or three derivatives of the generating functional.

1.1.3 §§ The Definition of the Definite Integral

In this section we give a definition of the definite integral
ż b

a
f (x)dx generalising the ma-

chinery we used in Example 1.1.1. But first some terminology and a couple of remarks to
better motivate the definition.

The symbol
ż b

a
f (x)dx is read “the definite integral of the function f (x) from

a to b”. The function f (x) is called the integrand of
şb

a f (x)dx and a and b are
called13 the limits of integration. The interval a ď x ď b is called the interval of
integration and is also called the domain of integration.

Notation 1.1.8.

Before we explain more precisely what the definite integral actually is, a few remarks
(actually — a few interpretations) are in order.

• If f (x) ě 0 and a ď b, one interpretation of the symbol
ż b

a
f (x)dx is “the area of the

region
 
(x, y)

ˇ̌
a ď x ď b, 0 ď y ď f (x)

(
”.

13 a and b are also called the bounds of integration.

16



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

x

y

a b

y = f(x)

In this way we can rewrite the area in Example 1.1.1 as the definite integral
ş1

0 exdx.

• This interpretation breaks down when either a ą b or f (x) is not always positive,
but it can be repaired by considering “signed areas”.

• If a ď b, but f (x) is not always positive, one interpretation of
şb

a f (x)dx is “the signed
area between y = f (x) and the x–axis for a ď x ď b”. For “signed area” (which
is also called the “net area”), areas above the x–axis count as positive while areas
below the x–axis count as negative. In the example below, we have the graph of the
function

f (x) =

$
’&
’%

´1 if 1 ď x ď 2
2 if 2 ă x ď 4
0 otherwise

The 2ˆ 2 shaded square above the x–axis has signed area +2ˆ 2 = +4. The 1ˆ 1
shaded square below the x–axis has signed area ´1ˆ 1 = ´1. So, for this f (x),

ż 5

0
f (x)dx = +4´ 1 = 3

x

y

1 2 4

−1

2

signed area= +4

signed area= −1

+

−

• We’ll come back to the case b ă a later.
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We’re now ready to define
şb

a f (x)dx. The definition is a little involved, but essentially
mimics what we did in Example 1.1.1 (which is why we did the example before the defini-
tion). The main differences are that we replace the function ex by a generic function f (x)
and we replace the interval from 0 to 1 by the generic interval14 from a to b.

• We start by selecting any natural number n and subdividing the interval from a to b
into n equal subintervals. Each subinterval has width b´a

n .

• Just as was the case in Example 1.1.1 we will eventually take the limit as n Ñ 8,
which squeezes the width of each subinterval down to zero.

• For each integer 0 ď i ď n, define xi = a + i ¨ b´a
n . Note that this means that x0 = a

and xn = b. It is worth keeping in mind that these numbers xi do depend on n even
though our choice of notation hides this dependence.

• Subinterval number i is xi´1 ď x ď xi. In particular, on the first subinterval, x
runs from x0 = a to x1 = a + b´a

n . On the second subinterval, x runs from x1 to
x2 = a + 2 b´a

n .

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

• On each subinterval we now pick x˚i,n between xi´1 and xi. We then approximate
f (x) on the ith subinterval by the constant function y = f (x˚i,n). We include n in the
subscript to remind ourselves that these numbers depend on n.

Geometrically, we’re approximating the region

 
(x, y)

ˇ̌
x is between xi´1 and xi, and y is between 0 and f (x)

(

by the rectangle

 
(x, y)

ˇ̌
x is between xi´1 and xi, and y is between 0 and f (x˚i,n)

(

14 We’ll eventually allow a and b to be any two real numbers, not even requiring a ă b. But it is easier to
start off assuming a ă b, and that’s what we’ll do.
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In Example 1.1.1 we chose x˚i,n = xi´1 and so we approximated the function ex on
each subinterval by the value it took at the leftmost point in that subinterval.

• So, when there are n subintervals our approximation to the signed area between the
curve y = f (x) and the x–axis, with x running from a to b, is

nÿ

i=1

f (x˚i,n) ¨
b´ a

n

We interpret this as the signed area since the summands f (x˚i,n) ¨ b´a
n need not be

positive.

• Finally we define the definite integral by taking the limit of this sum as n Ñ 8.

Oof! This is quite an involved process, but we can now write down the definition we
need.

Let a and b be two real numbers and let f (x) be a function that is defined for all
x between a and b. Then we define

ż b

a
f (x)dx = lim

nÑ8

nÿ

i=1

f (x˚i,n) ¨
b´ a

n

when the limit exists and takes the same value for all choices of the x˚i,n’s. In this
case, we say that f is integrable on the interval from a to b.

Definition 1.1.9.

Of course, it is not immediately obvious when this limit should exist. Thankfully it is
easier for a function to be “integrable” than it is for it to be “differentiable”.
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Let f (x) be a function on the interval [a, b]. If

• f (x) is continuous on [a, b], or

• f (x) has a finite number of jump discontinuities on [a, b] (and is otherwise
continuous)

then f (x) is integrable on [a, b].

Theorem 1.1.10.

We will not justify this theorem. But a slightly weaker statement is proved in (the
optional) Section 1.1.6. Of course this does not tell us how to actually evaluate any definite
integrals — but we will get to that in time.

Some comments:

• Note that, in Definition 1.1.9, we allow a and b to be any two real numbers. We do
not require that a ă b. That is, even when a ą b, the symbol

şb
a f (x)dx is still defined

by the formula of Definition 1.1.9. We’ll get an interpretation for
şb

a f (x)dx, when
a ą b, later.

• It is important to note that the definite integral
şb

a f (x)dx represents a number, not a
function of x. The integration variable x is another “dummy” variable, just like the
summation index i in

řn
i=m ai (see Section 1.1.2). The integration variable does not

have to be called x. For example

ż b

a
f (x)dx =

ż b

a
f (t)dt =

ż b

a
f (u)du

Just as with summation variables, the integration variable x has no meaning outside
of f (x)dx. For example

x
ż 1

0
exdx and

ż x

0
exdx

are both gibberish.

The sum inside definition 1.1.9 is named after Bernhard Riemann15 who made the first
rigorous definition of the definite integral and so placed integral calculus on rigorous
footings.

15 Bernhard Riemann was a 19th century German mathematician who made extremely important con-
tributions to many different areas of mathematics — far too many to list here. Arguably two of the
most important (after Riemann sums) are now called Riemann surfaces and the Riemann hypothesis
(he didn’t name them after himself).
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The sum inside definition 1.1.9

nÿ

i=1

f (x˚i,n)
b´ a

n

is called a Riemann sum. It is also often written as

nÿ

i=1

f (x˚i )∆x

where ∆x = b´a
n .

• If we choose each x˚i,n = xi´1 = a + (i´ 1) b´a
n to be the left hand end point

of the ith interval, [xi´1, xi], we get the approximation

nÿ

i=1

f
(

a + (i´ 1)
b´ a

n

)
b´ a

n

which is called the “left Riemann sum approximation to
şb

a f (x)dx with n
subintervals”. This is the approximation used in Example 1.1.1.

• In the same way, if we choose x˚i,n = xi = a + i b´a
n we obtain the approxi-

mation

nÿ

i=1

f
(

a + i
b´ a

n

)
b´ a

n

which is called the “right Riemann sum approximation to
şb

a f (x)dx with n
subintervals”. The word “right” signifies that, on each subinterval [xi´1, xi]

we approximate f by its value at the right–hand end–point, xi = a + i b´a
n ,

of the subinterval.

• A third commonly used approximation is

nÿ

i=1

f
(

a + (i´ 1/2)
b´ a

n

)
b´ a

n

which is called the “midpoint Riemann sum approximation to
şb

a f (x)dx
with n subintervals”. The word “midpoint” signifies that, on each subin-
terval [xi´1, xi] we approximate f by its value at the midpoint, xi´1+xi

2 =

a + (i´ 1/2) b´a
n , of the subinterval.

Definition 1.1.11.

In order to compute a definite integral using Riemann sums we need to be able to
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

compute the limit of the sum as the number of summands goes to infinity. This approach is
not always feasible and we will soon arrive at other means of computing definite integrals
based on antiderivatives. However, Riemann sums also provide us with a good means of
approximating definite integrals — if we take n to be a large, but finite, integer, then the
corresponding Riemann sum can be a good approximation of the definite integral. Under
certain circumstances this can be strengthened to give rigorous bounds on the integral.
Let us revisit Example 1.1.1.

Example 1.1.12

Let’s say we are again interested in the integral
ş1

0 exdx. We can follow the same procedure
as we used previously to construct Riemann sum approximations. However since the in-
tegrand f (x) = ex is an increasing function, we can make our approximations into upper
and lower bounds without much extra work.

More precisely, we approximate f (x) on each subinterval xi´1 ď x ď xi

• by its smallest value on the subinterval, namely f (xi´1), when we compute the left
Riemann sum approximation and

• by its largest value on the subinterval, namely f (xi), when we compute the right
Riemann sum approximation.

This is illustrated in the two figures below. The shaded region in the left hand figure is
the left Riemann sum approximation and the shaded region in the right hand figure is the
right Riemann sum approximation.

x

y y = ex

1
n

2
n

· · · n
n

x

y y = ex

1
n

2
n

· · · n
n

We can see that exactly because f (x) is increasing, the left Riemann sum describes an area
smaller than the definite integral while the right Riemann sum gives an area larger16 than
the integral.

When we approximate the integral
ş1

0 exdx using n subintervals, then, on interval num-
ber i,

• x runs from i´1
n to i

n and

16 When a function is decreasing the situation is reversed — the left Riemann sum is always larger than the
integral while the right Riemann sum is smaller than the integral. For more general functions that both
increase and decrease it is perhaps easiest to study each increasing (or decreasing) interval separately.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• y = ex runs from e(i´1)/n, when x is at the left hand end point of the interval, to ei/n,
when x is at the right hand end point of the interval.

Consequently, the left Riemann sum approximation to
ş1

0 exdx is
řn

i=1 e(i´1)/n 1
n and the

right Riemann sum approximation is
řn

i=1 ei/n ¨ 1
n . So

nÿ

i=1

e(i´1)/n 1
n
ď

ż 1

0
exdx ď

nÿ

i=1

ei/n ¨ 1
n

Thus Ln =
řn

i=1 e(i´1)/n 1
n , which for any n can be evaluated by computer, is a lower bound

on the exact value of
ş1

0 exdx and Rn =
řn

i=1 ei/n 1
n , which for any n can also be evaluated by

computer, is an upper bound on the exact value of
ş1

0 exdx. For example, when n = 1000,
Ln = 1.7174 and Rn = 1.7191 (both to four decimal places) so that, again to four decimal
places,

1.7174 ď
ż 1

0
exdx ď 1.7191

Recall that the exact value is e´ 1 = 1.718281828 . . . .
Example 1.1.12

1.1.4 §§ Using Known Areas to Evaluate Integrals

One of the main aims of this course is to build up general machinery for computing def-
inite integrals (as well as interpreting and applying them). We shall start on this soon,
but not quite yet. We have already seen one concrete, if laborious, method for computing
definite integrals — taking limits of Riemann sums as we did in Example 1.1.1. A second
method, which will work for some special integrands, works by interpreting the definite
integral as “signed area”. This approach will work nicely when the area under the curve
decomposes into simple geometric shapes like triangles, rectangles and circles. Here are
some examples of this second method.

Example 1.1.13

The integral
şb

a 1dx (which is also written as just
şb

a dx) is the area of the shaded rectangle
(of width b´ a and height 1) in the figure on the right below. So

ż b

a
dx = (b´ a)ˆ (1) = b´ a

x

y

a b

1

23
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Example 1.1.13

Example 1.1.14

Let b ą 0. The integral
şb

0 xdx is the area of the shaded triangle (of base b and of height b)
in the figure on the right below. So

ż b

0
xdx =

1
2

bˆ b =
b2

2

x

y

b

b

y = x

The integral
ş0
´b xdx is the signed area of the shaded triangle (again of base b and of height

b) in the figure on the right below. So

ż 0

´b
xdx = ´b2

2

x
y−b

−b

y = x

Example 1.1.14

Notice that it is very easy to extend this example to the integral
şb

0 cxdx for any real num-
bers b, c ą 0 and find

ż b

0
cxdx =

c
2

b2.

Example 1.1.15

In this example, we shall evaluate
ş1
´1 (1´ |x|)dx. Recall that

|x| =
#
´x if x ď 0
x if x ě 0

so that

1´ |x| =
#

1 + x if x ď 0
1´ x if x ě 0

To picture the geometric figure whose area the integral represents observe that

• at the left hand end of the domain of integration x = ´1 and the integrand 1´ |x| =
1´ | ´ 1| = 1´ 1 = 0 and
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• as x increases from ´1 towards 0, the integrand 1´ |x| = 1 + x increases linearly,
until

• when x hits 0 the integrand hits 1´ |x| = 1´ |0| = 1 and then
• as x increases from 0, the integrand 1´ |x| = 1´ x decreases linearly, until
• when x hits +1, the right hand end of the domain of integration, the integrand hits

1´ |x| = 1´ |1| = 0.

So the integral
ş1
´1 (1´ |x|)dx is the area of the shaded triangle (of base 2 and of height 1)

in the figure on the right below and

ż 1

´1
(1´ |x|)dx =

1
2
ˆ 2ˆ 1 = 1

x

y

−1 1

1

Example 1.1.15

Example 1.1.16

The integral
ş1

0

?
1´ x2dx has integrand f (x) =

?
1´ x2. So it represents the area under

y =
?

1´ x2 with x running from 0 to 1. But we may rewrite

y =
a

1´ x2 as x2 + y2 = 1, y ě 0

But this is the (implicit) equation for a circle — the extra condition that y ě 0 makes it
the equation for the semi-circle centred at the origin with radius 1 lying on and above the
x-axis. Thus the integral represents the area of the quarter circle of radius 1, as shown in
the figure on the right below. So

ż 1

0

a
1´ x2dx =

1
4

π(1)2 =
π

4

x

y

1

1

Example 1.1.16

This next one is a little trickier and relies on us knowing the symmetries of the sine
function.

Example 1.1.17

The integral
şπ
´π sin xdx is the signed area of the shaded region in the figure on the right
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below. It naturally splits into two regions, one on either side of the y-axis. We don’t know
the formula for the area of either of these regions (yet), however the two regions are very
nearly the same. In fact, the part of the shaded region below the x–axis is exactly the re-
flection, in the x–axis, of the part of the shaded region above the x–axis. So the signed area
of part of the shaded region below the x–axis is the negative of the signed area of part of
the shaded region above the x–axis and

ż π

´π
sin xdx = 0 x

y

−π π

1

−1

Example 1.1.17

1.1.5 §§ Another Interpretation for Definite Integrals

So far, we have only a single interpretation17 for definite integrals — namely areas under
graphs. In the following example, we develop a second interpretation.

Example 1.1.18

Suppose that a particle is moving along the x–axis and suppose that at time t its velocity is
v(t) (with v(t) ą 0 indicating rightward motion and v(t) ă 0 indicating leftward motion).
What is the change in its x–coordinate between time a and time b ą a?

We’ll work this out using a procedure similar to our definition of the integral. First
pick a natural number n and divide the time interval from a to b into n equal subintervals,
each of width b´a

n . We are working our way towards a Riemann sum (as we have done
several times above) and so we will eventually take the limit n Ñ 8.

• The first time interval runs from a to a + b´a
n . If we think of n as some large number,

the width of this interval, b´a
n is very small and over this time interval, the velocity

does not change very much. Hence we can approximate the velocity over the first
subinterval as being essentially constant at its value at the start of the time interval —
v(a). Over the subinterval the x-coordinate changes by velocity times time, namely
v(a) ¨ b´a

n .

• Similarly, the second interval runs from time a + b´a
n to time a + 2 b´a

n . Again, we
can assume that the velocity does not change very much and so we can approximate

17 If this were the only interpretation then integrals would be a nice mathematical curiosity and unlikely
to be the core topic of a large first year mathematics course.
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the velocity as being essentially constant at its value at the start of the subinterval
— namely v

(
a + b´a

n

)
. So during the second subinterval the particle’s x–coordinate

changes by approximately v
(

a + b´a
n

)
b´a

n .

• In general, time subinterval number i runs from a+ (i´ 1) b´a
n to a+ i b´a

n and during
this subinterval the particle’s x–coordinate changes, essentially, by

v
(

a + (i´ 1)
b´ a

n

)
b´ a

n
.

So the net change in x–coordinate from time a to time b is approximately

v(a)
b´ a

n
+ v
(

a +
b´ a

n

) b´ a
n

+ ¨ ¨ ¨+ v
(

a + (i´ 1)
b´ a

n

) b´ a
n

+ ¨ ¨ ¨

+ v
(

a + (n´ 1)
b´ a

n

) b´ a
n

=
nÿ

i=1

v
(

a + (i´ 1)
b´ a

n

) b´ a
n

This exactly the left Riemann sum approximation to the integral of v from a to b with
n subintervals. The limit as n Ñ 8 is exactly the definite integral

şb
a v(t)dt. Following

tradition, we have called the (dummy) integration variable t rather than x to remind us
that it is time that is running from a to b.

The conclusion of the above discussion is that if a particle is moving along the x–axis
and its x–coordinate and velocity at time t are x(t) and v(t), respectively, then, for all
b ą a,

x(b)´ x(a) =
ż b

a
v(t)dt.

Example 1.1.18

1.1.6 §§ Optional — Careful Definition of the Integral

In this optional section we give a more mathematically rigorous definition of the definite

integral
ż b

a
f (x)dx. Some textbooks use a sneakier, but equivalent, definition. The integral

will be defined as the limit of a family of approximations to the area between the graph of
y = f (x) and the x–axis, with x running from a to b. We will then show conditions under
which this limit is guaranteed to exist. We should state up front that these conditions are
more restrictive than is strictly necessary — this is done so as to keep the proof accessible.

The family of approximations needed is slightly more general than that used to define
Riemann sums in the previous sections, though it is quite similar. The main difference is
that we do not require that all the subintervals have the same size.
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• We start by selecting a positive integer n. As was the case previously, this will be the
number of subintervals used in the approximation and eventually we will take the
limit as n Ñ 8.

• Now subdivide the interval from a to b into n subintervals by selecting n + 1 values
of x that obey

a = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn´1 ă xn = b.

The subinterval number i runs from xi´1 to xi. This formulation does not require
the subintervals to have the same size. However we will eventually require that the
widths of the subintervals shrink towards zero as n Ñ 8.

• Then for each subinterval we select a value of x in that interval. That is, for i =
1, 2, . . . , n, choose x˚i satisfying xi´1 ď x˚i ď xi. We will use these values of x to help
approximate f (x) on each subinterval.

• The area between the graph of y = f (x) and the x–axis, with x running from xi´1

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

to xi, i.e. the contribution,
şxi

xi´1
f (x)dx, from interval number i to the integral, is

approximated by the area of a rectangle. The rectangle has width xi´ xi´1 and height
f (x˚i ).
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• Thus the approximation to the integral, using all n subintervals, is
ż b

a
f (x)dx « f (x˚1)[x1 ´ x0] + f (x˚2)[x2 ´ x1] + ¨ ¨ ¨+ f (x˚n)[xn ´ xn´1]

• Of course every different choice of n and x1, x2, . . . , xn´1 and x˚1 , x˚2 , . . . , x˚n gives a
different approximation. So to simplify the discussion that follows, let us denote a
particular choice of all these numbers by P:

P = (n, x1, x2, ¨ ¨ ¨ , xn´1, x˚1 , x˚2 , ¨ ¨ ¨ , x˚n) .

Similarly let us denote the resulting approximation by I(P):

I(P) = f (x˚1)[x1 ´ x0] + f (x˚2)[x2 ´ x1] + ¨ ¨ ¨+ f (x˚n)[xn ´ xn´1]

• We claim that, for any reasonable18 function f (x), if you take any reasonable19 se-
quence of these approximations you always get the exactly the same limiting value.
We define

şb
a f (x)dx to be this limiting value.

• Let’s be more precise. We can take the limit of these approximations in two equiv-
alent ways. Above we did this by taking the number of subintervals n to infinity.
When we did this, the width of all the subintervals went to zero. With the formu-
lation we are now using, simply taking the number of subintervals to be very large
does not imply that they will all shrink in size. We could have one very large subin-
terval and a large number of tiny ones. Thus we take the limit we need by taking the
width of the subintervals to zero. So for any choice P, we define

M(P) = max
 

x1 ´ x0 , x2 ´ x1 , ¨ ¨ ¨ , xn ´ xn´1
(

that is the maximum width of the subintervals used in the approximation deter-
mined by P. By forcing the maximum width to go to zero, the widths of all the
subintervals go to zero.

• We then define the definite integral as the limit
ż b

a
f (x)dx = lim

M(P)Ñ0
I(P).

Of course, one is now left with the question of determining when the above limit exists. A
proof of the very general conditions which guarantee existence of this limit is beyond the
scope of this course, so we instead give a weaker result (with stronger conditions) which
is far easier to prove.

For the rest of this section, assume

• that f (x) is continuous for a ď x ď b,

• that f (x) is differentiable for a ă x ă b, and

18 We’ll be more precise about what “reasonable” means shortly.
19 Again, we’ll explain this “reasonable” shortly
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• that f 1(x) is bounded — ie | f 1(x)| ď F for some constant F.

We will now show that, under these hypotheses, as M(P) approaches zero, I(P) always
approaches the area, A, between the graph of y = f (x) and the x–axis, with x running
from a to b.

These assumptions are chosen to make the argument particularly transparent. With a
little more work one can weaken the hypotheses considerably. We are cheating a little by
implicitly assuming that the area A exists. In fact, one can adjust the argument below to
remove this implicit assumption.

• Consider Aj, the part of the area coming from xj´1 ď x ď xj.

We have approximated this area by f (x˚j )[xj ´ xj´1] (see figure left).

• Let f (xj) and f (xj) be the largest and smallest values20 of f (x) for xj´1 ď x ď xj.
Then the true area is bounded by

f (xj)[xj ´ xj´1] ď Aj ď f (xj)[xj ´ xj´1].

(see figure right).

• Now since f (xj) ď f (x˚j ) ď f (xj), we also know that

f (xj)[xj ´ xj´1] ď f (x˚j )[xj ´ xj´1] ď f (xj)[xj ´ xj´1].

• So both the true area, Aj, and our approximation of that area f (x˚j )[xj ´ xj´1] have
to lie between f (xj)[xj ´ xj´1] and f (xj)[xj ´ xj´1]. Combining these bounds we
have that the difference between the true area and our approximation of that area is
bounded by

ˇ̌
Aj ´ f (x˚j )[xj ´ xj´1]

ˇ̌ ď [ f (xj)´ f (xj)] ¨ [xj ´ xj´1].

(To see this think about the smallest the true area can be and the largest our approx-
imation can be and vice versa.)

20 Here we are using the extreme value theorem — its proof is beyond the scope of this course. The
theorem says that any continuous function on a closed interval must attain a minimum and maximum
at least once. In this situation this implies that for any continuous function f (x), there are xj´1 ď

xj, xj ď xj such that f (xj) ď f (x) ď f (xj) for all xj´1 ď x ď xj.
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• Now since our function, f (x) is differentiable we can apply one of the main theorems
we learned in CLP-1 — the Mean Value Theorem21. The MVT implies that there
exists a c between xj and xj such that

f (xj)´ f (xj) = f 1(c) ¨ [xj ´ xj]

• By the assumption that | f 1(x)| ď F for all x and the fact that xj and xj must both be
between xj´1 and xj

ˇ̌
f (xj)´ f (xj)

ˇ̌ ď F ¨ ˇ̌xj ´ xj
ˇ̌ ď F ¨ [xj ´ xj´1]

Hence the error in this part of our approximation obeys
ˇ̌
Aj ´ f (x˚j )[xj ´ xj´1]

ˇ̌ ď F ¨ [xj ´ xj´1]
2.

• That was just the error in approximating Aj. Now we bound the total error by com-
bining the errors from approximating on all the subintervals. This gives

|A´ I(P)| =
ˇ̌
ˇ̌
ˇ̌

nÿ

j=1

Aj ´
nÿ

j=1

f (x˚j )[xj ´ xj´1]

ˇ̌
ˇ̌
ˇ̌

=

ˇ̌
ˇ̌
ˇ̌

nÿ

j=1

(
Aj ´ f (x˚j )[xj ´ xj´1]

)
ˇ̌
ˇ̌
ˇ̌ triangle inequality

ď
nÿ

j=1

ˇ̌
ˇAj ´ f (x˚j )[xj ´ xj´1]

ˇ̌
ˇ

ď
nÿ

j=1

F ¨ [xj ´ xj´1]
2 from above

Now do something a little sneaky. Replace one of these factors of [xj ´ xj´1] (which
is just the width of the jth subinterval) by the maximum width of the subintervals:

ď
nÿ

j=1

F ¨M(P) ¨ [xj ´ xj´1] F and M(P) are constant

ď F ¨M(P) ¨
nÿ

j=1

[xj ´ xj´1] sum is total width

= F ¨M(P) ¨ (b´ a).

21 Recall that the mean value theorem states that for a function continuous on [a, b] and differentiable on
(a, b), there exists a number c between a and b so that

f 1(c) = f (b)´ f (a)
b´ a

.
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• Since a, b and F are fixed, this tends to zero as the maximum rectangle width M(P)
tends to zero.

Thus, we have proven

Assume that f (x) is continuous for a ď x ď b, and is differentiable for all a ă x ă
b with | f 1(x)| ď F, for some constant F. Then, as the maximum rectangle width
M(P) tends to zero, I(P) always converges to A, the area between the graph of
y = f (x) and the x–axis, with x running from a to b.

Theorem 1.1.19.

1.2Ĳ Basic Properties of the Definite Integral

When we studied limits and derivatives, we developed methods for taking limits or
derivatives of “complicated functions” like f (x) = x2 + sin(x) by understanding how lim-
its and derivatives interact with basic arithmetic operations like addition and subtraction.
This allowed us to reduce the problem into one of of computing derivatives of simpler
functions like x2 and sin(x). Along the way we established simple rules such as

lim
xÑa

( f (x) + g(x)) = lim
xÑa

f (x) + lim
xÑa

g(x) and
d
dx

( f (x) + g(x)) =
d f
dx

+
dg
dx

Some of these rules have very natural analogues for integrals and we discuss them below.
Unfortunately the analogous rules for integrals of products of functions or integrals of
compositions of functions are more complicated than those for limits or derivatives. We
discuss those rules at length in subsequent sections. For now let us consider some of the
simpler rules of the arithmetic of integrals.
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Let a, b and A, B, C be real numbers. Let the functions f (x) and g(x) be integrable
on an interval that contains a and b. Then

(a)
ż b

a
( f (x) + g(x))dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx

(b)
ż b

a
( f (x)´ g(x))dx =

ż b

a
f (x)dx´

ż b

a
g(x)dx

(c)
ż b

a
C f (x)dx = C ¨

ż b

a
f (x)dx

Combining these three rules we have

(d)
ż b

a
(A f (x) + Bg(x))dx = A

ż b

a
f (x)dx + B

ż b

a
g(x)dx

That is, integrals depend linearly on the integrand.

(e)
ż b

a
dx =

ż b

a
1 ¨ dx = b´ a

Theorem 1.2.1 (Arithmetic of Integration).

It is not too hard to prove this result from the definition of the definite integral. Addi-
tionally we only really need to prove (d) and (e) since

• (a) follows from (d) by setting A = B = 1,

• (b) follows from (d) by setting A = 1, B = ´1, and

• (c) follows from (d) by setting A = C, B = 0.

Proof. As noted above, it suffices for us to prove (d) and (e). Since (e) is easier, we will
start with that. It is also a good warm-up for (d).

• The definite integral in (e),
şb

a 1dx, can be interpreted geometrically as the area of the
rectangle with height 1 running from x = a to x = b; this area is clearly b´ a. We
can also prove this formula from the definition of the integral (Definition 1.1.9):

ż b

a
dx = lim

nÑ8

nÿ

i=1

f (x˚i,n)
b´ a

n
by definition

= lim
nÑ8

nÿ

i=1

1
b´ a

n
since f (x) = 1

= lim
nÑ8

(b´ a)
nÿ

i=1

1
n

since a, b are constants

= lim
nÑ8

(b´ a)

= b´ a
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as required.

• To prove (d) let us start by defining h(x) = A f (x) + Bg(x) and then we need to
express the integral of h(x) in terms of those of f (x) and g(x). We use Definition 1.1.9
and some algebraic manipulations22 to arrive at the result.

ż b

a
h(x)dx =

nÿ

i=1

h(x˚i,n) ¨
b´ a

n
by Definition 1.1.9

=
nÿ

i=1

(
A f (x˚i,n) + Bg(x˚i,n)

) ¨ b´ a
n

=
nÿ

i=1

(
A f (x˚i,n) ¨

b´ a
n

+ Bg(x˚i,n) ¨
b´ a

n

)

=

(
nÿ

i=1

A f (x˚i,n) ¨
b´ a

n

)
+

(
nÿ

i=1

Bg(x˚i,n) ¨
b´ a

n

)
by Theorem 1.1.5(b)

= A

(
nÿ

i=1

f (x˚i,n) ¨
b´ a

n

)
+ B

(
nÿ

i=1

g(x˚i,n) ¨
b´ a

n

)
by Theorem 1.1.5(a)

= A
ż b

a
f (x)dx + B

ż b

a
g(x)dx by Definition 1.1.9

as required.

Using this Theorem we can integrate sums, differences and constant multiples of functions
we know how to integrate. For example:

Example 1.2.2

In Example 1.1.1 we saw that
ş1

0 exdx = e´ 1. So

ż 1

0

(
ex + 7

)
dx =

ż 1

0
exdx + 7

ż 1

0
1dx

by Theorem 1.2.1(d) with A = 1, f (x) = ex, B = 7, g(x) = 1
= (e´ 1) + 7ˆ (1´ 0)

by Example 1.1.1 and Theorem 1.2.1(e)
= e + 6

Example 1.2.2

When we gave the formal definition of
şb

a f (x)dx in Definition 1.1.9 we explained that
the integral could be interpreted as the signed area between the curve y = f (x) and the

22 Now is a good time to look back at Theorem 1.1.5.
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x-axis on the interval [a, b]. In order for this interpretation to make sense we required that
a ă b, and though we remarked that the integral makes sense when a ą b we did not
explain any further. Thankfully there is an easy way to express the integral

şb
a f (x)dx in

terms of
şa

b f (x)dx — making it always possible to write an integral so the lower limit of
integration is less than the upper limit of integration. Theorem 1.2.3, below, tell us that, for
example,

ş3
7 exdx = ´ ş7

3 exdx. The same theorem also provides us with two other simple
manipulations of the limits of integration.

Let a, b, c be real numbers. Let the function f (x) be integrable on an interval that
contains a, b and c. Then

(a)
ż a

a
f (x)dx = 0

(b)
ż a

b
f (x)dx = ´

ż b

a
f (x)dx

(c)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx

Theorem 1.2.3 (Arithmetic for the Domain of Integration).

The proof of this statement is not too difficult.

Proof. Let us prove the statements in order.

• Consider the definition of the definite integral

ż b

a
f (x)dx = lim

nÑ8

nÿ

i=1

f (x˚i,n) ¨
b´ a

n

If we now substitute b = a in this expression we have

ż a

a
f (x)dx = lim

nÑ8

nÿ

i=1

f (x˚i,n) ¨
a´ a

nloomoon
=0

= lim
nÑ8

nÿ

i=1

f (x˚i,n) ¨ 0loooomoooon
=0

= lim
nÑ8

0

= 0

as required.

• Consider now the definite integral
şb

a f (x)dx. We will sneak up on the proof by first
examining Riemann sum approximations to both this and

şa
b f (x)dx. The midpoint

35



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

Riemann sum approximation to
şb

a f (x)dx with 4 subintervals (so that each subinter-
val has width b´a

4 ) is
"

f
(

a +
1
2

b´ a
4

)
+ f

(
a +

3
2

b´ a
4

)
+ f

(
a +

5
2

b´ a
4

)
+ f

(
a +

7
2

b´ a
4

)*
¨ b´ a

4

=

"
f
(7

8
a +

1
8

b
)
+ f

(5
8

a +
3
8

b
)
+ f

(3
8

a +
5
8

b
)
+ f

(1
8

a +
7
8

b
)*
¨ b´ a

4

Now we do the same for
şa

b f (x)dx with 4 subintervals. Note that b is now the lower
limit on the integral and a is now the upper limit on the integral. This is likely to
cause confusion when we write out the Riemann sum, so we’ll temporarily rename
b to A and a to B. The midpoint Riemann sum approximation to

şB
A f (x)dx with 4

subintervals is
"

f
(

A +
1
2

B´ A
4

)
+ f

(
A +

3
2

B´ A
4

)
+ f

(
A +

5
2

B´ A
4

)
+ f

(
A +

7
2

B´ A
4

)*
¨ B´ A

4

=

"
f
(7

8
A +

1
8

B
)
+ f

(5
8

A +
3
8

B
)
+ f

(3
8

A +
5
8

B
)
+ f

(1
8

A +
7
8

B
)*
¨ B´ A

4

Now recalling that A = b and B = a, we have that the midpoint Riemann sum
approximation to

şa
b f (x)dx with 4 subintervals is

"
f
(7

8
b +

1
8

a
)
+ f

(5
8

b +
3
8

a
)
+ f

(3
8

b +
5
8

a
)
+ f

(1
8

b +
7
8

a
)*
¨ a´ b

4

Thus we see that the Riemann sums for the two integrals are nearly identical — the
only difference being the factor of b´a

4 versus a´b
4 . Hence the two Riemann sums are

negatives of each other.

The same computation with n subintervals shows that the midpoint Riemann sum
approximations to

şa
b f (x)dx and

şb
a f (x)dx with n subintervals are negatives of each

other. Taking the limit n Ñ 8 gives
şa

b f (x)dx = ´ şb
a f (x)dx.

• Finally consider (c) — we will not give a formal proof of this, but instead will inter-
pret it geometrically. Indeed one can also interpret (a) geometrically. In both cases
these become statements about areas:

ż a

a
f (x)dx = 0 and

ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx

are

Area
 
(x, y)

ˇ̌
a ď x ď a, 0 ď y ď f (x)

(
= 0

and

Area
 
(x, y)

ˇ̌
a ď x ď b, 0 ď y ď f (x)

(
= Area

 
(x, y)

ˇ̌
a ď x ď c, 0 ď y ď f (x)

(

+ Area
 
(x, y)

ˇ̌
c ď x ď b, 0 ď y ď f (x)

(

respectively. Both of these geometric statements are intuitively obvious. See the
figures below.
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x

y
y = f(x)

a
x

y
y = f(x)

a c b

Note that we have assumed that a ď c ď b and that f (x) ě 0. One can remove these
restrictions and also make the proof more formal, but it becomes quite tedious and
less intuitive.

Example 1.2.4

Back in Example 1.1.14 we saw that when b ą 0
şb

0 xdx = b2

2 . We’ll now verify thatşb
0 xdx = b2

2 is still true when b = 0 and also when b ă 0.

• First consider b = 0. Then the statement
şb

0 xdx = b2

2 becomes

ż 0

0
xdx = 0

This is an immediate consequence of Theorem 1.2.3(a).

• Now consider b ă 0. Let us write B = ´b, so that B ą 0. In Example 1.1.14 we saw
that

ż 0

´B
xdx = ´B2

2
.

So we have
ż b

0
xdx =

ż ´B

0
xdx = ´

ż 0

´B
xdx by Theorem 1.2.3(b)

= ´
(
´B2

2

)
by Example 1.1.14

=
B2

2
=

b2

2

We have now shown that
ż b

0
xdx =

b2

2
for all real numbers b
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Example 1.2.4

Example 1.2.5

Applying Theorem 1.2.3 yet again, we have, for all real numbers a and b,

ż b

a
xdx =

ż 0

a
xdx +

ż b

0
xdx by Theorem 1.2.3(c) with c = 0

=

ż b

0
xdx´

ż a

0
xdx by Theorem 1.2.3(b)

=
b2 ´ a2

2
by Example 1.2.4, twice

We can also understand this result geometrically.

• (left) When 0 ă a ă b, the integral represents the area in green which is the difference
of two right–angle triangles — the larger with area b2/2 and the smaller with area
a2/2.

• (centre) When a ă 0 ă b, the integral represents the signed area of the two displayed
triangles. The one above the axis has area b2/2 while the one below has area ´a2/2
(since it is below the axis).

• (right) When a ă b ă 0, the integral represents the signed area in purple of the
difference between the two triangles — the larger with area ´a2/2 and the smaller
with area ´b2/2.

Example 1.2.5

Theorem 1.2.3(c) shows us how we can split an integral over a larger interval into one
over two (or more) smaller intervals. This is particularly useful for dealing with piece-
wise functions, like |x|.
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Example 1.2.6

Using Theorem 1.2.3, we can readily evaluate integrals involving |x|. First, recall that

|x| =
#

x if x ě 0
´x if x ă 0

Now consider (for example)
ş3
´2 |x|dx. Since the integrand changes at x = 0, it makes

sense to split the interval of integration at that point:

ż 3

´2
|x|dx =

ż 0

´2
|x|dx +

ż 3

0
|x|dx by Theorem 1.2.3

=

ż 0

´2
(´x)dx +

ż 3

0
xdx by definition of |x|

= ´
ż 0

´2
xdx +

ż 3

0
xdx by Theorem 1.2.1(c)

= ´(´22/2) + (32/2) = (4 + 9)/2
= 13/2

We can go further still — given a function f (x) we can rewrite the integral of f (|x|) in
terms of the integral of f (x) and f (´x).

ż 1

´1
f
(|x|)dx =

ż 0

´1
f
(|x|)dx +

ż 1

0
f
(|x|)dx

=

ż 0

´1
f (´x)dx +

ż 1

0
f (x)dx

Example 1.2.6

Here is a more concrete example.

Example 1.2.7

Let us compute
ş1
´1

(
1´ |x|)dx again. In Example 1.1.15 we evaluated this integral by in-

terpreting it as the area of a triangle. This time we are going to use only the properties
given in Theorems 1.2.1 and 1.2.3 and the facts that

ż b

a
dx = b´ a and

ż b

a
xdx =

b2 ´ a2

2

That
şb

a dx = b´ a is part (e) of Theorem 1.2.1. We saw that
şb

a xdx = b2´a2

2 in Example 1.2.5.
First we are going to get rid of the absolute value signs by splitting the interval over

which we integrate. Recalling that |x| = x whenever x ě 0 and |x| = ´x whenever x ď 0,

39



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

we split the interval by Theorem 1.2.3(c),

ż 1

´1

(
1´ |x|)dx =

ż 0

´1

(
1´ |x|)dx +

ż 1

0

(
1´ |x|)dx

=

ż 0

´1

(
1´ (´x)

)
dx +

ż 1

0

(
1´ x

)
dx

=

ż 0

´1

(
1 + x

)
dx +

ż 1

0

(
1´ x

)
dx

Now we apply parts (a) and (b) of Theorem 1.2.1, and then

ż 1

´1

[
1´ |x|]dx =

ż 0

´1
1dx +

ż 0

´1
xdx +

ż 1

0
1dx´

ż 1

0
xdx

= [0´ (´1)] +
02 ´ (´1)2

2
+ [1´ 0]´ 12 ´ 02

2
= 1

Example 1.2.7

1.2.1 §§ More Properties of Integration: Even and Odd Functions

Recall23 the following definition

Let f (x) be a function. Then,

• we say that f (x) is even when f (x) = f (´x) for all x, and

• we say that f (x) is odd when f (x) = ´ f (´x) for all x.

Definition 1.2.8.

Of course most functions are neither even nor odd, but many of the standard functions
you know are.

Example 1.2.9 (Even functions)

• Three examples of even functions are f (x) = |x|, f (x) = cos x and f (x) = x2. In
fact, if f (x) is any even power of x, then f (x) is an even function.

23 We haven’t done this in this course, but you should have seen it in your differential calculus course or
perhaps even earlier.
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• The part of the graph y = f (x) with x ď 0, may be constructed by drawing the part
of the graph with x ě 0 (as in the figure on the left below) and then reflecting it in
the y–axis (as in the figure on the right below).

x

y

−π π

1

−1

x

y

−π π

1

−1

• In particular, if f (x) is an even function and a ą 0, then the two sets
 
(x, y)

ˇ̌
0 ď x ď a and y is between 0 and f (x)

(
 
(x, y)

ˇ̌ ´a ď x ď 0 and y is between 0 and f (x)
(

are reflections of each other in the y–axis and so have the same signed area. That is
ż a

0
f (x)dx =

ż 0

´a
f (x)dx

Example 1.2.9

Example 1.2.10 (Odd functions)

• Three examples of odd functions are f (x) = sin x, f (x) = tan x and f (x) = x3. In
fact, if f (x) is any odd power of x, then f (x) is an odd function.

• The part of the graph y = f (x) with x ď 0, may be constructed by drawing the part
of the graph with x ě 0 (like the solid line in the figure on the left below) and then
reflecting it in the y–axis (like the dashed line in the figure on the left below) and
then reflecting the result in the x–axis (i.e. flipping it upside down, like in the figure
on the right, below).

x

y

−π π

1

−1

x

y

−π π

1

−1
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• In particular, if f (x) is an odd function and a ą 0, then the signed areas of the two
sets

 
(x, y)

ˇ̌
0 ď x ď a and y is between 0 and f (x)

(
 
(x, y)

ˇ̌ ´a ď x ď 0 and y is between 0 and f (x)
(

are negatives of each other — to get from the first set to the second set, you flip it
upside down, in addition to reflecting it in the y–axis. That is

ż a

0
f (x)dx = ´

ż 0

´a
f (x)dx

Example 1.2.10

We can exploit the symmetries noted in the examples above, namely
ż a

0
f (x)dx =

ż 0

´a
f (x)dx for f even

ż a

0
f (x)dx = ´

ż 0

´a
f (x)dx for f odd

together with Theorem 1.2.3
ż a

´a
f (x)dx =

ż 0

´a
f (x)dx +

ż a

0
f (x)dx

in order to simplify the integration of even and odd functions over intervals of the form
[´a, a].

Let a ą 0.

(a) If f (x) is an even function, then
ż a

´a
f (x)dx = 2

ż a

0
f (x)dx

(b) If f (x) is an odd function, then
ż a

´a
f (x)dx = 0

Theorem 1.2.11 (Even and Odd).

Proof. For any function
ż a

´a
f (x)dx =

ż a

0
f (x)dx +

ż 0

´a
f (x)dx

When f is even, the two terms on the right hand side are equal. When f is odd, the two
terms on the right hand side are negatives of each other.
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1.2.2 §§ Optional — More Properties of Integration: Inequalities for Integrals

We are still unable to integrate many functions, however with a little work we can infer
bounds on integrals from bounds on their integrands.

Let a ď b be real numbers and let the functions f (x) and g(x) be integrable on
the interval a ď x ď b.

(a) If f (x) ě 0 for all a ď x ď b, then

ż b

a
f (x)dx ě 0

(b) If f (x) ď g(x) for all a ď x ď b, then

ż b

a
f (x)dx ď

ż b

a
g(x)dx

(c) If there are constants m and M such that m ď f (x) ď M for all a ď x ď b,
then

m(b´ a) ď
ż b

a
f (x)dx ď M(b´ a)

(d) We have
ˇ̌
ˇ̌
ż b

a
f (x)dx

ˇ̌
ˇ̌ ď

ż b

a
| f (x)|dx

Theorem 1.2.12 (Inequalities for Integrals).

Proof. (a) By interpreting the integral as the signed area, this statement simply says that
if the curve y = f (x) lies above the x–axis and a ď b, then the signed area of the set 
(x, y)

ˇ̌
a ď x ď b, 0 ď y ď f (x)

(
is at least zero. This is quite clear. Alternatively,

we could argue more algebraically from Definition 1.1.9. We observe that when we
define

şb
a f (x)dx via Riemann sums, every summand, f (x˚i,n)

b´a
n ě 0. Thus the whole

sum is nonnegative and consequently, so is the limit, and thus so is the integral.

(b) We are assuming that g(x)´ f (x) ě 0, so part (a) gives

ż b

a

[
g(x)´ f (x)

]
dx ě 0 ùñ

ż b

a
g(x)dx´

ż b

a
f (x)dx ě 0

ùñ
ż b

a
f (x)dx ď

ż b

a
g(x)dx
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(c) Applying part (b) with g(x) = M for all a ď x ď b gives

ż b

a
f (x)dx ď

ż b

a
M dx = M(b´ a)

Similarly, viewing m as a (constant) function, and applying part (b) gives

m ď f (x) ùñ

=m(b´a)hkkkikkkj
ż b

a
m dx ď

ż b

a
f (x)dx

(d) For any x, | f (x)| is either f (x) or ´ f (x) (depending on whether f (x) is positive or
negative), so we certainly have

f (x) ď | f (x)| and ´ f (x) ď | f (x)|
Applying part (c) to each of those inequalities gives

ż b

a
f (x)dx ď

ż b

a
| f (x)|dx and ´

ż b

a
f (x)dx ď

ż b

a
| f (x)|dx

Now
ˇ̌
ˇ
şb

a f (x)dx
ˇ̌
ˇ is either equal to

şb
a f (x)dx or ´ şb

a f (x)dx (depending on whether
the integral is positive or negative). In either case we can apply the above two inequal-
ities to get the same result, namely

ˇ̌
ˇ̌
ˇ

ż b

a
f (x)dx

ˇ̌
ˇ̌
ˇ ď

ż b

a
| f (x)|dx.

Example 1.2.13
(şπ/3

0
?

cos xdx
)

Consider the integral

ż π/3

0

?
cos xdx

This is not so easy to compute exactly24, but we can bound it quite quickly.
For x between 0 and π

3 , the function cos x takes values25 between 1 and 1
2 . Thus the

function
?

cos x takes values between 1 and 1?
2
. That is

1?
2
ď ?cos x ď 1 for 0 ď x ď π

3
.

24 It is not too hard to use Riemann sums and a computer to evaluate it numerically: 0.948025319 . . . .
25 You know the graphs of sine and cosine, so you should be able to work this out without too much

difficulty.
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Consequently, by Theorem 1.2.12(c) with a = 0, b = π
3 , m = 1?

2
and M = 1,

π

3
?

2
ď
ż π/3

0

?
cos xdx ď π

3

Plugging these expressions into a calculator gives us

0.7404804898 ď
ż π/3

0

?
cos xdx ď 1.047197551

Example 1.2.13

1.3Ĳ The Fundamental Theorem of Calculus

We have spent quite a few pages (and lectures) talking about definite integrals, what they
are (Definition 1.1.9), when they exist (Theorem 1.1.10), how to compute some special
cases (Section 1.1.4), some ways to manipulate them (Theorem 1.2.1 and 1.2.3) and how to
bound them (Theorem 1.2.12). Conspicuously missing from all of this has been a discus-
sion of how to compute them in general. It is high time we rectified that.

The single most important tool used to evaluate integrals is called “the fundamental
theorem of calculus”. Its grand name is justified — it links the two branches of calculus by
connecting derivatives to integrals. In so doing it also tells us how to compute integrals.
Very roughly speaking the derivative of an integral is the original function. This fact
allows us to compute integrals using antiderivatives26. Of course “very rough” is not
enough — let’s be precise.

Let a ă b and let f (x) be a function which is defined and continuous on [a, b].

Part 1: Let F(x) =
ż x

a
f (t)dt for any x P [a, b]. Then the function F(x) is differen-

tiable and further

F1(x) = f (x)

Part 2: Let G(x) be any function which is defined and continuous on [a, b]. Fur-
ther let G(x) be differentiable with G1(x) = f (x) for all a ă x ă b. Then

ż b

a
f (x)dx = G(b)´ G(a) or equivalently

ż b

a
G1(x)dx = G(b)´ G(a)

Theorem 1.3.1 (Fundamental Theorem of Calculus).

26 You learned these near the end of your differential calculus course. Now is a good time to revise — but
we’ll go over them here since they are so important in what follows.
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Before we prove this theorem and look at a bunch of examples of its application, it
is important that we recall one definition from differential calculus — antiderivatives. If
F1(x) = f (x) on some interval, then F(x) is called an antiderivative of f (x) on that inter-
val. So Part 2 of the fundamental theorem of calculus tells us how to evaluate the definite
integral of f (x) in terms of any of its antiderivatives — if G(x) is any antiderivative of
f (x) then

ż b

a
f (x)dx = G(b)´ G(a)

The form
şb

a G1(x)dx = G(b)´G(a) of the fundamental theorem relates the rate of change
of G(x) over the interval a ď x ď b to the net change of G between x = a and x = b. For
that reason, it is sometimes called the “net change theorem”.

We’ll start with a simple example. Then we’ll see why the fundamental theorem is true
and then we’ll do many more, and more involved, examples.

Example 1.3.2 (A first example)

Consider the integral
şb

a xdx which we have explored previously in Example 1.2.5.

• The integrand is f (x) = x.

• We can readily verify that G(x) = x2

2 satisfies G1(x) = f (x) and so is an antideriva-
tive of the integrand.

• Part 2 of Theorem 1.3.1 then tells us that
ż b

a
f (x)dx = G(b)´ G(a)
ż b

a
xdx =

b2

2
´ a2

2

which is precisely the result we obtained (with more work) in Example 1.2.5.

Example 1.3.2

We do not give completely rigorous proofs of the two parts of the theorem — that is
not really needed for this course. We just give the main ideas of the proofs so that you can
understand why the theorem is true.

Part 1. We wish to show that if

F(x) =
ż x

a
f (t)dt then F1(x) = f (x)

• Assume that F is the above integral and then consider F1(x). By definition

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h
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• To understand this limit, we interpret the terms F(x), F(x + h) as signed areas. To
simplify this further, let’s only consider the case that f is always nonnegative and
that h ą 0. These restrictions are not hard to remove, but the proof ideas are a bit
cleaner if we keep them in place. Then we have

F(x + h) = the area of the region
 
(t, y)

ˇ̌
a ď t ď x + h, 0 ď y ď f (t)

(

F(x) = the area of the region
 
(t, y)

ˇ̌
a ď t ď x, 0 ď y ď f (t)

(

• Then the numerator

F(x + h)´ F(x) = the area of the region
 
(t, y)

ˇ̌
x ď t ď x + h, 0 ď y ď f (t)

(

This is just the more darkly shaded region in the figure

xa x+ h

y = f(t)

t

• We will be taking the limit h Ñ 0. So suppose that h is very small. Then, as t runs
from x to x + h, f (t) runs only over a very narrow range of values27, all close to f (x).

• So the darkly shaded region is almost a rectangle of width h and height f (x) and so
has an area which is very close to f (x)h. Thus F(x+h)´F(x)

h is very close to f (x).

• In the limit h Ñ 0, F(x+h)´F(x)
h becomes exactly f (x), which is precisely what we

want.

Part 2. We want to show that
şb

a f (t)dt = G(b)´ G(a). To do this we exploit the fact that
the derivative of a constant is zero.

• Let

H(x) =
ż x

a
f (t)dt´ G(x) + G(a)

Then the result we wish to prove is that H(b) = 0. We will do this by showing that
H(x) = 0 for all x between a and b.

27 Notice that if f were discontinuous, then this might be false.

47



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

• We first show that H(x) is constant by computing its derivative:

H1(x) =
d
dx

ż x

a
f (t)dt´ d

dx
(G(x)) +

d
dx

(G(a))

Since G(a) is a constant, its derivative is 0 and by assumption the derivative of G(x)
is just f (x), so

=
d
dx

ż x

a
f (t)dt´ f (x)

Now Part 1 of the theorem tells us that this derivative is just f (x), so

= f (x)´ f (x) = 0

Hence H is constant.

• To determine which constant we just compute H(a):

H(a) =
ż a

a
f (t)dt´ G(a) + G(a)

=

ż a

a
f (t)dt by Theorem 1.2.3(a)

= 0

as required.

The simple example we did above (Example 1.3.2), demonstrates the application of
part 2 of the fundamental theorem of calculus. Before we do more examples (and there
will be many more over the coming sections) we should do some examples illustrating
the use of part 1 of the fundamental theorem of calculus. Then we’ll move on to part 2.

Example 1.3.3
(

d
dx

şx
0 tdt

)

Consider the integral
şx

0 t dt. We know how to evaluate this — it is just Example 1.3.2 with
a = 0, b = x. So we have two ways to compute the derivative. We can evaluate the in-
tegral and then take the derivative, or we can apply Part 1 of the fundamental theorem.
We’ll do both, and check that the two answers are the same.

First, Example 1.3.2 gives

F(x) =
ż x

0
t dt =

x2

2

So of course F1(x) = x. Second, Part 1 of the fundamental theorem of calculus tells us that
the derivative of F(x) is just the integrand. That is, Part 1 of the fundamental theorem of
calculus also gives F1(x) = x.

Example 1.3.3
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In the previous example we were able to evaluate the integral explicitly, so we did not
need the fundamental theorem to determine its derivative. Here is an example that really
does require the use of the fundamental theorem.

Example 1.3.4
(

d
dx

şx
0 e´t2

dt
)

We would like to find d
dx

şx
0 e´t2

dt. In the previous example, we were able to compute the
corresponding derivative in two ways — we could explicitly compute the integral and
then differentiate the result, or we could apply part 1 of the fundamental theorem of cal-
culus. In this example we do not know the integral explicitly. Indeed it is not possible
to express28 the integral

şx
0 e´t2

dt as a finite combination of standard functions such as
polynomials, exponentials, trigonometric functions and so on.

Despite this, we can find its derivative by just applying the first part of the fundamen-
tal theorem of calculus with f (t) = e´t2

and a = 0. That gives

d
dx

ż x

0
e´t2

dt =
d
dx

ż x

0
f (t)dt

= f (x) = e´x2

Example 1.3.4

Let us ratchet up the complexity of the previous example — we can make the limits
of the integral more complicated functions. So consider the previous example with the
upper limit x replaced by x2:

Example 1.3.5
(

d
dx

şx2

0 e´t2
dt
)

Consider the integral
şx2

0 e´t2
dt. We would like to compute its derivative with respect to x

using part 1 of the fundamental theorem of calculus.
The fundamental theorem tells us how to compute the derivative of functions of the

form
şx

a f (t)dt but the integral at hand is not of the specified form because the upper limit
we have is x2, rather than x, — so more care is required. Thankfully we can deal with this
obstacle with only a little extra work. The trick is to define an auxiliary function by simply
changing the upper limit to x. That is, define

E(x) =
ż x

0
e´t2

dt

28 The integral
şx

0 e´t2
dt is closely related to the “error function” which is an extremely important function

in mathematics. While we cannot express this integral (or the error function) as a finite combination of
polynomials, exponentials etc, we can express it as an infinite series

ż x

0
e´t2

dt = x´
x3

3 ¨ 1
+

x5

5 ¨ 2
´

x7

7 ¨ 3!
+

x9

9 ¨ 4!
+ ¨ ¨ ¨+ (´1)k x2k+1

(2k + 1) ¨ k!
+ ¨ ¨ ¨

But more on this in Chapter 3.
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Then the integral we want to work with is

E(x2) =

ż x2

0
e´t2

dt

The derivative E1(x) can be found via part 1 of the fundamental theorem of calculus (as
we did in Example 1.3.4) and is E1(x) = e´x2

. We can then use this fact with the chain rule
to compute the derivative we need:

d
dx

ż x2

0
e´t2

dt =
d
dx

E(x2) use the chain rule

= 2xE1(x2)

= 2xe´x4

Example 1.3.5

What if both limits of integration are functions of x? We can still make this work, but
we have to split the integral using Theorem 1.2.3.

Example 1.3.6
(

d
dx

şx2

x e´t2
dt
)

Consider the integral

ż x2

x
e´t2

dt

As was the case in the previous example, we have to do a little pre-processing before we
can apply the fundamental theorem.

This time (by design), not only is the upper limit of integration x2 rather than x, but the
lower limit of integration also depends on x — this is different from the integral

şx
a f (t)dt

in the fundamental theorem where the lower limit of integration is a constant.
Fortunately we can use the basic properties of integrals (Theorem 1.2.3(b) and (c)) to

split
şx2

x e´t2
dt into pieces whose derivatives we already know.

ż x2

x
e´t2

dt =
ż 0

x
e´t2

dt +
ż x2

0
e´t2

dt by Theorem 1.2.3(c)

= ´
ż x

0
e´t2

dt +
ż x2

0
e´t2

dt by Theorem 1.2.3(b)

With this pre-processing, both integrals are of the right form. Using what we have learned
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in the previous two examples,

d
dx

ż x2

x
e´t2

dt =
d
dx

(
´
ż x

0
e´t2

dt +
ż x2

0
e´t2

dt

)

= ´ d
dx

ż x

0
e´t2

dt +
d
dx

ż x2

0
e´t2

dt

= ´e´x2
+ 2xe´x4

Example 1.3.6

Before we start to work with part 2 of the fundamental theorem, we need a little ter-
minology and notation. First some terminology — you may have seen this definition in
your differential calculus course.

Let f (x) and F(x) be functions. If F1(x) = f (x) on an interval, then we say that
F(x) is an antiderivative of f (x) on that interval.

Definition 1.3.7 (Antiderivatives).

As we saw above, an antiderivative of f (x) = x is F(x) = x2/2 — we can easily verify
this by differentiation. Notice that x2/2 + 3 is also an antiderivative of x, as is x2/2 + C
for any constant C. This observation gives us the following simple lemma.

Let f (x) be a function and let F(x) be an antiderivative of f (x). Then F(x) + C
is also an antiderivative for any constant C. Further, every antiderivative of f (x)
must be of this form.

Lemma 1.3.8.

Proof. There are two parts to the lemma and we prove each in turn.

• Let F(x) be an antiderivative of f (x) and let C be some constant. Then

d
dx

(F(x) + C) =
d
dx

(F(x)) +
d
dx

(C)

= f (x) + 0

since the derivative of a constant is zero, and by definition the derivative of F(x) is
just f (x). Thus F(x) + C is also an antiderivative of f (x).

• Now let F(x) and G(x) both be antiderivatives of f (x) — we will show that G(x) =
F(x) + C for some constant C. To do this let H(x) = G(x)´ F(x). Then

d
dx

H(x) =
d
dx

(G(x)´ F(x)) =
d
dx

G(x)´ d
dx

F(x) = f (x)´ f (x) = 0
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Since the derivative of H(x) is zero, H(x) must be a constant function29. Thus
H(x) = G(x)´ F(x) = C for some constant C and the result follows.

Based on the above lemma we have the following definition.

The “indefinite integral of f (x)” is denoted by
ş

f (x)dx and should be regarded
as the general antiderivative of f (x). In particular, if F(x) is an antiderivative of
f (x) then

ż
f (x)dx = F(x) + C

where the C is an arbitrary constant. In this context, the constant C is also often
called a “constant of integration”.

Definition 1.3.9.

Now we just need a tiny bit more notation.

The symbol

ż
f (x)dx

ˇ̌
ˇ̌
b

a

denotes the change in an antiderivative of f (x) from x = a to x = b. More
precisely, let F(x) be any antiderivative of f (x). Then

ż
f (x)dx

ˇ̌
ˇ̌
b

a
= F(x)|ba = F(b)´ F(a)

Notation 1.3.10.

Notice that this notation allows us to write part 2 of the fundamental theorem as

ż b

a
f (x)dx =

ż
f (x)dx

ˇ̌
ˇ̌
b

a

= F(x)|ba = F(b)´ F(a)

29 This follows from the Mean Value Theorem. Indeed, fix any number x0. Then, for each x ‰ x0, the MVT
gives us a number c between x0 and x with

H(x)´ H(x0) = H1(c) (x´ x0) = 0

since the derivative of H is zero everywhere. Thus H(x) = H(x0) for all x and H(x) is a constant
function.
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Some texts also use an equivalent notation using square brackets:
ż b

a
f (x)dx =

[
F(x)

]b

a
= F(b)´ F(a).

You should be familiar with both notations.
We’ll soon develop some strategies for computing more complicated integrals. But for

now, we’ll try a few integrals that are simple enough that we can just guess the answer.
Of course, any antiderivative that we can guess we can also check — simply differentiate
the guess and verify you get back to the original function:

d
dx

ż
f (x)dx = f (x).

We do these examples in some detail to help us become comfortable finding indefinite
integrals.

Example 1.3.11

Compute the definite integral
ş2

1 xdx.

Solution. We have already seen, in Example 1.2.5, that
ş2

1 xdx = 22´12

2 = 3
2 . We shall now

rederive that result using the fundamental theorem of calculus.

• The main difficulty in this approach is finding the indefinite integral (an antideriva-
tive) of x. That is, we need to find a function F(x) whose derivative is x. So think
back to all the derivatives you computed last term30 and try to remember a function
whose derivative was something like x.

• This shouldn’t be too hard — we recall that the derivatives of polynomials are poly-
nomials. More precisely, we know that

d
dx

xn = nxn´1

So if we want to end up with just x = x1, we need to take n = 2. However this gives
us

d
dx

x2 = 2x

• This is pretty close to what we want except for the factor of 2. Since this is a constant
we can just divide both sides by 2 to obtain:

1
2
¨ d

dx
x2 =

1
2
¨ 2x which becomes

¨ d
dx

x2

2
= x

which is exactly what we need. It tells us that x2/2 is an antiderivative of x.

30 Of course, this assumes that you did your differential calculus course last term. If you did that course at
a different time then please think back to that point in time. If it is long enough ago that you don’t quite
remember when it was, then you should probably do some revision of derivatives of simple functions
before proceeding further.
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• Once one has an antiderivative, it is easy to compute the indefinite integral
ż

xdx =
1
2

x2 + C

as well as the definite integral:

ż 2

1
xdx =

1
2

x2
ˇ̌
ˇ̌
2

1
since x2/2 is the antiderivative of x

=
1
2

22 ´ 1
2

12 =
3
2

Example 1.3.11

While the previous example could be computed using signed areas, the following example
would be very difficult to compute without using the fundamental theorem of calculus.

Example 1.3.12

Compute
şπ/2

0 sin xdx.

Solution.

• Once again, the crux of the solution is guessing the antiderivative of sin x — that is
finding a function whose derivative is sin x.

• The standard derivative that comes closest to sin x is

d
dx

cos x = ´ sin x

which is the derivative we want, multiplied by a factor of ´1.

• Just as we did in the previous example, we multiply this equation by a constant to
remove this unwanted factor:

(´1) ¨ d
dx

cos x = (´1) ¨ (´ sin x) giving us

d
dx
(´ cos x

)
= sin x

This tells us that ´ cos x is an antiderivative of sin x.

• Now it is straightforward to compute the integral:

ż π/2

0
sin xdx = ´ cos x|π/2

0 since ´ cos x is the antiderivative of sin x

= ´ cos
π

2
+ cos 0

= 0 + 1 = 1
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Example 1.3.12

Example 1.3.13

Find
ş2

1
1
x dx.

Solution.

• Once again, the crux of the solution is guessing a function whose derivative is 1
x .

Our standard way to differentiate powers of x, namely

d
dx

xn = nxn´1,

doesn’t work in this case — since it would require us to pick n = 0 and this would
give

d
dx

x0 =
d
dx

1 = 0.

• Fortunately, we also know31 that

d
dx

log x =
1
x

which is exactly the derivative we want.

• We’re now ready to compute the prescribed integral.
ż 2

1

1
x

dx = log x|21 since log x is an antiderivative of 1/x

= log 2´ log 1 since log 1 = 0
= log 2

Example 1.3.13

Example 1.3.14

Find
ş´1
´2

1
x dx.

Solution.

31 Recall that in most mathematics courses (especially this one) we use log x without any indicated base
to denote the natural logarithm — the logarithm base e. Many widely used computer languages, like
Java, C, Python, MATLAB, ¨ ¨ ¨ , use log(x) to denote the logarithm base e too. But many texts also use
ln x to denote the natural logarithm

log x = loge x = ln x.

The reader should be comfortable with all three notations for this function. They should also be aware
that in different contexts — such as in chemistry or physics — it is common to use log x to denote the
logarithm base 10, while in computer science often log x denotes the logarithm base 2. Context is key.
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• As we saw in the last example,

d
dx

log x =
1
x

and if we naively use this here, then we will obtain
ż ´1

´2

1
x

dx = log(´1)´ log(´2)

which makes no sense since the logarithm is only defined for positive numbers32.

• We can work around this problem using a slight variation of the logarithm — log |x|.
– When x ą 0, we know that |x| = x and so we have

log |x| = log x differentiating gives us
d
dx

log |x| = d
dx

log x =
1
x

.

– When x ă 0 we have that |x| = ´x and so

log |x| = log(´x) differentiating with the chain rule gives
d
dx

log |x| = d
dx

log(´x)

=
1

(´x)
¨ (´1) =

1
x

– Indeed, more generally we should write the indefinite integral of 1/x as
ż

1
x

dx = log |x|+ C

which is valid for all positive and negative x. It is, however, undefined at x = 0.

• We’re now ready to compute the prescribed integral.

ż ´1

´2

1
x

dx = log |x|
ˇ̌
ˇ̌
´1

´2
since log |x| is an antiderivative of 1/x

= log | ´ 1| ´ log | ´ 2| = log 1´ log 2
= ´ log 2 = log 1/2.

Example 1.3.14

This next example raises a nasty issue that requires a little care. We know that the
function 1/x is not defined at x = 0 — so can we integrate over an interval that contains

32 This is not entirely true — one can extend the definition of the logarithm to negative numbers, but to
do so one needs to understand complex numbers which is a topic beyond the scope of this course.
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x = 0 and still obtain an answer that makes sense? More generally can we integrate a
function over an interval on which that function has discontinuities?

Example 1.3.15

Find
ş1
´1

1
x2 dx.

Solution. Beware that this is a particularly nasty example, which illustrates a booby trap
hidden in the fundamental theorem of calculus. The booby trap explodes when the theo-
rem is applied sloppily.

• The sloppy solution starts, as our previous examples have, by finding an antideriva-
tive of the integrand. In this case we know that

d
dx

1
x
= ´ 1

x2

which means that ´x´1 is an antiderivative of x´2.

• This suggests (if we proceed naively) that
ż 1

´1
x´2dx = ´1

x

ˇ̌
ˇ̌
1

´1
since ´1/x is an antiderivative of 1/x2

= ´1
1
´
(
´ 1
´1

)

= ´2

Unfortunately,

• At this point we should really start to be concerned. This answer cannot be correct.
Our integrand, being a square, is positive everywhere. So our integral represents the
area of a region above the x–axis and must be positive.

• So what has gone wrong? The flaw in the computation is that the fundamental
theorem of calculus, which says that

if F1(x) = f (x) then
ż b

a
f (x)dx = F(b)´ F(a),

is only applicable when F1(x) exists and equals f (x) for all x between a and b.

• In this case F1(x) = 1
x2 does not exist for x = 0. So we cannot apply the fundamental

theorem of calculus as we tried to above.

An integral, like
ş1
´1

1
x2 dx, whose integrand is undefined somewhere in the domain of

integration is called improper. We’ll give a more thorough treatment of improper integrals
later in the text. For now, we’ll just say that the correct way to define (and evaluate)
improper integrals is as a limit of well–defined approximating integrals. We shall later see
that, not only is

ş1
´1

1
x2 dx not negative, it is infinite.

Example 1.3.15
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The above examples have illustrated how we can use the fundamental theorem of
calculus to convert knowledge of derivatives into knowledge of integrals. We are now in
a position to easily build a table of integrals. Here is a short table of the most important
derivatives that we know.

F(x) 1 xn sin x cos x tan x ex loge |x| arcsin x arctan x

f (x) = F1(x) 0 nxn´1 cos x ´ sin x sec2 x ex 1
x

1?
1´x2

1
1+x2

Of course we know other derivatives, such as those of sec x and cot x, however the ones
listed above are arguably the most important ones. From this table (with a very little
massaging) we can write down a short table of indefinite integrals.

f (x) F(x) =
ş

f (x)dx

1 x + C

xn 1
n+1 xn+1 + C provided that n ‰ ´1

1
x

loge |x|+ C

ex ex + C

sin x ´ cos x + C

cos x sin x + C

sec2 x tan x + C

1?
1´ x2

arcsin x + C

1
1 + x2 arctan x + C

Theorem 1.3.16 (Important indefinite integrals).

Example 1.3.17

Find the following integrals

(i)
ş7

2 exdx
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(ii)
ş2
´2

1
1+x2 dx

(iii)
ş3

0(2x3 + 7x´ 2)dx

Solution. We can proceed with each of these as before — find the antiderivative and then
apply the fundamental theorem. The third integral is a little more complicated, but we
can split it up into monomials using Theorem 1.2.1 and do each separately.

(i) An antiderivative of ex is just ex, so
ż 7

2
exdx = ex

ˇ̌
ˇ̌
7

2

= e7 ´ e2 = e2(e5 ´ 1).

(ii) An antiderivative of 1
1+x2 is arctan(x), so
ż 2

´2

1
1 + x2 dx = arctan(x)

ˇ̌
ˇ̌
2

´2

= arctan(2)´ arctan(´2)

We can simplify this a little further by noting that arctan(x) is an odd function, so
arctan(´2) = ´ arctan(2) and thus our integral is

= 2 arctan(2)

(iii) We can proceed by splitting the integral using Theorem 1.2.1(d)
ż 3

0
(2x3 + 7x´ 2)dx =

ż 3

0
2x3dx +

ż 3

0
7xdx´

ż 3

0
2dx

= 2
ż 3

0
x3dx + 7

ż 3

0
xdx´ 2

ż 3

0
dx

and because we know that x4/4, x2/2, x are antiderivatives of x3, x, 1 respectively,
this becomes

=

[
x4

2

]3

0
+

[
7x2

2

]3

0
´ [2x]30

=
81
2

+
7 ¨ 9

2
´ 6

=
81 + 63´ 12

2
=

132
2

= 66.

We can also just find the antiderivative of the whole polynomial by finding the an-
tiderivatives of each term of the polynomial and then recombining them. This is
equivalent to what we have done above, but perhaps a little neater:

ż 3

0
(2x3 + 7x´ 2)dx =

[
x4

2
+

7x2

2
´ 2x

]3

0

=
81
2

+
7 ¨ 9

2
´ 6 = 66.
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Example 1.3.17

1.4Ĳ Substitution

In the previous section we explored the fundamental theorem of calculus and the link it
provides between definite integrals and antiderivatives. Indeed, integrals with simple in-
tegrands are usually evaluated via this link. In this section we start to explore methods for
integrating more complicated integrals. We have already seen — via Theorem 1.2.1 — that
integrals interact very nicely with addition, subtraction and multiplication by constants:

ż b

a
(A f (x) + Bg(x))dx = A

ż b

a
f (x)dx + B

ż b

a
g(x)dx

for A, B constants. By combining this with the list of indefinite integrals in Theorem 1.3.16,
we can compute integrals of linear combinations of simple functions. For example

ż 4

1

(
ex ´ 2 sin x + 3x2

)
dx =

ż 4

1
exdx´ 2

ż 4

1
sin xdx + 3

ż 4

1
x2dx

=

(
ex + (´2) ¨ (´ cos x) + 3

x3

3

) ˇ̌
ˇ̌
4

1
and so on

Of course there are a great many functions that can be approached in this way, however
there are some very simple examples that cannot.

ż
sin(πx)dx

ż
xexdx

ż
x

x2 ´ 5x + 6
dx

In each case the integrands are not linear combinations of simpler functions; in order to
compute them we need to understand how integrals (and antiderivatives) interact with
compositions, products and quotients. We reached a very similar point in our differential
calculus course where we understood the linearity of the derivative,

d
dx

(A f (x) + Bg(x)) = A
d f
dx

+ B
dg
dx

,

but had not yet seen the chain, product and quotient rules33. While we will develop tools
to find the second and third integrals in later sections, we should really start with how to
integrate compositions of functions.

It is important to state up front, that in general one cannot write down the integral of
the composition of two functions — even if those functions are simple. This is not because
the integral does not exist. Rather it is because the integral cannot be written down as
a finite combination of the standard functions we know. A very good example of this,

33 If your memory of these rules is a little hazy then you really should go back and revise them before
proceeding. You will definitely need a good grasp of the chain rule for what follows in this section.
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which we encountered in Example 1.3.4, is the composition of ex and ´x2. Even though
we know ż

exdx = ex + C and
ż
´x2dx = ´1

3
x3 + C

there is no simple function that is equal to the indefinite integral
ż

e´x2
dx.

even though the indefinite integral exists. In this way integration is very different from
differentiation.

With that caveat out of the way, we can introduce the substitution rule. The substitu-
tion rule is obtained by antidifferentiating the chain rule. In some sense it is the chain rule
in reverse. For completeness, let us restate the chain rule:

Let F(u) and u(x) be differentiable functions and form their composition
F(u(x)). Then

d
dx

F
(
u(x)

)
= F1

(
u(x)

) ¨ u1(x)

Equivalently, if y(x) = F(u(x)), then

dy
dx

=
dF
du
¨ du

dx
.

Theorem 1.4.1 (The chain rule).

Consider a function f (u), which has antiderivative F(u). Then we know that
ż

f (u)du =

ż
F1(u)du = F(u) + C

Now take the above equation and substitute into it u = u(x) — i.e. replace the variable u
with any (differentiable) function of x to get

ż
f (u)du

ˇ̌
ˇ̌
u=u(x)

= F(u(x)) + C

But now the right-hand side is a function of x, so we can differentiate it with respect to x
to get

d
dx

F(u(x)) = F1(u(x)) ¨ u1(x)

This tells us that F(u(x)) is an antiderivative of the function F1(u(x)) ¨u1(x) = f (u(x))u1(x).
Thus we know

ż
f
(
u(x)

) ¨ u1(x)dx = F
(
u(x)

)
+ C =

ż
f (u)du

ˇ̌
ˇ̌
u=u(x)

This is the substitution rule for indefinite integrals.
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For any differentiable function u(x):
ż

f (u(x))u1(x)dx =

ż
f (u)du

ˇ̌
ˇ̌
u=u(x)

Theorem 1.4.2 (The substitution rule — indefinite integral version).

In order to apply the substitution rule successfully we will have to write the integrand
in the form f (u(x)) ¨ u1(x). To do this we need to make a good choice of the function u(x);
after that it is not hard to then find f (u) and u1(x). Unfortunately there is no one strategy
for choosing u(x). This can make applying the substitution rule more art than science34.
Here we suggest two possible strategies for picking u(x):

(1) Factor the integrand and choose one of the factors to be u1(x). For this to work, you
must be able to easily find the antiderivative of the chosen factor. The antiderivative
will be u(x).

(2) Look for a factor in the integrand that is a function with an argument that is more
complicated than just “x”. That factor will play the role of f

(
u(x)

)
Choose u(x) to be

the complicated argument.

Here are two examples which illustrate each of those strategies in turn.

Example 1.4.3

Consider the integral
ż

9 sin8(x) cos(x)dx

We want to massage this into the form of the integrand in the substitution rule — namely
f (u(x)) ¨ u1(x). Our integrand can be written as the product of the two factors

9 sin8(x)looomooon
first factor

¨ cos(x)loomoon
second factor

and we start by determining (or guessing) which factor plays the role of u1(x). We can
choose u1(x) = 9 sin8(x) or u1(x) = cos(x).

• If we choose u1(x) = 9 sin8(x), then antidifferentiating this to find u(x) is really not
very easy. So it is perhaps better to investigate the other choice before proceeding
further with this one.

• If we choose u1(x) = cos(x), then we know (Theorem 1.3.16) that u(x) = sin(x). This
also works nicely because it makes the other factor simplify quite a bit 9 sin8(x) =
9u8. This looks like the right way to go.

34 Thankfully this does become easier with experience and we recommend that the reader read some
examples and then practice a LOT.
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So we go with the second choice. Set u1(x) = cos(x), u(x) = sin(x), then
ż

9 sin8(x) cos(x)dx =

ż
9u(x)8 ¨ u1(x)dx

=

ż
9u8du

ˇ̌
ˇ̌
u=sin(x)

by the substitution rule

We are now left with the problem of antidifferentiating a monomial; this we can do with
Theorem 1.3.16.

=
(

u9 + C
) ˇ̌
ˇ̌
u=sin(x)

= sin9(x) + C

Note that 9 sin8(x) cos(x) is a function of x. So our answer, which is the indefinite integral
of 9 sin8(x) cos(x), must also be a function of x. This is why we have substituted u =
sin(x) in the last step of our solution — it makes our solution a function of x.

Example 1.4.3

Example 1.4.4

Evaluate the integral
ż

3x2 cos(x3)dx

Solution. Again we are going to use the substitution rule and helpfully our integrand is a

product of two factors

3x2loomoon
first factor

¨ cos(x3)loomoon
second factor

The second factor, cos
(
x3) is a function, namely cos, with a complicated argument, namely

x3. So we try u(x) = x3. Then u1(x) = 3x2, which is the other factor in the integrand. So
the integral becomes

ż
3x2 cos(x3)dx =

ż
u1(x) cos

(
u(x)

)
dx just swap order of factors

=

ż
cos

(
u(x)

)
u1(x)dx by the substitution rule

=

ż
cos(u)du

ˇ̌
ˇ̌
u=x3

= (sin(u) + C)
ˇ̌
ˇ̌
u=x3

using Theorem 1.3.16)

= sin(x3) + C
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Example 1.4.4

One more — we’ll use this to show how to use the substitution rule with definite integrals.

Example 1.4.5
(ş1

0 ex sin(ex)dx
)

Compute

ż 1

0
ex sin

(
ex)dx.

Solution. Again we use the substitution rule.

• The integrand is again the product of two factors and we can choose u1(x) = ex or
u1(x) = sin(ex).

• If we choose u1(x) = ex then u(x) = ex and the other factor becomes sin(u) —
this looks promising. Notice that if we applied the other strategy of looking for a
complicated argument then we would arrive at the same choice.

• So we try u1(x) = ex and u(x) = ex. This gives (if we ignore the limits of integration
for a moment)

ż
ex sin

(
ex)dx =

ż
sin
(
u(x)

)
u1(x)dx apply the substitution rule

=

ż
sin(u)du

ˇ̌
ˇ̌
u=ex

= (´ cos(u) + C)
ˇ̌
ˇ̌
u=ex

= ´ cos
(
ex)+ C

• But what happened to the limits of integration? We can incorporate them now. We
have just shown that the indefinite integral is ´ cos(ex), so by the fundamental the-
orem of calculus

ż 1

0
ex sin

(
ex)dx =

[´ cos
(
ex)]1

0

= ´ cos(e1)´ (´ cos(e0))

= ´ cos(e) + cos(1)

Example 1.4.5

Theorem 1.4.2, the substitution rule for indefinite integrals, tells us that if F(u) is any an-
tiderivative for f (u), then F

(
u(x)

)
is an antiderivative for f

(
u(x)

)
u1(x). So the funda-
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mental theorem of calculus gives us
ż b

a
f
(
u(x)

)
u1(x)dx = F

(
u(x)

)ˇ̌ˇ̌
x=b

x=a

= F
(
u(b)

)´ F
(
u(a)

)

=

ż u(b)

u(a)
f (u)du since F(u) is an antiderivative for f (u)

and we have just found

For any differentiable function u(x):

ż b

a
f (u(x))u1(x)dx =

ż u(b)

u(a)
f (u)du

Theorem 1.4.6 (The substitution rule — definite integral version).

Notice that to get from the integral on the left hand side to the integral on the right
hand side you

• substitute35 u(x)Ñ u and u1(x)dx Ñ du,

• set the lower limit for the u integral to the value of u (namely u(a)) that corresponds
to the lower limit of the x integral (namely x = a), and

• set the upper limit for the u integral to the value of u (namely u(b)) that corresponds
to the upper limit of the x integral (namely x = b).

Also note that we now have two ways to evaluate definite integrals of the form
şb

a f
(
u(x)

)
u1(x)dx.

• We can find the indefinite integral
ş

f
(
u(x)

)
u1(x)dx, using Theorem 1.4.2, and then

evaluate the result between x = a and x = b. This is what was done in Example 1.4.5.

• Or we can apply Theorem 1.4.2. This entails finding the indefinite integral
ş

f (u)du
and evaluating the result between u = u(a) and u = u(b). This is what we will do
in the following example.

Example 1.4.7
(ş1

0 x2 sin(x3 + 1)dx
)

Compute
ż 1

0
x2 sin

(
x3 + 1

)
dx

Solution.

35 A good way to remember this last step is that we replace du
dx dx by just du — which looks like we

cancelled out the dx terms: du
��dx�

�dx = du. While using “cancel the dx” is a good mnemonic (memory

aid), you should not think of the derivative du
dx as a fraction — you are not dividing du by dx.
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• In this example the integrand is already neatly factored into two pieces. While we
could deploy either of our two strategies, it is perhaps easier in this case to choose
u(x) by looking for a complicated argument.

• The second factor of the integrand is sin
(
x3 + 1

)
, which is the function sin evaluated

at x3 + 1. So set u(x) = x3 + 1, giving u1(x) = 3x2 and f (u) = sin(u)

• The first factor of the integrand is x2 which is not quite u1(x), however we can easily
massage the integrand into the required form by multiplying and dividing by 3:

x2 sin
(

x3 + 1
)
=

1
3
¨ 3x2 ¨ sin

(
x3 + 1

)
.

• We want this in the form of the substitution rule, so we do a little massaging:
ż 1

0
x2 sin

(
x3 + 1

)
dx =

ż 1

0

1
3
¨ 3x2 ¨ sin

(
x3 + 1

)
dx

=
1
3

ż 1

0
sin
(
x3 + 1

) ¨ 3x2dx by Theorem 1.2.1(c)

• Now we are ready for the substitution rule:

1
3

ż 1

0
sin
(
x3 + 1

) ¨ 3x2dx =
1
3

ż 1

0
sin
(
x3 + 1

)
loooooomoooooon

= f (u(x))

¨ 3x2loomoon
=u1(x)

dx

=
1
3

ż 1

0
f (u(x))u1(x)dx with u(x) = x3 + 1 and f (u) = sin(u)

=
1
3

ż u(1)

u(0)
f (u)du by the substitution rule

=
1
3

ż 2

1
sin(u)du since u(0) = 1 and u(1) = 2

=
1
3
[´ cos(u)

]2
1

=
1
3
(´ cos(2)´ (´ cos(1))

)

=
cos(1)´ cos(2)

3
.

Example 1.4.7

There is another, and perhaps easier, way to view the manipulations in the previous
example. Once you have chosen u(x) you

• make the substitution u(x)Ñ u,

• replace dx Ñ 1
u1(x)

du.
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In so doing, we take the integral
ż b

a
f (u(x)) ¨ u1(x)dx =

ż u(b)

u(a)
f (u) ¨ u1(x) ¨ 1

u1(x)
du

=

ż u(b)

u(a)
f (u)du exactly the substitution rule

but we do not have to manipulate the integrand so as to make u1(x) explicit. Let us redo
the previous example by this approach.

Example 1.4.8 (Example 1.4.7 revisited)

Compute the integral
ż 1

0
x2 sin

(
x3 + 1

)
dx

Solution.

• We have already observed that one factor of the integrand is sin
(
x3 + 1

)
, which is

sin evaluated at x3 + 1. Thus we try setting u(x) = x3 + 1.

• This makes u1(x) = 3x2, and we replace u(x) = x3 + 1 Ñ u and dx Ñ 1
u1(x)du =

1
3x2 du:

ż 1

0
x2 sin

(
x3 + 1

)
dx =

ż u(1)

u(0)
x2 sin

(
x3 + 1

)
loooooomoooooon

=sin(u)

1
3x2 du

=

ż 2

1
sin(u)

x2

3x2 du

=

ż 2

1

1
3

sin(u)du

=
1
3

ż 2

1
sin(u)du

which is precisely the integral we found in Example 1.4.7.

Example 1.4.8

Example 1.4.9

Compute the indefinite integrals
ż ?

2x + 1dx and
ż

e3x´2dx

Solution.
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• Starting with the first integral, we see that it is not too hard to spot the complicated
argument. If we set u(x) = 2x + 1 then the integrand is just

?
u.

• Hence we substitute 2x + 1 Ñ u and dx Ñ 1
u1(x)du = 1

2du:

ż ?
2x + 1dx =

ż ?
u

1
2

du

=

ż
u1/2 1

2
du

=

(
2
3

u3/2 ¨ 1
2
+ C

) ˇ̌
ˇ̌
u=2x+1

=
1
3
(2x + 1)3/2 + C

• We can evaluate the second integral in much the same way. Set u(x) = 3x ´ 2 and
replace dx by 1

u1(x)du = 1
3du:

ż
e3x´2dx =

ż
eu 1

3
du

=

(
1
3

eu + C
) ˇ̌
ˇ̌
u=3x´2

=
1
3

e3x´2 + C

Example 1.4.9

This last example illustrates that substitution can be used to easily deal with arguments
of the form ax + b (with a, b constants and a ‰ 0), i.e. that are linear functions of x, and
suggests the following theorem.

Let F(u) be an antiderivative of f (u) and let a, b be constants with a ‰ 0. Then
ż

f (ax + b)dx =
1
a

F(ax + b) + C

Theorem 1.4.10.
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Proof. We can show this using the substitution rule. Let u(x) = ax + b so u1(x) = a, then

ż
f (ax + b)dx =

ż
f (u) ¨ 1

u1(x)
du

=

ż
1
a

f (u)du

=
1
a

ż
f (u)du since a is a constant

=
1
a

F(u)
ˇ̌
ˇ̌
u=ax+b

+ C since F(u) is an antiderivative of f (u)

=
1
a

F(ax + b) + C.

Now we can do the following example using the substitution rule or the above theo-
rem:

Example 1.4.11
(şπ/2

0 cos(3x)dx
)

Compute
şπ/2

0 cos(3x)dx.

• In this example we should set u = 3x, and substitute dx Ñ 1
u1(x)du = 1

3du. When
we do this we also have to convert the limits of the integral: u(0) = 0 and u(π/2) =
3π/2. This gives

ż π/2

0
cos(3x)dx =

ż 3π/2

0
cos(u)

1
3

du

=

[
1
3

sin(u)
]3π/2

0

=
sin(3π/2)´ sin(0)

3

=
´1´ 0

3
= ´1

3
.

• We can also do this example more directly using the above theorem. Since sin(x) is
an antiderivative of cos(x), Theorem 1.4.10 tells us that sin(3x)

3 is an antiderivative of
cos(3x). Hence

ż π/2

0
cos(3x)dx =

[
sin(3x)

3

]π/2

0

=
sin(3π/2)´ sin(0)

3

= ´1
3

.
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Example 1.4.11

The rest of this section is just more examples of the substitution rule. We recommend
that you after reading these that you practice many examples by yourself under exam
conditions.

Example 1.4.12
(ş1

0 x2 sin(1´ x3)dx
)

This integral looks a lot like that of Example 1.4.7. It makes sense to try u(x) = 1´ x3 since
it is the argument of sin(1´ x3). We

• substitute u = 1´ x3 and

• replace dx with 1
u1(x)du = 1

´3x2 du,

• when x = 0, we have u = 1´ 03 = 1 and

• when x = 1, we have u = 1´ 13 = 0.

So
ż 1

0
x2 sin

(
1´ x3) ¨ dx =

ż 0

1
x2 sin(u) ¨ 1

´3x2 du

=

ż 0

1
´1

3
sin(u)du.

Note that the lower limit of the u–integral, namely 1, is larger than the upper limit, which
is 0. There is absolutely nothing wrong with that. We can simply evaluate the u–integral
in the normal way. Since ´ cos(u) is an antiderivative of sin(u):

=

[
cos(u)

3

]0

1

=
cos(0)´ cos(1)

3

=
1´ cos(1)

3
.

Example 1.4.12

Example 1.4.13
(ş1

0
1

(2x+1)3 dx
)

Compute
ş1

0
1

(2x+1)3 dx.
We could do this one using Theorem 1.4.10, but its not too hard to do without. We can

think of the integrand as the function “one over a cube” with the argument 2x + 1. So it
makes sense to substitute u = 2x + 1. That is

• set u = 2x + 1 and
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• replace dx Ñ 1
u1(x)du = 1

2du.

• When x = 0, we have u = 2ˆ 0 + 1 = 1 and

• when x = 1, we have u = 2ˆ 1 + 1 = 3.

So

ż 1

0

1
(2x + 1)3 dx =

ż 3

1

1
u3 ¨

1
2

du

=
1
2

ż 3

1
u´3du

=
1
2

[
u´2

´2

]3

1

=
1
2

(
1
´2

¨ 1
9
´ 1
´2

¨ 1
1

)

=
1
2

(
1
2
´ 1

18

)
=

1
2
¨ 8

18

=
2
9

Example 1.4.13

Example 1.4.14
(ş1

0
x

1+x2 dx
)

Evaluate
ş1

0
x

1+x2 dx.

Solution.

• The integrand can be rewritten as x ¨ 1
1+x2 . This second factor suggests that we should

try setting u = 1 + x2 — and so we interpret the second factor as the function “one
over” evaluated at argument 1 + x2.

• With this choice we

– set u = 1 + x2,

– substitute dx Ñ 1
2x du, and

– translate the limits of integration: when x = 0, we have u = 1 + 02 = 1 and
when x = 1, we have u = 1 + 12 = 2.

71



INTEGRATION 1.4 SUBSTITUTION

• The integral then becomes
ż 1

0

x
1 + x2 dx =

ż 2

1

x
u

1
2x

du

=

ż 2

1

1
2u

du

=
1
2
[

log |u|]21
=

log 2´ log 1
2

=
log 2

2
.

Remember that we are using the notation “log” for the natural logarithm, i.e. the loga-
rithm with base e. You might also see it written as “ln x”, or with the base made explicit
as “loge x”.

Example 1.4.14

Example 1.4.15
(ş

x3 cos
(
x4 + 2

)
dx
)

Compute the integral
ş

x3 cos
(
x4 + 2

)
dx.

Solution.

• The integrand is the product of cos evaluated at the argument x4 + 2 times x3, which
aside from a factor of 4, is the derivative of the argument x4 + 2.

• Hence we set u = x4 + 2 and then substitute dx Ñ 1
u1(x)du = 1

4x3 du.

• Before proceeding further, we should note that this is an indefinite integral so we
don’t have to worry about the limits of integration. However we do need to make
sure our answer is a function of x — we cannot leave it as a function of u.

• With this choice of u, the integral then becomes
ż

x3 cos
(
x4 + 2

)
dx =

ż
x3 cos(u)

1
4x3 du

ˇ̌
ˇ̌
u=x4+2

=

ż
1
4

cos(u)du
ˇ̌
ˇ̌
u=x4+2

=

(
1
4

sin(u) + C
) ˇ̌
ˇ̌
u=x4+2

=
1
4

sin(x4 + 2) + C.

Example 1.4.15

The next two examples are more involved and require more careful thinking.

Example 1.4.16
(ş?

1 + x2 x3dx
)

Compute
ş?

1 + x2 x3dx.
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• An obvious choice of u is the argument inside the square root. So substitute u =
1 + x2 and dx Ñ 1

2x du.

• When we do this we obtainż a
1 + x2 ¨ x3dx =

ż ?
u ¨ x3 ¨ 1

2x
du

=

ż
1
2
?

u ¨ x2du

Unlike all our previous examples, we have not cancelled out all of the x’s from the
integrand. However before we do the integral with respect to u, the integrand must
be expressed solely in terms of u — no x’s are allowed. (Look that integrand on the
right hand side of Theorem 1.4.2.)

• But all is not lost. We can rewrite the factor x2 in terms of the variable u. We know
that u = 1 + x2, so this means x2 = u´ 1. Substituting this into our integral gives

ż a
1 + x2 ¨ x3dx =

ż
1
2
?

u ¨ x2du

=

ż
1
2
?

u ¨ (u´ 1)du

=
1
2

ż (
u3/2 ´ u1/2

)
du

=
1
2

(
2
5

u5/2 ´ 2
3

u3/2
) ˇ̌
ˇ̌
u=x2+1

+ C

=

(
1
5

u5/2 ´ 1
3

u3/2
) ˇ̌
ˇ̌
u=x2+1

+ C

=
1
5
(x2 + 1)5/2 ´ 1

3
(x2 + 1)3/2 + C.

Oof!

• Don’t forget that you can always check the answer by differentiating:

d
dx

(
1
5
(x2 + 1)5/2 ´ 1

3
(x2 + 1)3/2 + C

)
=

d
dx

(
1
5
(x2 + 1)5/2

)
´ d

dx

(
1
3
(x2 + 1)3/2

)

=
1
5
¨ 2x ¨ 5

2
¨ (x2 + 1)3/2 ´ 1

3
¨ 2x ¨ 3

2
¨ (x2 + 1)1/2

= x(x2 + 1)3/2 ´ x(x2 + 1)1/2

= x
[
(x2 + 1)´ 1

] ¨
a

x2 + 1

= x3
a

x2 + 1.

which is the original integrand X.

Example 1.4.16

Example 1.4.17 (
ş

tan xdx)

Evaluate the indefinite integral
ş

tan(x)dx.
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Solution.

• At first glance there is nothing to manipulate here and so very little to go on. How-
ever we can rewrite tan x as sin x

cos x , making the integral
ş sin x

cos x dx. This gives us more
to work with.

• Now think of the integrand as being the product 1
cos x ¨ sin x. This suggests that we set

u = cos x and that we interpret the first factor as the function “one over” evaluated
at u = cos x.

• Substitute u = cos x and dx Ñ 1
´ sin x du to give:

ż
sin x
cos x

dx =

ż
sin x

u
1

´ sin x
du

ˇ̌
ˇ̌
u=cos x

=

ż
´1

u
du

ˇ̌
ˇ̌
u=cos x

= ´ log | cos x|+ C and if we want to go further

= log
ˇ̌
ˇ̌ 1
cos x

ˇ̌
ˇ̌+ C

= log | sec x|+ C.

Example 1.4.17

In all of the above substitution examples we expressed the new integration variable, u,
as a function, u(x), of the old integration variable x. It is also possible to express the old
integration variable, x, as a function, x(u), of the new integration variable u. We shall see
examples of this in §1.9.

1.5Ĳ Area Between Curves

Before we continue our exploration of different methods for integrating functions, we
have now have sufficient tools to examine some simple applications of definite integrals.
One of the motivations for our definition of “integral” was the problem of finding the area
between some curve and the x–axis for x running between two specified values. More
precisely

ż b

a
f (x)dx

is equal to the signed area between the curve y = f (x), the x-axis, and the vertical lines
x = a and x = b.

We found the area of this region by approximating it by the union of tall thin rectan-
gles, and then found the exact area by taking the limit as the width of the approximating
rectangles went to zero. We can use the same strategy to find areas of more complicated
regions in the xy-plane.
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As a preview of the material to come, let f (x) ą g(x) ą 0 and a ă b and suppose that
we are interested in the area of the region

S1 =
 
(x, y)

ˇ̌
a ď x ď b , g(x) ď y ď f (x)

(

that is sketched in the left hand figure below.

We already know that
şb

a f (x)dx is the area of the region

S2 =
 
(x, y)

ˇ̌
a ď x ď b , 0 ď y ď f (x)

(

sketched in the middle figure above and that
şb

a g(x)dx is the area of the region

S3 =
 
(x, y)

ˇ̌
a ď x ď b , 0 ď y ď g(x)

(

sketched in the right hand figure above. Now the region S1 of the left hand figure can be
constructed by taking the region S2 of center figure and removing from it the region S3 of
the right hand figure. So the area of S1 is exactly

ż b

a
f (x)dx´

ż b

a
g(x)dx =

ż b

a

(
f (x)´ g(x)

)
dx

This computation depended on the assumption that f (x) ą g(x) and, in particular, that
the curves y = g(x) and y = f (x) did not cross. If they do cross, as in this figure

then we have to be a lot more careful. The idea is to separate the domain of integration
depending on where f (x)´ g(x) changes sign — i.e. where the curves intersect. We will
illustrate this in Example 1.5.5 below.
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Let us start with an example that makes the link to Riemann sums and definite inte-
grals quite explicit.

Example 1.5.1

Find the area bounded by the curves y = 4´ x2, y = x, x = ´1 and x = 1.

Solution.

• Before we do any calculus, it is a very good idea to make a sketch of the area in
question. The curves y = x, x = ´1 and x = 1 are all straight lines, while the curve
y = 4´ x2 is a parabola whose apex is at (0, 4) and then curves down (because of
the minus sign in ´x2) with x-intercepts at (˘2, 0). Putting these together gives

Notice that the curves y = 4´ x2 and y = x intersect when 4´ x2 = x, namely when
x = 1

2

(´1˘?17
) « 1.56,´2.56. Hence the curve y = 4´ x2 lies above the line y = x

for all ´1 ď x ď 1.

• We are to find the area of the shaded region. Each point (x, y) in this shaded region
has ´1 ď x ď 1 and x ď y ď 4 ´ x2. When we were defining the integral (way
back in Definition 1.1.9) we used a and b to denote the smallest and largest allowed
values of x; let’s do that here too. Let’s also use B(x) to denote the bottom curve
(i.e. to denote the smallest allowed value of y for a given x) and use T(x) to denote
the top curve (i.e. to denote the largest allowed value of y for a given x). So in this
example

a = ´1 b = 1 B(x) = x T(x) = 4´ x2

and the shaded region is
 
(x, y)

ˇ̌
a ď x ď b, B(x) ď y ď T(x)

(

• We use the same strategy as we used when defining the integral in Section 1.1.3:

– Pick a natural number n (that we will later send to infinity), then

– subdivide the region into n narrow slices, each of width ∆x = b´a
n .
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– For each i = 1, 2, . . . , n, slice number i runs from x = xi´1 to x = xi, and we
approximate its area by the area of a rectangle. We pick a number x˚i between
xi´1 and xi and approximate the slice by a rectangle whose top is at y = T(x˚i )
and whose bottom is at y = B(x˚i ).

– Thus the area of slice i is approximately
[
T(x˚i ) ´ B(x˚i )

]
∆x (as shown in the

figure below).

• So the Riemann sum approximation of the area is

Area «
nÿ

i=1

[
T(x˚i )´ B(x˚i )

]
∆x

• By taking the limit as n Ñ 8 (i.e. taking the limit as the width of the rectangles goes
to zero), we convert the Riemann sum into a definite integral (see Definition 1.1.9)
and at the same time our approximation of the area becomes the exact area:

lim
nÑ8

nÿ

i=1

[
T(x˚i )´ B(x˚i )

]
∆x =

ż b

a

[
T(x)´ B(x)

]
dx Riemann sumÑ integral

=

ż 1

´1

[
(4´ x2)´ x

]
dx

=

ż 1

´1

[
4´ x´ x2]dx

=

[
4x´ x2

2
´ x3

3

]1

´1

=

(
4´ 1

2
´ 1

3

)
´
(
´4´ 1

2
+

1
3

)

=
24´ 3´ 2

6
´ ´24´ 3 + 2

6

=
19
6

+
25
6

=
44
6

=
22
3

.
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INTEGRATION 1.5 AREA BETWEEN CURVES

Example 1.5.1

Oof! Thankfully we generally do not need to go through the Riemann sum steps to
get to the answer. Usually, provided we are careful to check where curves intersect and
which curve lies above which, we can just jump straight to the integral

Area =

ż b

a

[
T(x)´ B(x)

]
dx. (1.5.1)

So let us redo the above example.

Example 1.5.2 (Example 1.5.1 revisited)

Find the area bounded by the curves y = 4´ x2, y = x, x = ´1 and x = 1.

Solution.

• We first sketch the region

and verify36 that y = T(x) = 4´ x2 lies above the curve y = B(x) = x on the region
´1 ď x ď 1.

• The area between the curves is then

Area =

ż b

a

[
T(x)´ B(x)

]
dx

=

ż 1

´1

[
4´ x´ x2]dx

=

[
4x´ x2

2
´ x3

3

]1

´1

=
19
6

+
25
6

=
44
6

=
22
3

.

36 We should do this by checking where the curves intersect; that is by solving T(x) = B(x) and seeing if
any of the solutions lie in the range ´1 ď x ď 1.
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Example 1.5.2

Example 1.5.3

Find the area of the finite region bounded by y = x2 and y = 6x´ 2x2.

Solution. This is a little different from the previous question, since we are not given
bounding lines x = a and x = b — instead we have to determine the minimum and
maximum allowed values of x by determining where the curves intersect. Hence our very
first task is to get a good idea of what the region looks like by sketching it.

• Start by sketching the region:

– The curve y = x2 is a parabola. The point on this parabola with the smallest y–
coordinate is (0, 0). As |x| increases, y increases so the parabola opens upward.

– The curve y = 6x ´ 2x2 = ´2(x2 ´ 3x) = ´2(x ´ 3
2)

2 + 9
2 is also a parabola.

The point on this parabola with the largest value of y has x = 3/2 (so that the
negative term in ´2(x´ 3

2)
2 + 9

2 is zero). So the point with the largest value of
y is is (3/2, 9/2). As x moves away from 3/2, either to the right or to the left, y
decreases. So the parabola opens downward. The parabola crosses the x–axis
when 0 = 6x´ 2x2 = 2x(3´ x). That is, when x = 0 and x = 3.

– The two parabolas intersect when x2 = 6x´ 2x2, or

3x2 ´ 6x = 0
3x(x´ 2) = 0

So there are two points of intersection, one being x = 0, y = 02 = 0 and the
other being x = 2, y = 22 = 4.

– The finite region between the curves lies between these two points of intersec-
tion.

This leads us to the sketch

x

y

y = 6x− 2x2

y = x2

(2, 4)

(0, 0) (3, 0)
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• So on this region we have 0 ď x ď 2, the top curve is T(x) = 6x´ 2x2 and the bottom
curve is B(x) = x2. Hence the area is given by

Area =

ż b

a

[
T(x)´ B(x)

]
dx

=

ż 2

0

[
(6x´ 2x2)´ (x2)

]
dx

=

ż 2

0

[
6x´ 3x2]dx

=

[
6

x2

2
´ 3

x3

3

]2

0

= 3(2)2 ´ 23 = 4

Example 1.5.3

Example 1.5.4

Find the area of the finite region bounded by y2 = 2x + 6 and y = x´ 1.

Solution. We show two different solutions to this problem. The first takes the approach
we have in Example 1.5.3 but leads to messy algebra. The second requires a little bit
of thinking at the beginning but then is quite straightforward. Before we get to that we
should start by by sketching the region.

• The curve y2 = 2x + 6, or equivalently x = 1
2 y2 ´ 3 is a parabola. The point on

this parabola with the smallest x–coordinate has y = 0 (so that the positive term
in 1

2 y2 ´ 3 is zero). So the point on this parabola with the smallest x–coordinate is
(´3, 0). As |y| increases, x increases so the parabola opens to the right.

• The curve y = x´ 1 is a straight line of slope 1 that passes through x = 1, y = 0.

• The two curves intersect when y2

2 ´ 3 = y + 1, or

y2 ´ 6 = 2y + 2

y2 ´ 2y´ 8 = 0
(y + 2)(y´ 4) = 0

So there are two points of intersection, one being y = 4, x = 4 + 1 = 5 and the other
being y = ´2, x = ´2 + 1 = ´1.

• Putting this all together gives us the sketch
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x

y

y2 = 2x+ 6
y = x− 1

(5, 4)

(−3, 0)

(1, 0)
(−1,−2)

As noted above, we can find the area of this region by approximating it by a union of
narrow vertical rectangles, as we did in Example 1.5.3 — though it is a little harder. The
easy way is to approximate it by a union of narrow horizontal rectangles. Just for practice,
here is the hard solution. The easy solution is after it.
Harder solution:

• As we have done previously, we approximate the region by a union of narrow verti-
cal rectangles, each of width ∆x. Two of those rectangles are illustrated in the sketch

x

y

y2 = 2x+ 6
y = x− 1

(5, 4)

(−3, 0)

(−1,−2)

• In this region, x runs from a = ´3 to b = 5. The curve at the top of the region is

y = T
(
x) =

?
2x + 6

The curve at the bottom of the region is more complicated. To the left of (´1,´2)
the lower half of the parabola gives the bottom of the region while to the right of
(´1,´2) the straight line gives the bottom of the region. So

B(x) =

#
´?2x + 6 if ´ 3 ď x ď ´1
x´ 1 if ´ 1 ď x ď 5

• Just as before, the area is still given by the formula
şb

a
[
T(x)´ B(x)

]
dx, but to accom-

modate our B(x), we have to split up the domain of integration when we evaluate

81
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the integral.
ż b

a

[
T(x)´ B(x)

]
dx =

ż ´1

´3

[
T(x)´ B(x)

]
dx +

ż 5

´1

[
T(x)´ B(x)

]
dx

=

ż ´1

´3

[?
2x + 6´ (´?2x + 6)

]
dx +

ż 5

´1

[?
2x + 6´ (x´ 1)

]
dx

= 2
ż ´1

´3

?
2x + 6dx +

ż 5

´1

?
2x + 6´

ż 5

´1
(x´ 1)dx

• The third integral is straightforward, while we evaluate the first two via the sub-
stitution rule. In particular, set u = 2x + 6 and replace dx Ñ 1

2du. Also u(´3) =
0, u(´1) = 4, u(5) = 16. Hence

Area = 2
ż 4

0

?
u

du
2

+

ż 16

4

?
u

du
2
´
ż 5

´1
(x´ 1)dx

= 2
[

u3/2

3/2

1
2

]4

0
+

[
u3/2

3/2

1
2

]16

4
´
[

x2

2
´ x
]5

´1

=
2
3
[
8´ 0] +

1
3
[64´ 8]´

[(25
2
´ 5
)
´
(1

2
+ 1
)]

=
72
3
´ 24

2
+ 6

= 18

Oof!

Easier solution:
The easy way to determine the area of our region is to approximate by narrow horizontal
rectangles, rather than narrow vertical rectangles. (Really we are just swapping the roles
of x and y in this problem)

• Look at our sketch of the region again — each point (x, y) in our region has ´2 ď
y ď 4 and 1

2(y
2 ´ 6) ď x ď y + 1.

• Let’s use

– c to denote the smallest allowed value of y,

– d to denote the largest allowed value of y

– L(y) (“L” stands for “left”) to denote the smallest allowed value of x, when the
y–coordinate is y, and

– R(y) (“R” stands for “right”) to denote the largest allowed value of x, when the
y–coordinate is y.

So, in this example,

c = ´2 d = 4 L(y) =
1
2
(y2 ´ 6) R(y) = y + 1
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and the shaded region is
 
(x, y)

ˇ̌
c ď y ď d, L(y) ď x ď R(y)

(

• Our strategy is now nearly the same as that used in Example 1.5.1:

– Pick a natural number n (that we will later send to infinity), then

– subdivide the interval c ď y ď d into n narrow subintervals, each of width
∆y = d´c

n . Each subinterval cuts a thin horizontal slice from the region (see the
figure below).

– We approximate the area of slice number i by the area of a thin horizontal rect-
angle (indicated by the dark rectangle in the figure below). On this slice, the y–
coordinate runs over a very narrow range. We pick a number y˚i , somewhere in
that range. We approximate slice i by a rectangle whose left side is at x = L(y˚i )
and whose right side is at x = R(y˚i ).

– Thus the area of slice i is approximately
[
R(x˚i )´ L(x˚i )

]
∆y.

x

y

x = L(y) = 1
2
(y2 − 6)

x = R(y) = y + 1

y = y∗i

L(y∗i ) R(y∗i )

(5, 4)

(−3, 0)

(−1,−2)

• The desired area is

lim
nÑ8

nÿ

i=1

[
R(y˚i )´ L(y˚i )

]
∆y =

ż d

c

[
R(y)´ L(y)

]
dy Riemann sumÑ integral

=

ż 4

´2

[
(y + 1)´ 1

2

(
y2 ´ 6

)]
dy

=

ż 4

´2

[´ 1
2 y2 + y + 4

]
dy

=
[
´ 1

6 y3 + 1
2 y2 + 4y

]4

´2

= ´1
6

(
64´ (´8)

)
+ 1

2(16´ 4) + 4(4 + 2)

= ´12 + 6 + 24
= 18
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Example 1.5.4

One last example.

Example 1.5.5

Find the area between the curves y =
1?
2

and y = sin(x) with x running from 0 to π/2.

Solution. This one is a little trickier since (as we shall see) the region is split into two
pieces and we need to treat them separately.

• Again we start by sketching the region.

x

y

y = 1/
√
2

y = sin(x) x = π
2

π
4

x = 0

We want the shaded area.

• Unlike our previous examples, the bounding curves y = 1/
?

2 and y = sin(x) cross
in the middle of the region of interest. They cross when y = 1/

?
2 and sin(x) = y =

1/
?

2, i.e. when x = π/4. So

– to the left of x = π/4, the top boundary is part of the straight line y = 1/
?

2 and
the bottom boundary is part of the curve y = sin(x)

– while to the right of x = π/4, the top boundary is part of the curve y = sin(x)
and the bottom boundary is part of the straight line y = 1/

?
2.

• Thus the formulae for the top and bottom boundaries are

T(x) =

#
1/
?

2 if 0 ď x ď π/4

sin(x) if π/4 ď x ď π/2

+
B(x) =

#
sin(x) if 0 ď x ď π/4

1/
?

2 if π/4 ď x ď π/2

+

We may compute the area of interest using our canned formula

Area =

ż b

a

[
T(x)´ B(x)

]
dx
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but since the formulas for T(x) and B(x) change at the point x = π/4, we must split
the domain of the integral in two at that point37

• Our integral over the domain 0 ď x ď π/2 is split into an integral over 0 ď x ď π/4

and one over π/4 ď x ď π/2:

Area =

ż π/2

0

[
T(x)´ B(x)

]
dx

=

ż π/4

0

[
T(x)´ B(x)

]
dx +

ż π/2

π/4

[
T(x)´ B(x)

]
dx

=

ż π/4

0

[ 1?
2
´ sin(x)

]
dx +

ż π/2

π/4

[
sin(x)´ 1?

2

]
dx

=
[ x?

2
+ cos(x)

]π/4

0
+
[
´ cos(x)´ x?

2

]π/2

π/4

=
[ 1?

2
π

4
+

1?
2
´ 1
]
+
[ 1?

2
´ 1?

2
π

4

]

=
2?
2
´ 1

=
?

2´ 1

Example 1.5.5

1.6Ĳ Volumes

Another simple38 application of integration is computing volumes. We use the same strat-
egy as we used to express areas of regions in two dimensions as integrals — approximate
the region by a union of small, simple pieces whose volume we can compute and then
then take the limit as the “piece size” tends to zero.

In many cases this will lead to “multivariable integrals” that are beyond our present
scope39. But there are some special cases in which this leads to integrals that we can
handle. Here are some examples.

Example 1.6.1 (Cone)

Find the volume of the circular cone of height h and radius r.

37 We are effectively computing the area of the region by computing the area of the two disjoint pieces
separately. Alternatively, if we set f (x) = sin(x) and g(x) = 1/

?
2, we can rewrite the integral

şb
a
[
T(x)´

B(x)
]

dx as
şb

a

ˇ̌
f (x)´ g(x)

ˇ̌
dx. To see that the two integrals are the same, split the domain of integration

where f (x)´ g(x) changes sign.
38 Well — arguably the idea isn’t too complicated and is a continuation of the idea used to compute areas

in the previous section. In practice this can be quite tricky as we shall see.
39 Typically such integrals (and more) are covered in a third calculus course.
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Solution. Here is a sketch of the cone. We have called the vertical axis x, just so that we

x

end up with a “dx” integral.

• In what follows we will slice the cone into thin horizontal “pancakes”. In order to
approximate the volume of those slices, we need to know the radius of the cone at a
height x above its point. Consider the cross sections shown in the following figure.

At full height h, the cone has radius r. If we cut the cone at height x, then by similar
triangles (see the figure on the right) the radius will be x

h ¨ r.

• Now think of cutting the cone into n thin horizontal “pancakes”. Each such pancake
is approximately a squat cylinder of height ∆x = h/n. This is very similar to how we
approximated the area under a curve by n tall thin rectangles. Just as we approxi-
mated the area under the curve by summing these rectangles, we can approximate
the volume of the cone by summing the volumes of these cylinders. Here is a side
view of the cone and one of the cylinders.
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• We follow the method we used in Example 1.5.1, except that our slices are now
pancakes instead of rectangles.

– Pick a natural number n (that we will later send to infinity), then

– subdivide the cone into n thin pancakes, each of width ∆x = h
n .

– For each i = 1, 2, . . . , n, pancake number i runs from x = xi´1 = (i´ 1) ¨ ∆x to
x = xi = i ¨ ∆x, and we approximate its volume by the volume of a squat cone.
We pick a number x˚i between xi´1 and xi and approximate the pancake by a

cylinder of height ∆x and radius x˚i
h r.

– Thus the volume of pancake i is approximately π
(

x˚i
h r
)2

∆x (as shown in the
figure above).

• So the Riemann sum approximation of the volume is

Volume «
nÿ

i=1

π

(
x˚i
h

r
)2

∆x

• By taking the limit as n Ñ 8 (i.e. taking the limit as the thickness of the pan-
cakes goes to zero), we convert the Riemann sum into a definite integral (see Defini-
tion 1.1.9) and at the same time our approximation of the volume becomes the exact
volume:

ż h

0
π
(x

h
r
)2

dx

Our life40 would be easier if we could avoid all this formal work with Riemann sums
every time we encounter a new volume. So before we compute the above integral, let us
redo the above calculation in a less formal manner.

• Start again from the picture of the cone and think of slicing it into thin pancakes,

x

each of width dx.

40 At least the bits of it involving integrals.
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dx

x
h

r

x
h
r

x
h

r

x
h
r

• The pancake at height x above the point of the cone (which is the fraction x
h of the

total height of the cone) has

– radius x
h ¨ r (the fraction x

h of the full radius, r) and so

– cross–sectional area π
( x

h r
)2,

– thickness dx — we have done something a little sneaky here, see the discussion
below.

– volume π
( x

h r
)2dx

As x runs from 0 to h, the total volume is
ż h

0
π
(x

h
r
)2

dx =
πr2

h2

ż h

0
x2dx

=
πr2

h2

[
x3

3

]h

0

=
1
3

πr2h

In this second computation we are using a time-saving trick. As we saw in the formal
computation above, what we really need to do is pick a natural number n, slice the cone
into n pancakes each of thickness ∆x = h/n and then take the limit as n Ñ 8. This led to
the Riemann sum

nÿ

i=1

π

(
x˚i
h

r
)2

∆x which becomes
ż h

0
π
(x

h
r
)2

dx

So knowing that we will replace
nÿ

i=1

ÝÑ
ż h

0

x˚i ÝÑ x
∆x ÝÑ dx

when we take the limit, we have just skipped the intermediate steps. While this is not
entirely rigorous, it can be made so, and does save us a lot of algebra.

Example 1.6.1
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Example 1.6.2 (Sphere)

Find the volume of the sphere of radius r.

Solution. We’ll find the volume of the part of the sphere in the first octant41, sketched
below. Then we’ll multiply by 8.

• To compute the volume, we slice it up into thin vertical “pancakes” (just as we did

z

y

x

(x ,
√
r2 − x2 , 0)

x2 + y2 + z2 = r2

in the previous example).

• Each pancake is one quarter of a thin circular disk. The pancake a distance x from
the yz–plane is shown in the sketch above. The radius of that pancake is the distance
from the dot shown in the figure to the x–axis, i.e. the y–coordinate of the dot. To
get the coordinates of the dot, observe that

– it lies the xy–plane, and so has z–coordinate zero, and that

– it also lies on the sphere, so that its coordinates obey x2 + y2 + z2 = r2. Since
z = 0 and y ą 0, y =

?
r2 ´ x2.

• So the pancake at distance x from the yz–plane has

– thickness42 dx and

– radius
?

r2 ´ x2

– cross–sectional area 1
4 π
(?

r2 ´ x2
)2 and hence

– volume π
4

(
r2 ´ x2)dx

41 The first octant is the set of all points (x, y, z) with x ě 0, y ě 0 and z ě 0.
42 Yet again what we really do is pick a natural number n, slice the octant of the sphere into n pancakes

each of thickness ∆x = r
n and then take the limit n Ñ8. In the integral ∆x is replaced by dx. Knowing

that this is what is going to happen, we again just skip a few steps.
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• As x runs from 0 to r, the total volume of the part of the sphere in the first octant is
ż r

0

π

4
(
r2 ´ x2)dx =

π

4

[
r2x´ x3

3

]r

0
=

1
6

πr3

and the total volume of the whole sphere is eight times that, which is 4
3 πr3, as ex-

pected.

Example 1.6.2

Example 1.6.3 (Revolving a region)

The region between the lines y = 3, y = 5, x = 0 and x = 4 is rotated around the line
y = 2. Find the volume of the region swept out.

Solution. As with most of these problems, we should start by sketching the problem.

y = 2

y = 3

y = 5

x = 0 x = 4

• Consider the region and slice it into thin vertical strips of width dx.

• Now we are to rotate this region about the line y = 2. Imagine looking straight down
the axis of rotation, y = 2, end on. The symbol in the figure above just to the right of
the end the line y = 2 is supposed to represent your eye43. Here is what you see as
the rotation takes place.

y = 2
y = 3

y = 5

43 Okay okay. . . We missed the pupil. I’m sure there is a pun in there somewhere.
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• Upon rotation about the line y = 2 our strip sweeps out a “washer”

– whose cross–section is a disk of radius 5´ 2 = 3 from which a disk of radius
3´ 2 = 1 has been removed so that it has a

– cross–sectional area of π32 ´ π12 = 8π and a
– thickness dx and hence a
– volume 8π dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
8π dx = (8π)(4) = 32π

Notice that we could also reach this answer by writing the volume as the difference of two
cylinders.

• The outer cylinder has radius (5´ 2) and length 4. This has volume

Vouter = πr2` = π ¨ 32 ¨ 4 = 36π.

• The inner cylinder has radius (3´ 2) and length 4. This has volume

Vinner = πr2` = π ¨ 12 ¨ 4 = 4π.

• The volume we want is the difference of these two, namely

V = Vouter ´Vinner = 32π.

Example 1.6.3

Let us turn up the difficulty a little on this last example.

Example 1.6.4 (Revolving again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line y = 0. Find the volume of the region swept out.

Solution. We can approach this in much the same way as the previous example.

• Consider the region and cut it into thin vertical strips of width dx.
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• When we rotate the region about the line y = 0, each strip sweeps out a thin pancake

– whose cross-section is a disk of radius
?

x with a

– cross-sectional area of π(
?

x)2 = πx and a

– thickness dx and hence a

– volume πxdx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
πxdx =

[π

2
x2
]4

0
= 8π

Example 1.6.4

In the last example we considered rotating a region around the x-axis. Let us do the same
but rotating around the y-axis.

Example 1.6.5 (Revolving yet again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line x = 0. Find the volume of the region swept out.

Solution.

• We will cut the region into horizontal slices, so we should write x as a function of y.
That is, the region is bounded by x = y2, x = 4, y = 0 and y = 2.

• Now slice the region into thin horizontal strips of width dy.

• When we rotate the region about the line x = 0, each strip sweeps out a thin washer

– whose inner radius is y2 and outer radius is 4, and

– thickness is dy and hence

– has volume π(r2
out ´ r2

in)dy = π(16´ y4)dy.
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• As our bottommost strip is at y = 0 and our topmost strip is at y = 2, the total

Volume =

ż 2

0
π(16´ y4)dy =

[
16πy´ π

5
y5
]2

0
= 32π ´ 32π

5
=

128π

5
.

Example 1.6.5

There is another way44 to do this one which we show at the end of this section.

Example 1.6.6 (Pyramid)

Find the volume of the pyramid which has height h and whose base is a square of side b.

Solution. Here is a sketch of the part of the pyramid that is in the first octant; we display
only this portion to make the diagrams simpler. Note that this diagram shows only 1

y

z

x

(0, b
2
h−z
h
, z)

(b/2, 0, 0)

(0, b/2, 0)

(0, 0, h)

h−z

h

y

z

(0, b
2
h−z
h
, z)

(0, b/2, 0)

(0, 0, h)

quarter of the whole pyramid.

• To compute its volume, we slice it up into thin horizontal “square pancakes”. A
typical pancake also appears in the sketch above.

– The pancake at height z is the fraction h´z
h of the distance from the peak of the

pyramid to its base.

– So the full pancake45 at height z is a square of side h´z
h b. As a check, note that

when z = h the pancake has side h´h
h b = 0, and when z = 0 the pancake has

side h´0
h b = b.

– So the pancake has cross-sectional area
( h´z

h b
)2 and thickness46 dz and hence

– volume
( h´z

h b
)2dz.

44 The method is not a core part of the course and should be considered optional.
45 Note that this is the full pancake, not just the part in the first octant.
46 We are again using our Riemann sum avoiding trick.
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• The volume of the whole pyramid (not just the part of the pyramid in the first octant)
is

ż h

0

(h´ z
h

b
)2

dz =
b2

h2

ż h

0
(h´ z)2dz

=
b2

h2

ż 0

h
´t2dt substitution rule with t = (h´ z), dz Ñ ´dt

= ´b2

h2

[
t3

3

]0

h

= ´b2

h2

[
´ h3

3

]

=
1
3

b2h

Example 1.6.6

Let’s ramp up the difficulty a little.

Example 1.6.7 (Napkin Ring)

Suppose you make two napkin rings47 by drilling holes with different diameters through
two wooden balls. One ball has radius r and the other radius R with r ă R. You choose
the diameter of the holes so that both napkin rings have the same height, 2h. See the figure
below.

2r 2h 2R

Which48 ring has more wood in it?

Solution. We’ll compute the volume of the napkin ring with radius R. We can then obtain
the volume of the napkin ring of radius r, by just replacing R ÞÑ r in the result.

• To compute the volume of the napkin ring of radius R, we slice it up into thin hori-
zontal “pancakes”. Here is a sketch of the part of the napkin ring in the first octant
showing a typical pancake.

47 Handy things to have (when combined with cloth napkins) if your parents are coming to dinner and
you want to convince them that you are “taking care of yourself”.

48 A good question to ask to distract your parents from the fact you are serving frozen burritos.
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z

y

x

(0,
√
R2 − h2, h)

(0,
√
R2 − z2, z)

• The coordinates of the two points marked in the yz–plane of that figure are found by
remembering that

– the equation of the sphere is x2 + y2 + z2 = R2.
– The two points have y ą 0 and are in the yz–plane, so that x = 0 for them. So

y =
?

R2 ´ z2.
– In particular, at the top of the napkin ring z = h, so that y =

?
R2 ´ h2.

• The pancake at height z, shown in the sketch, is a “washer” — a circular disk with a
circular hole cut in its center.

– The outer radius of the washer is
?

R2 ´ z2 and
– the inner radius of the washer is

?
R2 ´ h2. So the

– cross–sectional area of the washer is

π
(a

R2 ´ z2
)2 ´ π

(a
R2 ´ h2

)2
= π(h2 ´ z2)

• The pancake at height z

– has thickness dz and
– cross–sectional area π(h2 ´ z2) and hence
– volume π(h2 ´ z2)dz.

• Since z runs from ´h to +h, the total volume of wood in the napkin ring of radius R
is

ż h

´h
π(h2 ´ z2)dz = π

[
h2z´ z3

3

]h

´h

= π
[(

h3 ´ h3

3

)
´
(
(´h)3 ´ (´h)3

3

)]

= π
[2

3
h3 ´ 2

3
(´ h

)3
]

=
4π

3
h3
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This volume is independent of R. Hence the napkin ring of radius r contains precisely the
same volume of wood as the napkin ring of radius R!

Example 1.6.7

Example 1.6.8 (Notch)

A 45˝ notch is cut to the centre of a cylindrical log having radius 20cm. One plane face of
the notch is perpendicular to the axis of the log. See the sketch below. What volume of
wood was removed?

Solution. We show two solutions to this problem which are of comparable difficulty. The
difference lies in the shape of the pancakes we use to slice up the volume. In solution 1
we cut rectangular pancakes parallel to the yz–plane and in solution 2 we slice triangular
pancakes parallel to the xz–plane.

Solution 1:

• Concentrate on the notch. Rotate it around so that the plane face lies in the xy–plane.

• Then slice the notch into vertical rectangles (parallel to the yz–plane) as in the figure
on the left below.

z

x

y

(x,−y, 0)

z

20x
45◦

• The cylindrical log had radius 20cm. So the circular part of the boundary of the base
of the notch has equation x2 + y2 = 202. (We’re putting the origin of the xy–plane at
the centre of the circle.) If our coordinate system is such that x is constant on each
slice, then

96



INTEGRATION 1.6 VOLUMES

– the base of the slice is the line segment from (x,´y, 0) to (x,+y, 0) where y =?
202 ´ x2 so that

– the slice has width 2y = 2
?

202 ´ x2 and

– height x (since the upper face of the notch is at 45˝ to the base — see the side
view sketched in the figure on the right above).

– So the slice has cross–sectional area 2x
?

202 ´ x2.

• On the base of the notch x runs from 0 to 20 so the volume of the notch is

V =

ż 20

0
2x
a

202 ´ x2dx

Make the change of variables u = 202 ´ x2 (don’t forget to change dx Ñ ´ 1
2x du):

V =

ż 0

202
´?u du

=

[
´u3/2

3/2

]0

202

=
2
3

203 =
16, 000

3

Solution 2:

• Concentrate of the notch. Rotate it around so that its base lies in the xy–plane with
the skinny edge along the y–axis.

• Slice the notch into triangles parallel to the xz–plane as in the figure on the left below.
In the figure below, the triangle happens to lie in a plane where y is negative.

z

x

y

(x, y, 0)

(0, y, 0)

z

20x
45◦

• The cylindrical log had radius 20cm. So the circular part of the boundary of the base
of the notch has equation x2 + y2 = 202. Our coordinate system is such that y is
constant on each slice, so that

97



INTEGRATION 1.6 VOLUMES

– the base of the triangle is the line segment from (0, y, 0) to (x, y, 0) where x =a
202 ´ y2 so that

– the triangle has base x =
a

202 ´ y2 and

– height x =
a

202 ´ y2 (since the upper face of the notch is at 45˝ to the base —
see the side view sketched in the figure on the right above).

– So the slice has cross–sectional area 1
2

(a
202 ´ y2

)2.

• On the base of the notch y runs from ´20 to 20, so the volume of the notch is

V = 1
2

ż 20

´20
(202 ´ y2)dy

=

ż 20

0
(202 ´ y2)dy

=
[
202y´ y3

3

]20

0

=
2
3

203 =
16, 000

3

Example 1.6.8

§§ Optional — Cylindrical Shells

Let us return to Example 1.6.5 in which we rotate a region around the y-axis. Here we
show another solution to this problem which is obtained by slicing the region into vertical
strips. When rotated about the y-axis, each such strip sweeps out a thin cylindrical shell.
Hence the name of this approach (and this subsection).

Example 1.6.9 (Revolving yet again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line x = 0. Find the volume of the region swept out.

Solution.

• Consider the region and cut it into thin vertical strips of width dx.
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• When we rotate the region about the line y = 0, each strip sweeps out a thin cylin-
drical shell

– whose radius is x,

– height is
?

x, and

– thickness is dx and hence

– has volume 2π ˆ radiusˆ heightˆ thickness = 2πx3/2dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
2πx3/2dx =

[
4π

5
x5/2

]4

0
=

4π

5
¨ 32 =

128π

5

which (thankfully) agrees with our previous computation.

Example 1.6.9

1.7Ĳ Integration by Parts

The fundamental theorem of calculus tells us that it is very easy to integrate a derivative.
In particular, we know that

ż
d
dx

(F(x))dx = F(x) + C

We can exploit this in order to develop another rule for integration — in particular a rule
to help us integrate products of simpler function such as

ż
xexdx

In so doing we will arrive at a method called “integration by parts”.
To do this we start with the product rule and integrate. Recall that the product rule

says

d
dx

u(x)v(x) = u1(x) v(x) + u(x) v1(x)

Integrating this gives
ż [

u1(x) v(x) + u(x) v1(x)
]
dx =

[
a function whose derivative is u1v + uv1

]
+ C

= u(x)v(x) + C

Now this, by itself, is not terribly useful. In order to apply it we need to have a function
whose integrand is a sum of products that is in exactly this form u1(x)v(x) + u(x)v1(x).
This is far too specialised.
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However if we tease this apart a little:
ż [

u1(x) v(x) + u(x) v1(x)
]
dx =

ż
u1(x) v(x)dx +

ż
u(x) v1(x)dx

Bring one of the integrals to the left-hand side

u(x)v(x)´
ż

u1(x) v(x)dx =

ż
u(x) v1(x)dx

Swap left and right sides
ż

u(x) v1(x)dx = u(x)v(x)´
ż

u1(x) v(x)dx

In this form we take the integral of one product and express it in terms of the integral of
a different product. If we express it like that, it doesn’t seem too useful. However, if the
second integral is easier, then this process helps us.

Let us do a simple example before explaining this more generally.

Example 1.7.1 (
ş

xexdx)

Compute the integral
ż

xexdx.

Solution.

• We start by taking the equation above
ż

u(x) v1(x)dx = u(x)v(x)´
ż

u1(x) v(x)dx

• Now set u(x) = x and v1(x) = ex. How did we know how to make this choice? We
will explain some strategies later. For now, let us just accept this choice and keep
going.

• In order to use the formula we need to know u1(x) and v(x). In this case it is quite
straightforward: u1(x) = 1 and v(x) = ex.

• Plug everything into the formula:
ż

xexdx = xex ´
ż

exdx

So our original more difficult integral has been turned into a question of computing
an easy one.

= xex ´ ex + C

• We can check our answer by differentiating:

d
dx

(xex ´ ex + C) = xex + 1 ¨ exlooooomooooon
by product rule

´ex + 0

= xex as required.
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Example 1.7.1

The process we have used in the above example is called “integration by parts”. When
our integrand is a product we try to write it as u(x)v1(x) — we need to choose one factor
to be u(x) and the other to be v1(x). We then compute u1(x) and v(x) and then apply the
following theorem:

Let u(x) and v(x) be continuously differentiable. Then
ż

u(x) v1(x)dx = u(x) v(x)´
ż

v(x) u1(x)dx

If we write dv for v1(x)dx and du for u1(x)dx (as the substitution rule suggests),
then the formula becomes

ż
udv = u v´

ż
vdu

The application of this formula is known as integration by parts.
The corresponding statement for definite integrals is

ż b

a
u(x) v1(x)dx = u(b) v(b)´ u(a) v(a)´

ż b

a
v(x) u1(x)dx

Theorem 1.7.2 (Integration by parts).

Integration by parts is not as easy to apply as the product rule for derivatives. This is
because it relies on us

(1) judiciously choosing u(x) and v1(x), then

(2) computing u1(x) and v(x) — which requires us to antidifferentiate v1(x), and finally

(3) that the integral
ş

u1(x)v(x)dx is easier than the integral we started with.

Notice that any antiderivative of v1(x) will do. All antiderivatives of v1(x) are of the
form v(x) + A with A a constant. Putting this into the integration by parts formula gives

ż
u(x)v1(x)dx = u(x) (v(x) + A)´

ż
u1(x) (v(x) + A)dx

= u(x)v(x) + Au(x)´
ż

u1(x)v(x)dx´ A
ż

u1(x)dx
loooooomoooooon
=Au(x)+C

= u(x)v(x)´
ż

u1(x)v(x)dx + C

So that constant A will always cancel out.
In most applications (but not all) our integrand will be a product of two factors so we

have two choices for u(x) and v1(x). Typically one of these choices will be “good” (in that
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it results in a simpler integral) while the other will be “bad” (we cannot antidifferentiate
our choice of v1(x) or the resulting integral is harder). Let us illustrate what we mean by
returning to our previous example.

Example 1.7.3 (
ş

xexdx — again)

Our integrand is the product of two factors

x and ex

This gives us two obvious choices of u and v1:

u(x) = x v1(x) = ex

or
u(x) = ex v1(x) = x

We should explore both choices:

1. If take u(x) = x and v1(x) = ex. We then quickly compute

u1(x) = 1 and v(x) = ex

which means we will need to integrate (in the right-hand side of the integration by
parts formula)

ż
u1(x)v(x)dx =

ż
1 ¨ exdx

which looks straightforward. This is a good indication that this is the right choice of
u(x) and v1(x).

2. But before we do that, we should also explore the other choice, namely u(x) = ex

and v1(x) = x. This implies that

u1(x) = ex and v(x) =
1
2

x2

which means we need to integrate
ż

u1(x)v(x)dx =

ż
1
2

x2 ¨ exdx.

This is at least as hard as the integral we started with. Hence we should try the first
choice.

With our choice made, we integrate by parts to get
ż

xexdx = xex ´
ż

exdx

= xex ´ ex + C.

The above reasoning is a very typical workflow when using integration by parts.
Example 1.7.3

Integration by parts is often used
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• to eliminate factors of x from an integrand like xex by using that d
dx x = 1 and

• to eliminate a log x from an integrand by using that d
dx log x = 1

x and

• to eliminate inverse trig functions, like arctan x, from an integrand by using that, for
example, d

dx arctan x = 1
1+x2 .

Example 1.7.4 (
ş

x sin xdx)

Solution.

• Again we have a product of two factors giving us two possible choices.

(1) If we choose u(x) = x and v1(x) = sin x, then we get

u1(x) = 1 and v(x) = ´ cos x

which is looking promising.

(2) On the other hand if we choose u(x) = sin x and v1(x) = x, then we have

u1(x) = cos x and v(x) =
1
2

x2

which is looking worse — we’d need to integrate
ş 1

2 x2 cos xdx.

• So we stick with the first choice. Plugging u(x) = x, v(x) = ´ cos x into integration
by parts gives us

ż
x sin xdx = ´x cos x´

ż
1 ¨ (´ cos x)dx

= ´x cos x + sin x + C

• Again we can check our answer by differentiating:

d
dx

(´x cos x + sin x + C) = ´ cos x + x sin x + cos x + 0

= x sin xX

Once we have practised this a bit we do not really need to write as much. Let us solve
it again, but showing only what we need to.

Solution.

• We use integration by parts to solve the integral.

• Set u(x) = x and v1(x) = sin x. Then u1(x) = 1 and v(x) = ´ cos x, and
ż

x sin xdx = ´x cos x +

ż
cos xdx

= ´x cos x + sin x + C.
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Example 1.7.4

It is pretty standard practice to reduce the notation even further in these problems. As
noted above, many people write the integration by parts formula as

ż
udv = uv´

ż
vdu

where du, dv are shorthand for u1(x)dx, v1(x)dx. Let us write up the previous example
using this notation.

Example 1.7.5 (
ş

x sin xdx yet again)

Solution. Using integration by parts, we set u = x and dv = sin xdx. This makes du = 1dx

and v = ´ cos x. Consequently
ż

x sin xdx =

ż
udv

= uv´
ż

vdu

= ´x cos x +

ż
cos xdx

= ´x cos x + sin x + C

You can see that this is a very neat way to write up these problems and we will continue
using this shorthand in the examples that follow below.

Example 1.7.5

We can also use integration by parts to eliminate higher powers of x. We just need to
apply the method more than once.

Example 1.7.6
(ş

x2exdx
)

Solution.

• Let u = x2 and dv = exdx. This then gives du = 2xdx and v = ex, and
ż

x2exdx = x2ex ´
ż

2xexdx

• So we have reduced the problem of computing the original integral to one of inte-
grating 2xex. We know how to do this — just integrate by parts again:

ż
x2exdx = x2ex ´

ż
2xexdx set u = 2x, dv = exdx

= x2ex ´
(

2xex ´
ż

2exdx
)

since du = 2dx, v = ex

= x2ex ´ 2xex + 2ex + C
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• We can, if needed, check our answer by differentiating:

d
dx

(
x2ex ´ 2xex + 2ex + C

)
=
(

x2ex + 2xex
)
´ (2xex + 2ex) + 2ex + 0

= x2exX

A similar iterated application of integration by parts will work for integrals
ż

P(x) (Aeax + B sin(bx) + C cos(cx))dx

where P(x) is a polynomial and A, B, C, a, b, c are constants.
Example 1.7.6

Now let us look at integrands containing logarithms. We don’t know the antiderivative
of log x, but we can eliminate log x from an integrand by using integration by parts with
u = log x. Remember log x = loge x = ln x.

Example 1.7.7 (
ş

x log xdx)

Solution.

• We have two choices for u and dv.

(1) Set u = x and dv = log xdx. This gives du = dx but v is hard to compute —
we haven’t done it yet49. Before we go further along this path, we should look
to see what happens with the other choice.

(2) Set u = log x and dv = xdx. This gives du = 1
x dx and v = 1

2 x2, and we have to
integrate

ż
v du =

ż
1
x
¨ 1

2
x2dx

which is easy.

• So we proceed with the second choice.
ż

x log xdx =
1
2

x2 log x´
ż

1
2

xdx

=
1
2

x2 log x´ 1
4

x2 + C

• We can check our answer quickly:

d
dx

(x2

2
ln x´ x2

4
+ C

)
= x ln x +

x2

2
1
x
´ x

2
+ 0 = x ln x

49 We will soon.
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Example 1.7.7

Example 1.7.8 (
ş

log xdx)

It is not immediately obvious that one should use integration by parts to compute the in-
tegral

ż
log xdx

since the integrand is not a product. But we should persevere — indeed this is a situation
where our shorter notation helps to clarify how to proceed.

Solution.

• In the previous example we saw that we could remove the factor log x by setting
u = log x and using integration by parts. Let us try repeating this. When we make
this choice, we are then forced to take dv = dx — that is we choose v1(x) = 1. Once
we have made this sneaky move everything follows quite directly.

• We then have du = 1
x dx and v = x, and the integration by parts formula gives us

ż
log xdx = x log x´

ż
1
x
¨ xdx

= x log x´
ż

1dx

= x log x´ x + C

• As always, it is a good idea to check our result by verifying that the derivative of the
answer really is the integrand.

d
dx
(
x ln x´ x + C

)
= ln x + x

1
x
´ 1 + 0 = ln x

Example 1.7.8

The same method works almost exactly to compute the antiderivatives of arcsin(x)
and arctan(x):

Example 1.7.9 (
ş

arctan(x)dx and
ş

arcsin(x)dx)

Compute the antiderivatives of the inverse sine and inverse tangent functions.

Solution.

• Again neither of these integrands are products, but that is no impediment. In both
cases we set dv = dx (ie v1(x) = 1) and choose v(x) = x.
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• For inverse tan we choose u = arctan(x), so du = 1
1+x2 dx:

ż
arctan(x)dx = x arctan(x)´

ż
x ¨ 1

1 + x2 dx now use substitution rule

= x arctan(x)´
ż

w1(x)
2

¨ 1
w

dx with w(x) = 1 + x2, w1(x) = 2x

= x arctan(x)´ 1
2

ż
1
w

dw

= x arctan(x)´ 1
2

log |w|+ C

= x arctan(x)´ 1
2

log |1 + x2|+ C but 1 + x2 ą 0, so

= x arctan(x)´ 1
2

log(1 + x2) + C

• Similarly for inverse sine we choose u = arcsin(x) so du = 1?
1´x2

dx:

ż
arcsin(x)dx = x arcsin(x)´

ż
x?

1´ x2
dx now use substitution rule

= x arcsin(x)´
ż ´w1(x)

2
¨w´1/2dx with w(x) = 1´ x2, w1(x) = ´2x

= x arcsin(x) +
1
2

ż
w´1/2dw

= x arcsin(x) +
1
2
¨ 2w1/2 + C

= x arcsin(x) +
a

1´ x2 + C

• Both can be checked quite quickly by differentiating — but we leave that as an exer-
cise for the reader.

Example 1.7.9

There are many other examples we could do, but we’ll finish with a tricky one.

Example 1.7.10 (
ş

ex sin xdx)

Solution. Let us attempt this one a little naively and then we’ll come back and do it more

carefully (and successfully).

• We can choose either u = ex, dv = sin xdx or the other way around.

1. Let u = ex, dv = sin xdx. Then du = exdx and v = ´ cos x. This gives
ż

ex sin x = ´ex cos x +

ż
ex cos xdx

So we are left with an integrand that is very similar to the one we started with.
What about the other choice?
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2. Let u = sin x, dv = exdx. Then du = cos xdx and v = ex. This gives
ż

ex sin x = ex sin x´
ż

ex cos xdx

So we are again left with an integrand that is very similar to the one we started
with.

• How do we proceed? — It turns out to be easier if you do both
ş

ex sin xdx andş
ex cos xdx simultaneously. We do so in the next example.

Example 1.7.10

Example 1.7.11
(şb

a ex sin xdx and
şb

a ex cos xdx
)

This time we’re going to do the two integrals

I1 =

ż b

a
ex sin xdx I2 =

ż b

a
ex cos xdx

at more or less the same time.

• First

I1 =

ż b

a
ex sin xdx =

ż b

a
udv with u = ex, dv = sin xdx

so v = ´ cos x, du = exdx

=
[
´ ex cos x

]b

a
+

ż b

a
ex cos xdx

We have not found I1 but we have related it to I2.

I1 =
[
´ ex cos x

]b

a
+ I2

• Now start over with I2.

I2 =

ż b

a
ex cos xdx =

ż b

a
udv with u = ex, dv = cos xdx

so v = sin x, du = exdx

=
[
ex sin x

]b

a
´
ż b

a
ex sin xdx

Once again, we have not found I2 but we have related it back to I1.

I2 =
[
ex sin x

]b

a
´ I1
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• So summarising, we have

I1 =
[
´ ex cos x

]b

a
+ I2 I2 =

[
ex sin x

]b

a
´ I1

• So now, substitute the expression for I2 from the second equation into the first equa-
tion to get

I1 =
[
´ ex cos x + ex sin x

]b

a
´ I1 which implies I1 =

1
2

[
ex( sin x´ cos x

)]b

a

If we substitute the other way around we get

I2 =
[
ex sin x + ex cos x

]b

a
´ I2 which implies I2 =

1
2

[
ex( sin x + cos x

)]b

a

That is,
ż b

a
ex sin xdx =

1
2

[
ex( sin x´ cos x

)]b

a

ż b

a
ex cos xdx =

1
2

[
ex( sin x + cos x

)]b

a

• This also says, for example, that 1
2 ex( sin x´ cos x

)
is an antiderivative of ex sin x so

that
ż

ex sin xdx =
1
2

ex( sin x´ cos x
)
+ C

• Note that we can always check whether or not this is correct. It is correct if and only
if the derivative of the right hand side is ex sin x. Here goes. By the product rule

d
dx

[1
2

ex( sin x´ cos x
)
+ C

]
=

1
2

[
ex( sin x´ cos x

)
+ ex( cos x + sin x

)]
= ex sin x

which is the desired derivative.

• There is another way to find
ş

ex sin xdx and
ş

ex cos xdx that, in contrast to the above
computations, doesn’t involve any trickery. But it does require the use of complex
numbers and so is beyond the scope of this course. The secret is to use that sin x =
eix´e´ix

2i and cos x = eix+e´ix

2 , where i is the square root of ´1 of the complex number
system. See Example B.2.6.

Example 1.7.11

1.8Ĳ Trigonometric Integrals

Integrals of polynomials of the trigonometric functions sin x, cos x, tan x and so on, are
generally evaluated by using a combination of simple substitutions and trigonometric
identities. There are of course a very large number50 of trigonometric identities, but usu-
ally we use only a handful of them. The most important three are:

50 The more pedantic reader could construct an infinite list of them.
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sin2 x + cos2 x = 1

Equation 1.8.1.

sin(2x) = 2 sin x cos x

Equation 1.8.2.

cos(2x) = cos2 x´ sin2 x

= 2 cos2 x´ 1

= 1´ 2 sin2 x

Equation 1.8.3.

Notice that the last two lines of Equation (1.8.3) follow from the first line by replacing
either sin2 x or cos2 x using Equation (1.8.1). It is also useful to rewrite these last two lines:

sin2 x =
1´ cos(2x)

2

Equation 1.8.4.

cos2 x =
1 + cos(2x)

2

Equation 1.8.5.

These last two are particularly useful since they allow us to rewrite higher powers of
sine and cosine in terms of lower powers. For example:

sin4(x) =
[

1´ cos(2x)
2

]2

by Equation (1.8.4)

=
1
4
´ 1

2
cos(2x) +

1
4

cos2(2x)looomooon
do it again

use Equation (1.8.5)

=
1
4
´ 1

2
cos(2x) +

1
8
(1 + cos(4x))

=
3
8
´ 1

2
cos(2x) +

1
8

cos(4x)
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So while it was hard to integrate sin4(x) directly, the final expression is quite straightfor-
ward (with a little substitution rule).

There are many such tricks for integrating powers of trigonometric functions. Here we
concentrate on two families

ż
sinm x cosn xdx and

ż
tanm x secn xdx

for integer n, m. The details of the technique depend on the parity of n and m — that is,
whether n and m are even or odd numbers.

1.8.1 §§ Integrating
ş

sinm x cosn xdx

§§§ One of n and m is Odd

Consider the integral
ş

sin2 x cos xdx. We can integrate this by substituting u = sin x and
du = cos xdx. This gives

ż
sin2 x cos xdx =

ż
u2du

=
1
3

u3 + C =
1
3

sin3 x + C

This method can be used whenever n is an odd integer.

• Substitute u = sin x and du = cos xdx.

• This leaves an even power of cosines — convert them using cos2 x = 1´ sin2 x =
1´ u2.

Here is an example.

Example 1.8.6
(ş

sin2 x cos3 xdx
)

Start by factoring off one power of cos x to combine with dx to get cos xdx = du.
ż

sin2 x cos3 xdx =

ż
sin2 xloomoon
=u2

cos2 xloomoon
=1´u2

cos xdxlooomooon
=du

set u = sin x

=

ż
u2 (1´ u2)du

=
u3

3
´ u5

5
+ C

=
sin3 x

3
´ sin5 x

5
+ C

Example 1.8.6

Of course if m is an odd integer we can use the same strategy with the roles of sin x
and cos x exchanged. That is, we substitute u = cos x, du = ´ sin xdx and sin2 x =
1´ cos2 x = 1´ u2.
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§§§ Both n and m are Even

If m and n are both even, the strategy is to use the trig identities (1.8.4) and (1.8.5) to get
back to the m or n odd case. This is typically more laborious than the previous case we
studied. Here are a couple of examples that arise quite commonly in applications.

Example 1.8.7
(ş

cos2 xdx
)

By (1.8.5)
ż

cos2 xdx =
1
2

ż [
1 + cos(2x)

]
dx=

1
2

[
x +

1
2

sin(2x)
]
+ C

Example 1.8.7

Example 1.8.8
(ş

cos4 xdx
)

First we’ll prepare the integrand cos4 x for easy integration by applying (1.8.5) a couple
times. We have already used (1.8.5) once to get

cos2 x =
1
2
[
1 + cos(2x)

]

Squaring it gives

cos4 x =
1
4
[
1 + cos(2x)

]2
=

1
4
+

1
2

cos(2x) +
1
4

cos2(2x)

Now by (1.8.5) a second time

cos4 x =
1
4
+

1
2

cos(2x) +
1
4

1 + cos(4x)
2

=
3
8
+

1
2

cos(2x) +
1
8

cos(4x)

Now it’s easy to integrate
ż

cos4 xdx =
3
8

ż
dx +

1
2

ż
cos(2x)dx +

1
8

ż
cos(4x)dx

=
3
8

x +
1
4

sin(2x) +
1

32
sin(4x) + C

Example 1.8.8

Example 1.8.9
(ş

cos2 x sin2 xdx
)

Here we apply both (1.8.4) and (1.8.5).
ż

cos2 x sin2 xdx =
1
4

ż [
1 + cos(2x)

][
1´ cos(2x)

]
dx

=
1
4

ż [
1´ cos2(2x)

]
dx
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We can then apply (1.8.5) again

=
1
4

ż [
1´ 1

2
(1 + cos(4x))

]
dx

=
1
8

ż [
1´ cos(4x)

]
dx

=
1
8

x´ 1
32

sin(4x) + C

Oof! We could also have done this one using (1.8.2) to write the integrand as sin2(2x) and
then used (1.8.4) to write it in terms of cos(4x).

Example 1.8.9

Example 1.8.10
(şπ

0 cos2 xdx and
şπ

0 sin2 xdx
)

Of course we can compute the definite integral
şπ

0 cos2 xdx by using the antiderivative for
cos2 x that we found in Example 1.8.7. But here is a trickier way to evaluate that inte-
gral, and also the integral

şπ
0 sin2 xdx at the same time, very quickly without needing the

antiderivative of Example 1.8.7.

Solution.

• Observe that
şπ

0 cos2 xdx and
şπ

0 sin2 xdx are equal because they represent the same
area — look at the graphs below — the darkly shaded regions in the two graphs
have the same area and the lightly shaded regions in the two graphs have the same
area.

y

x
ππ/2

1
y = sin2 x

y

x
ππ/2

1
y = cos2 x

• Consequently,
ż π

0
cos2 xdx =

ż π

0
sin2 xdx =

1
2

[ ż π

0
sin2 xdx +

ż π

0
cos2 xdx

]

=
1
2

ż π

0

[
sin2 x + cos2 x

]
dx

=
1
2

ż π

0
dx

=
π

2
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Example 1.8.10

1.8.2 §§ Integrating
ş

tanm x secn xdx

The strategy for dealing with these integrals is similar to the strategy that we used to
evaluate integrals of the form

ş
sinm x cosn xdx and again depends on the parity of the

exponents n and m. It uses51

d
dx

tan x = sec2 x
d
dx

sec x = sec x tan x 1 + tan2 x = sec2 x

We split the methods for integrating
ş

tanm x secn xdx into 5 cases which we list below.
These will become much more clear after an example (or two).

(1) When m is odd and any n — rewrite the integrand in terms of sin x and cos x:

tanm x secn xdx =

(
sin x
cos x

)m ( 1
cos x

)n
dx

=
sinm´1 x
cosn+m x

sin xdx

and then substitute u = cos x, du = ´ sin xdx, sin2 x = 1 ´ cos2 x = 1 ´ u2. See
Examples 1.8.11 and 1.8.12.

(2) Alternatively, if m is odd and n ě 1 move one factor of sec x tan x to the side so that
you can see sec x tan xdx in the integral, and substitute u = sec x, du = sec x tan x dx
and tan2 x = sec2 x´ 1 = u2 ´ 1. See Example 1.8.13.

(3) If n is even with n ě 2, move one factor of sec2 x to the side so that you can see sec2 xdx
in the integral, and substitute u = tan x, du = sec2 x dx and sec2 x = 1 + tan2 x =
1 + u2. See Example 1.8.14.

(4) When m is even and n = 0 — that is the integrand is just an even power of tangent
— we can still use the u = tan x substitution, after using tan2 x = sec2 x´ 1 (possibly
more than once) to create a sec2 x. See Example 1.8.16.

(5) This leaves the case n odd and m even. There are strategies like those above for treating
this case. But they are more complicated and also involve more tricks (that basically
have to be memorized). Examples using them are provided in the optional section
entitled “Integrating sec x, csc x, sec3 x and csc3 x”, below. A more straight forward
strategy uses another technique called “partial fractions”. We shall return to this strat-
egy after we have learned about partial fractions. See Example 1.10.5 and 1.10.6 in
Section 1.10.

51 You will need to memorise the derivatives of tangent and secant. However there is no need to memorise
1 + tan2 x = sec2 x. To derive it very quickly just divide sin2 x + cos2 x = 1 by cos2 x.
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§§§ m is Odd — Odd Power of Tangent

In this case we rewrite the integrand in terms of sine and cosine and then substitute u =
cos x, du = ´ sin xdx.

Example 1.8.11 (
ş

tan xdx)

Solution.

• Write the integrand tan x = 1
cos x sin x.

• Now substitute u = cos x, du = ´ sin x dx just as we did in treating integrands of
the form sinm x cosn x with m odd.ż

tan x dx =

ż
1

cos x
sin x dx substitute u = cos x

=

ż
1
u
¨ (´1)du

= ´ log |u|+ C
= ´ log |cos x|+ C can also write in terms of secant

= log |cos x|´1 + C = log |sec x|+ C

Example 1.8.11

Example 1.8.12
(ş

tan3 xdx
)

Solution.

• Write the integrand tan3 x = sin2 x
cos3 x sin x.

• Again substitute u = cos x, du = ´ sin x dx. We rewrite the remaining even powers
of sin x using sin2 x = 1´ cos2 x = 1´ u2.

• Hence
ż

tan3 x dx =

ż
sin2 x
cos3 x

sin x dx substitute u = cos x

=

ż
1´ u2

u3 (´1)du

=
u´2

2
+ log |u|+ C

=
1

2 cos2 x
+ log |cos x|+ C can rewrite in terms of secant

=
1
2

sec2 x´ log |sec x|+ C

Example 1.8.12
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§§§ m is Odd and n ě 1 — Odd Power of Tangent and at Least One Secant

Here we collect a factor of tan x sec x and then substitute u = sec x and du = sec x tan xdx.
We can then rewrite any remaining even powers of tanx in terms of sec x using tan2 x =
sec2 x´ 1 = u2 ´ 1.

Example 1.8.13
(ş

tan3 x sec4 xdx
)

Solution.

• Start by factoring off one copy of sec x tan x and combine it with dx to form sec x tan xdx,
which will be du.

• Now substitute u = sec x, du = sec x tan xdx and tan2 x = sec2 x´ 1 = u2 ´ 1.

• This gives

ż
tan3 x sec4 xdx =

ż
tan2 xloomoon

u2´1

sec3 xloomoon
u3

sec x tan xdxloooooomoooooon
du

=

ż [
u2 ´ 1]u3du

=
u6

6
´ u4

4
+ C

=
1
6

sec6 x´ 1
4

sec4 x + C

Example 1.8.13

§§§ n ě 2 is Even — a Positive Even Power of Secant

In the previous case we substituted u = sec x, while in this case we substitute u = tan x.
When we do this we write du = sec2 xdx and then rewrite any remaining even powers of
sec x as powers of tan x using sec2 x = 1 + tan2 x = 1 + u2.

Example 1.8.14
(ş

sec4 xdx
)

Solution.

• Factor off one copy of sec2 x and combine it with dx to form sec2 xdx, which will be
du.

• Then substitute u = tan x, du = sec2 xdx and rewrite any remaining even powers of
sec x as powers of tan x = u using sec2 x = 1 + tan2 x = 1 + u2.
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• This gives
ż

sec4 xdx =

ż
sec2 xloomoon
1+u2

sec2 xdxlooomooon
du

=

ż [
1 + u2]du

= u +
u3

3
+ C

= tan x +
1
3

tan3 x + C

Example 1.8.14

Example 1.8.15
(ş

tan3 x sec4 xdx — redux
)

Solution. Let us revisit this example using this slightly different approach.

• Factor off one copy of sec2 x and combine it with dx to form sec2 xdx, which will be
du.

• Then substitute u = tan x, du = sec2 xdx and rewrite any remaining even powers of
sec x as powers of tan x = u using sec2 x = 1 + tan2 x = 1 + u2.

• This gives
ż

tan3 x sec4 xdx =

ż
tan3 xloomoon

u3

sec2 xloomoon
1+u2

sec2 xdxlooomooon
du

=

ż [
u3 + u5]du

=
u4

4
+

u6

6
+ C

=
1
4

tan4 x +
1
6

tan6 x + C

• This is not quite the same as the answer we got above in Example 1.8.13. However
we can show they are (nearly) equivalent. To do so we substitute v = sec x and
tan2 x = sec2 x´ 1 = v2 ´ 1:

1
6

tan6 x +
1
4

tan4 x =
1
6
(v2 ´ 1)3 +

1
4
(v2 ´ 1)2

=
1
6
(v6 ´ 3v4 + 3v2 ´ 1) +

1
4
(v4 ´ 2v2 + 1)

=
v6

6
´ v4

2
+

v2

2
´ 1

6
+

v4

4
´ v2

2
+

1
4

=
v6

6
´ v4

4
+ 0 ¨ v2 +

(
1
4
´ 1

6

)

=
1
6

sec6 x´ 1
4

sec4 x +
1

12
.
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So while 1
6 tan6 x+ 1

4 tan4 x ‰ 1
6 sec6 x´ 1

4 sec4 x, they only differ by a constant. Hence
both are valid antiderivatives of tan3 x sec4 x.

Example 1.8.15

§§§ m is Even and n = 0 — Even Powers of Tangent

We integrate this by setting u = tan x. For this to work we need to pull one factor of sec2 x
to one side to form du = sec2 xdx. To find this factor of sec2 x we (perhaps repeatedly)
apply the identity tan2 x = sec2 x´ 1.

Example 1.8.16
(ş

tan4 xdx
)

Solution.

• There is no sec2 x term present, so we try to create it from tan4 x by using tan2 x =
sec2 x´ 1.

tan4 x = tan2 x ¨ tan2 x

= tan2 x
[

sec2 x´ 1
]

= tan2 x sec2 x´ tan2 xloomoon
sec2 x´1

= tan2 x sec2 x´ sec2 x + 1

• Now we can substitute u = tan x, du = sec2 xdx.
ż

tan4 xdx =

ż
tan2 xloomoon

u2

sec2 xdxlooomooon
du

´
ż

sec2 xdxlooomooon
du

+

ż
dx

=

ż
u2du´

ż
du +

ż
dx

=
u3

3
´ u + x + C

=
tan3 x

3
´ tan x + x + C

Example 1.8.16

Example 1.8.17
(ş

tan8 xdx
)

Solution. Let us try the same approach.
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• First pull out a factor of tan2 x to create a sec2 x factor:

tan8 x = tan6 x ¨ tan2 x

= tan6 x ¨ [ sec2 x´ 1
]

= tan6 x sec2 x´ tan6 x

The first term is now ready to be integrated, but we need to reapply the method to
the second term:

= tan6 x sec2 x´ tan4 x ¨ [ sec2 x´ 1
]

= tan6 x sec2 x´ tan4 x sec2 x + tan4 x do it again

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x ¨ [ sec2 x´ 1
]

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´ tan2 x and again

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´ [ sec2 x´ 1
]

• Hence

ż
tan8 xdx =

ż [
tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´ sec2 x + 1

]
dx

=

ż [
tan6 x´ tan4 x + tan2 x´ 1

]
sec2 xdx +

ż
dx

=

ż [
u6 ´ u4 + u2 ´ 1

]
du + x + C

=
u7

7
´ u5

5
+

u3

3
´ u + x + C

=
1
7

tan7 x´ 1
5

tan5 x +
1
3

tan3 x´ tan x + x + C

Indeed this example suggests that for integer k ě 0:

ż
tan2k xdx =

1
2k´ 1

tan2k´1(x)´ 1
2k´ 3

tan2k´3 x + ¨ ¨ ¨ ´ (´1)k tan x + (´1)kx + C

Example 1.8.17

This last example also shows how we might integrate an odd power of tangent:

Example 1.8.18
(ş

tan7 x
)

Solution. We follow the same steps
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• Pull out a factor of tan2 x to create a factor of sec2 x:

tan7 x = tan5 x ¨ tan2 x

= tan5 x ¨ [ sec2 x´ 1
]

= tan5 x sec2 x´ tan5 x do it again

= tan5 x sec2 x´ tan3 x ¨ [ sec2 x´ 1
]

= tan5 x sec2 x´ tan3 x sec2 x + tan3 x and again

= tan5 x sec2 x´ tan3 x sec2 x + tan x
[

sec2 x´ 1
]

= tan5 x sec2 x´ tan3 x sec2 x + tan x sec2 x´ tan x

• Now we can substitute u = tan x and du = sec2 xdx and also use the result from
Example 1.8.11 to take care of the last term:

ż
tan7 xdx =

ż [
tan5 x sec2 x´ tan3 x sec2 x + tan x sec2 x

]
dx´

ż
tan xdx

Now factor out the common sec2 x term and integrate tan x via Example 1.8.11

=

ż [
tan5 x´ tan3 x + tan x

]
sec2 x dx´ log | sec x|+ C

=

ż [
u5 ´ u3 + u

]
du´ log | sec x|+ C

=
u6

6
´ u4

4
+

u2

2
´ log | sec x|+ C

=
1
6

tan6 x´ 1
4

tan4 x +
1
2

tan2 x´ log | sec x|+ C

This example suggests that for integer k ě 0:
ż

tan2k+1 xdx =
1
2k

tan2k(x)´ 1
2k´ 2

tan2k´2 x + ¨ ¨ ¨ ´ (´1)k 1
2

tan2 x + (´1)k log | sec x|+ C

Example 1.8.18

Of course we have not considered integrals involving powers of cot x and csc x. But
they can be treated in much the same way as tan x and sec x were.

1.8.3 §§ Optional — integrating sec x, csc x, sec3 x and csc3 x

As noted above, when n is odd and m is even, one can use similar strategies as to the
previous cases. However the computations are often more involved and more tricks need
to be deployed. For this reason we make this section optional — the computations are
definitely non-trivial. Rather than trying to construct a coherent “method” for this case,
we instead give some examples to give the idea of what to expect.
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Example 1.8.19 (
ş

sec xdx — by trickery)

Solution. There is a very sneaky trick to compute this integral52.

• The standard trick for this integral is to multiply the integrand by 1 = sec x+tan x
sec x+tan x

sec x = sec x
sec x + tan x
sec x + tan x

=
sec2 x + sec x tan x

sec x + tan x

• Notice now that the numerator of this expression is exactly the derivative its denom-
inator. Hence we can substitute u = sec x + tan x and du = (sec x tan x + sec2 x)dx.

• Hence
ż

sec xdx =

ż
sec x

sec x + tan x
sec x + tan x

dx =

ż
sec2 x + sec x tan x

sec x + tan x
dx

=

ż
1
u

du

= log |u|+ C
= log | sec x + tan x|+ C

• The above trick appears both totally unguessable and very hard to remember. For-
tunately, there is a simple way53 to recover the trick. Here it is.

– The goal is to guess a function whose derivative is sec x.

– So get out a table of derivatives and look for functions whose derivatives at
least contain sec x. There are two:

d
dx

tan x = sec2 x

d
dx

sec x = tan x sec x

– Notice that if we add these together we get

d
dx
(

sec x + tan x
)
= (sec x + tan x) sec x ùñ

d
dx
(

sec x + tan x
)

sec x + tan x
= sec x

– We’ve done it! The right hand side is sec x and the left hand side is the deriva-
tive of log | sec x + tan x|.

52 The integral of secant played an important role in constructing accurate Mercator projection maps of
the earth. See https://en.wikipedia.org/wiki/Integral_of_the_secant_function and
https://arxiv.org/pdf/2204.11187.pdf. The method for evaluating the integral that is being
presented in this example was invented by the Scottish mathematician James Gregory in 1668. There
are also a number of other methods. See the previous two references.

53 We thank Serban Raianu for bringing this to our attention.
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Example 1.8.19

There is another method for integrating
ş

sec xdx, that is more tedious, but more straight
forward. In particular, it does not involve a memorized trick. We first use the substitution
u = sin x, du = cos x dx, together with cos2 x = 1´ sin2 x = 1´ u2. This converts the
integral into

ż
sec xdx =

ż
1

cos x
dx =

ż
cos x dx
cos2 x

=

ż
du

1´ u2

ˇ̌
ˇ̌
u=sin x

The integrand 1
1´u2 is a rational function, i.e. a ratio of two polynomials. There is a pro-

cedure, called the method of partial fractions, that may be used to integrate any rational
function. We shall learn about it in Section 1.10 “Partial Fractions”. The detailed evalu-
ation of the integral

ş
sec x dx =

ş du
1´u2 by the method of partial fractions is presented in

Example 1.10.5 below.
In addition, there is a standard trick for evaluating

ş du
1´u2 that allows us to avoid going

through the whole partial fractions algorithm.

Example 1.8.20 (
ş

sec xdx — by more trickery)

Solution. We have already seen that
ż

sec xdx =

ż
du

1´ u2

ˇ̌
ˇ̌
u=sin x

The trick uses the obervations that

˝ 1
1´u2 = 1+u´u

1´u2 = 1
1´u ´ u

1´u2

˝ 1
1´u has antiderivative ´ log(1´ u) (for u ă 1)

˝ The derivative d
du (1´ u2) = ´2u of the denominator of u

1´u2 is the same, up to a
factor of ´2, as the numerator of u

1´u2 . So we can easily evaluate the integral of u
1´u2

by substituting v = 1´ u2, dv = ´2u du.
ż

u du
1´ u2 =

ż dv
´2
v

ˇ̌
ˇ̌
v=1´u2

= ´1
2

log(1´ u2) + C

Combining these observations gives
ż

sec xdx =

[ ż
du

1´ u2

]

u=sin x
=

[ ż
1

1´ u
du´

ż
u

1´ u2 du
]

u=sin x

=
[
´ log(1´ u) +

1
2

log(1´ u2) + C
]

u=sin x

= ´ log(1´ sin x) +
1
2

log(1´ sin2 x) + C

= ´ log(1´ sin x) +
1
2

log(1´ sin x) +
1
2

log(1 + sin x) + C

=
1
2

log
1 + sin x
1´ sin x

+ C.
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Example 1.8.20

Example 1.8.20 has given the answer
ż

sec xdx =
1
2

log
1 + sin x
1´ sin x

+ C

which appears to be different than the answer in Example 1.8.19. But they really are the
same since

1 + sin x
1´ sin x

=
(1 + sin x)2

1´ sin2 x
=

(1 + sin x)2

cos2 x

ùñ 1
2

log
1 + sin x
1´ sin x

=
1
2

log
(1 + sin x)2

cos2 x
= log

ˇ̌
ˇsin x + 1

cos x

ˇ̌
ˇ = log | tan x + sec x|

Oof!

Example 1.8.21
(ş

csc xdx — by the u = tan x
2 substitution

)

Solution. The integral
ş

csc xdx may also be evaluated by both the methods above. That

is either

• by multiplying the integrand by a cleverly chosen 1 = cot x´csc x
cot x´csc x and then substitut-

ing u = cot x´ csc x, du = (´ csc2 x + csc x cot x)dx, or

• by substituting u = cos x, du = ´ sin x dx to give
ş

csc xdx = ´ ş du
1´u2 and then

using the method of partial fractions.

These two methods give the answers
ż

csc xdx = log | cot x´ csc x|+ C = ´1
2

log
1 + cos x
1´ cos x

+ C (1.8.1)

In this example, we shall evaluate
ş

csc xdx by yet a third method, which can be used to
integrate rational functions54 of sin x and cos x.

• This method uses the substitution

x = 2 arctan u i.e. u = tan
x
2

and dx =
2

1 + u2 du

— a half-angle substitution.

• To express sin x and cos x in terms of u, we first use the double angle trig identities
(Equations 1.8.2 and 1.8.3 with x ÞÑ x/2) to express sin x and cos x in terms of sin x

2
and cos x

2 :

sin x = 2 sin
x
2

cos
x
2

cos x = cos2 x
2
´ sin2 x

2

54 A rational function of sin x and cos x is a ratio with both the numerator and denominator being finite
sums of terms of the form a sinm x cosn x, where a is a constant and m and n are positive integers.
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• We then use the triangle

x/2

1

u
√
1 + u2

to express sin x
2 and cos x

2 in terms of u. The bottom and right hand sides of the
triangle have been chosen so that tan x

2 = u. This tells us that

sin
x
2
=

u?
1 + u2

cos
x
2
=

1?
1 + u2

• This in turn implies that:

sin x = 2 sin
x
2

cos
x
2
= 2

u?
1 + u2

1?
1 + u2

=
2u

1 + u2

cos x = cos2 x
2
´ sin2 x

2
=

1
1 + u2 ´

u2

1 + u2 =
1´ u2

1 + u2

Oof!

• Let’s use this substitution to evaluate
ş

csc x dx.

ż
csc xdx =

ż
1

sin x
dx =

ż
1 + u2

2u
2

1 + u2 du =

ż
1
u

du = log |u|+ C

= log
ˇ̌
ˇ tan

x
2

ˇ̌
ˇ+ C

To see that this answer is really the same as that in (1.8.1), note that

cot x´ csc x =
cos x´ 1

sin x
=

´2 sin2(x/2)
2 sin(x/2) cos(x/2)

= ´ tan
x
2

Example 1.8.21

Example 1.8.22
(ş

sec3 xdx — by trickery
)

Solution. The standard trick used to evaluate
ş

sec3 xdx is integration by parts.

• Set u = sec x, dv = sec2 xdx. Hence du = sec x tan xdx, v = tan x and
ż

sec3 xdx =

ż
sec xloomoon

u

sec2 xdxlooomooon
dv

= sec xloomoon
u

tan xloomoon
v

´
ż

tan xloomoon
v

sec x tan xdxloooooomoooooon
du
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• Since tan2 x + 1 = sec2 x, we have tan2 x = sec2 x´ 1 and
ż

sec3 xdx = sec x tan x´
ż
[sec3 x´ sec x]dx

= sec x tan x + log | sec x + tan x|+ C´
ż

sec3 xdx

where we used
ş

sec xdx = log | sec x + tan x|+ C, which we saw in Example 1.8.19.

• Now moving the
ş

sec3 xdx from the right hand side to the left hand side

2
ż

sec3 xdx = sec x tan x + log | sec x + tan x|+ C and so
ż

sec3 xdx =
1
2

sec x tan x +
1
2

log | sec x + tan x|+ C

for a new arbitrary constant C (which is just one half the old one).

Example 1.8.22

The integral
ş

sec3 dx can also be evaluated by two other methods.

• Substitute u = sin x, du = cos xdx to convert
ş

sec3 xdx into
ş du
[1´u2]2

and evaluate

the latter using the method of partial fractions. This is done in Example 1.10.6 in
Section 1.10.

• Use the u = tan x
2 substitution. We use this method to evaluate

ş
csc3 xdx in Example

1.8.23, below.

Example 1.8.23
(ş

csc3 xdx – by the u = tan x
2 substitution

)

Solution. Let us use the half-angle substitution that we introduced in Example 1.8.21.

• In this method we set

u = tan
x
2

dx =
2

1 + u2 du sin x =
2u

1 + u2 cos x =
1´ u2

1 + u2

• The integral then becomes
ż

csc3 xdx =

ż
1

sin3 x
dx

=

ż (1 + u2

2u

)3 2
1 + u2 du

=
1
4

ż
1 + 2u2 + u4

u3 du

=
1
4

!u´2

´2
+ 2 log |u|+ u2

2

)
+ C

=
1
8

!
´ cot2 x

2
+ 4 log

ˇ̌
ˇ tan

x
2

ˇ̌
ˇ+ tan2 x

2

)
+ C

Oof!
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• This is a perfectly acceptable answer. But if you don’t like the x
2 ’s, they may be

eliminated by using

tan2 x
2
´ cot2 x

2
=

sin2 x
2

cos2 x
2
´ cos2 x

2

sin2 x
2

=
sin4 x

2 ´ cos4 x
2

sin2 x
2 cos2 x

2

=

(
sin2 x

2 ´ cos2 x
2

)(
sin2 x

2 + cos2 x
2

)

sin2 x
2 cos2 x

2

=
sin2 x

2 ´ cos2 x
2

sin2 x
2 cos2 x

2
since sin2 x

2
+ cos2 x

2
= 1

=
´ cos x
1
4 sin2 x

by (1.8.2) and (1.8.3)

and

tan
x
2
=

sin x
2

cos x
2
=

sin2 x
2

sin x
2 cos x

2

=
1
2 [1´ cos x]

1
2 sin x

by (1.8.2) and (1.8.3)

So we may also write
ż

csc3 xdx = ´1
2

cot x csc x +
1
2

log | csc x´ cot x|+ C

Example 1.8.23

That last optional section was a little scary — let’s get back to something a little easier.

1.9Ĳ Trigonometric Substitution

In this section we discuss substitutions that simplify integrals containing square roots of
the form

a
a2 ´ x2

a
a2 + x2

a
x2 ´ a2.

When the integrand contains one of these square roots, then we can use trigonometric
substitutions to eliminate them. That is, we substitute

x = a sin u or x = a tan u or x = a sec u

and then use trigonometric identities

sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ

to simplify the result. To be more precise, we can
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• eliminate
?

a2 ´ x2 from an integrand by substituting x = a sin u to give
a

a2 ´ x2 =
a

a2 ´ a2 sin2 u =
a

a2 cos2 u = |a cos u|

• eliminate
?

a2 + x2 from an integrand by substituting x = a tan u to give
a

a2 + x2 =
a

a2 + a2 tan2 u =
a

a2 sec2 u = |a sec u|

• eliminate
?

x2 ´ a2 from an integrand by substituting x = a sec u to give
a

x2 ´ a2 =
a

a2 sec2 u´ a2 =
a

a2 tan2 u = |a tan u|
Be very careful with signs and absolute values when using this substitution. See
Example 1.9.6.

When we have used substitutions before, we usually gave the new integration vari-
able, u, as a function of the old integration variable x. Here we are doing the reverse —
we are giving the old integration variable, x, in terms of the new integration variable u.
We may do so, as long as we may invert to get u as a function of x. For example, with
x = a sin u, we may take u = arcsin x

a . This is a good time for you to review the defini-
tions of arcsin θ, arctan θ and arcsec θ. See Section 2.12, “Inverse Functions”, of the CLP-1
text.

As a warm-up, consider the area of a quarter of the unit circle.

Example 1.9.1 (Quarter of the unit circle)

Compute the area of the unit circle lying in the first quadrant.

Solution. We know that the answer is π/4, but we can also compute this as an integral —
we saw this way back in Example 1.1.16:

area =

ż 1

0

a
1´ x2dx

• To simplify the integrand we substitute x = sin u. With this choice dx
du = cos u and

so dx = cos udu.

• We also need to translate the limits of integration and it is perhaps easiest to do this
by writing u as a function of x — namely u(x) = arcsin x. Hence u(0) = 0 and
u(1) = π/2.

• Hence the integral becomes
ż 1

0

a
1´ x2dx =

ż π/2

0

a
1´ sin2 u ¨ cos udu

=

ż π/2

0

a
cos2 u ¨ cos udu

=

ż π/2

0
cos2 udu

Notice that here we have used that the positive square root
?

cos2 u = | cos u| = cos u
because cos(u) ě 0 for 0 ď u ď π/2.
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• To go further we use the techniques of Section 1.8.

ż 1

0

a
1´ x2dx =

ż π/2

0
cos2 udu and since cos2 u =

1 + cos 2u
2

=
1
2

ż π/2

0
(1 + cos(2u))du

=
1
2

[
u +

1
2

sin(2u)
]π/2

0

=
1
2

(
π

2
´ 0 +

sin π

2
´ sin 0

2

)

=
π

4
X

Example 1.9.1

Example 1.9.2
(ş x2?

1´x2
dx
)

Solution. We proceed much as we did in the previous example.

• To simplify the integrand we substitute x = sin u. With this choice dx
du = cos u and

so dx = cos udu. Also note that u = arcsin x.

• The integral becomes

ż
x2

?
1´ x2

dx =

ż
sin2 ua

1´ sin2 u
¨ cos udu

=

ż
sin2 u?
cos2 u

¨ cos udu

• To proceed further we need to get rid of the square-root. Since u = arcsin x has
domain ´1 ď x ď 1 and range ´π/2 ď u ď π/2, it follows that cos u ě 0 (since cosine
is non-negative on these inputs). Hence

a
cos2 u = cos u when ´π/2 ď u ď π/2
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• So our integral now becomes

ż
x2

?
1´ x2

dx =

ż
sin2 u?
cos2 u

¨ cos udu

=

ż
sin2 u
cos u

¨ cos udu

=

ż
sin2 udu

=
1
2

ż
(1´ cos 2u)du by Equation (1.8.4)

=
u
2
´ 1

4
sin 2u + C

=
1
2

arcsin x´ 1
4

sin(2 arcsin x) + C

• We can simplify this further using a double-angle identity. Recall that u = arcsin x
and that x = sin u. Then

sin 2u = 2 sin u cos u

We can replace cos u using cos2 u = 1´ sin2 u. Taking a square-root of this formula
gives cos u = ˘

a
1´ sin2 u. We need the positive branch here since cos u ě 0 when

´π/2 ď u ď π/2 (which is exactly the range of arcsin x). Continuing along:

sin 2u = 2 sin u ¨
a

1´ sin2 u

= 2x
a

1´ x2

Thus our solution is

ż
x2

?
1´ x2

dx =
1
2

arcsin x´ 1
4

sin(2 arcsin x) + C

=
1
2

arcsin x´ 1
2

x
a

1´ x2 + C

Example 1.9.2

The above two example illustrate the main steps of the approach. The next example is
similar, but with more complicated limits of integration.

Example 1.9.3
(şr

a

?
r2 ´ x2 dx

)

Let’s find the area of the shaded region in the sketch below.
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a r

x2 + y2 = r2

x

y

We’ll set up the integral using vertical strips. The strip in the figure has width dx and
height

?
r2 ´ x2. So the area is given by the integral

area =

ż r

a

a
r2 ´ x2 dx

Which is very similar to the previous example.

Solution.

• To evaluate the integral we substitute

x = x(u) = r sin u dx =
dx
du

du = r cos u du

It is also helpful to write u as a function of x — namely u = arcsin x
r .

• The integral runs from x = a to x = r. These correspond to

u(r) = arcsin
r
r
= arcsin 1 =

π

2
u(a) = arcsin

a
r

which does not simplify further

• The integral then becomes
ż r

a

a
r2 ´ x2dx =

ż π/2

arcsin(a/r)

a
r2 ´ r2 sin2 u ¨ r cos udu

=

ż π/2

arcsin(a/r)
r2
a

1´ sin2 u ¨ cos udu

= r2
ż π/2

arcsin(a/r)

a
cos2 u ¨ cos udu

To proceed further (as we did in Examples 1.9.1 and 1.9.2) we need to think about
whether cos u is positive or negative.

• Since a (as shown in the diagram) satisfies 0 ď a ď r, we know that u(a) lies between
arcsin(0) = 0 and arcsin(1) = π/2. Hence the variable u lies between 0 and π/2, and
on this range cos u ě 0. This allows us get rid of the square-root:

a
cos2 u = | cos u| = cos u
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• Putting this fact into our integral we get
ż r

a

a
r2 ´ x2dx = r2

ż π/2

arcsin(a/r)

a
cos2 u ¨ cos udu

= r2
ż π/2

arcsin(a/r)
cos2 udu

Recall the identity cos2 u = 1+cos 2u
2 from Section 1.8

=
r2

2

ż π/2

arcsin(a/r)
(1 + cos 2u)du

=
r2

2

[
u +

1
2

sin(2u)
]π/2

arcsin(a/r)

=
r2

2

(
π

2
+

1
2

sin π ´ arcsin(a/r)´ 1
2

sin(2 arcsin(a/r))
)

=
r2

2

(
π

2
´ arcsin(a/r)´ 1

2
sin(2 arcsin(a/r))

)

Oof! But there is a little further to go before we are done.

• We can again simplify the term sin(2 arcsin(a/r)) using a double angle identity. Set
θ = arcsin(a/r). Then θ is the angle in the triangle on the right below. By the double
angle formula for sin(2θ) (Equation (1.8.2))

sin(2θ) = 2 sin θ cos θ

θ

r
a

√
r2 − a2

= 2
a
r

?
r2 ´ a2

r
.

• So finally the area is

area =

ż r

a

a
r2 ´ x2dx

=
r2

2

(
π

2
´ arcsin(a/r)´ 1

2
sin(2 arcsin(a/r))

)

=
πr2

4
´ r2

2
arcsin(a/r)´ a

2

a
r2 ´ a2

• This is a relatively complicated formula, but we can make some “reasonableness”
checks, by looking at special values of a.

– If a = 0 the shaded region, in the figure at the beginning of this example, is
exactly one quarter of a disk of radius r and so has area 1

4 πr2. Substituting
a = 0 into our answer does indeed give 1

4 πr2.

– At the other extreme, if a = r, the shaded region disappears completely and so
has area 0. Subbing a = r into our answer does indeed give 0, since arcsin 1 =
π
2 .
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Example 1.9.3

Example 1.9.4
(şr

a x
?

r2 ´ x2 dx
)

The integral
şr

a x
?

r2 ´ x2 dx looks a lot like the integral we just did in the previous 3 exam-
ples. It can also be evaluated using the trigonometric substitution x = r sin u — but that is
unnecessarily complicated. Just because you have now learned how to use trigonometric
substitution55 doesn’t mean that you should forget everything you learned before.

Solution. This integral is much more easily evaluated using the simple substitution u =
r2 ´ x2.

• Set u = r2 ´ x2. Then du = ´2xdx, and so
ż r

a
x
a

r2 ´ x2 dx =

ż 0

r2´a2

?
u

du
´2

= ´1
2

[
u3/2

3/2

]0

r2´a2

=
1
3
[
r2 ´ a2]3/2

Example 1.9.4

Enough sines and cosines — let us try a tangent substitution.

Example 1.9.5
(ş dx

x2
?

9+x2

)

Solution. As per our guidelines at the start of this section, the presence of the square root

term
?

32 + x2 tells us to substitute x = 3 tan u.

• Substitute

x = 3 tan u dx = 3 sec2 u du

This allows us to remove the square root:
a

9 + x2 =
a

9 + 9 tan2 u = 3
a

1 + tan2 u = 3
a

sec2 u = 3| sec u|

• Hence our integral becomes

ż
dx

x2
?

9 + x2
=

ż
3 sec2 u

9 tan2 u ¨ 3| sec u|du

55 To paraphrase the Law of the Instrument, possibly Mark Twain and definitely some psychologists,
when you have a shiny new hammer, everything looks like a nail.
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• To remove the absolute value we must consider the range of values of u in the in-
tegral. Since x = 3 tan u we have u = arctan(x/3). The range56 of arctangent is
´π/2 ď arctan ď π/2 and so u = arctan(x/3) will always like between ´π/2 and
+π/2. Hence cos u will always be positive, which in turn implies that | sec u| = sec u.

• Using this fact our integral becomes:
ż

dx
x2
?

9 + x2
=

ż
3 sec2 u

27 tan2 u| sec u|du

=
1
9

ż
sec u
tan2 u

du since sec u ą 0

• Rewrite this in terms of sine and cosine
ż

dx
x2
?

9 + x2
=

1
9

ż
sec u
tan2 u

du (1.9.1)

=
1
9

ż
1

cos u
¨ cos2 u

sin2 u
du =

1
9

ż
cos u
sin2 u

du (1.9.2)

Now we can use the substitution rule with y = sin u and dy = cos udu

=
1
9

ż
dy
y2 (1.9.3)

= ´ 1
9y

+ C (1.9.4)

= ´ 1
9 sin u

+ C (1.9.5)

• The original integral was a function of x, so we still have to rewrite sin u in terms of
x. Remember that x = 3 tan u or u = arctan(x/3). So u is the angle shown in the
triangle below and we can read off the triangle that

sin u =
x?

9 + x2

u

√
9 + x2

x

3ùñ
ż

dx
x2
?

9 + x2
= ´

?
9 + x2

9x
+ C

Example 1.9.5

Example 1.9.6
(ş x2?

x2´1
dx
)

Solution. This one requires a secant substitution, but otherwise is very similar to those

above.

56 To be pedantic, we mean the range of the “standard” arctangent function or its “principal value”. One
can define other arctangent functions with different ranges.
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• Set x = sec u and dx = sec u tan u du. Then
ż

x2
?

x2 ´ 1
dx =

ż
sec2 u?

sec2 u´ 1
sec u tan u du

=

ż
sec3 u ¨ tan u?

tan2 u
du since tan2 u = sec2 u´ 1

=

ż
sec3 u ¨ tan u

| tan u|du

• As before we need to consider the range of u values in order to determine the sign
of tan u. Notice that the integrand is only defined when either x ă ´1 or x ą 1; thus
we should treat the cases x ă ´1 and x ą 1 separately. Let us assume that x ą 1 and
we will come back to the case x ă ´1 at the end of the example.

When x ą 1, our u = arcsec x takes values in (0, π/2). This follows since when
0 ă u ă π/2, we have 0 ă cos u ă 1 and so sec u ą 1. Further, when 0 ă u ă π/2, we
have tan u ą 0. Thus | tan u| = tan u.

• Back to our integral, when x ą 1:
ż

x2
?

x2 ´ 1
dx =

ż
sec3 u ¨ tan u

| tan u|du

=

ż
sec3 udu since tan u ě 0

This is exactly Example 1.8.22

=
1
2

sec u tan u +
1
2

log | sec u + tan u|+ C

• Since we started with a function of x we need to finish with one. We know that
sec u = x and then we can use trig identities

tan2 u = sec2 u´ 1 = x2 ´ 1 so tan u = ˘
a

x2 ´ 1, but we know tan u ě 0, so

tan u =
a

x2 ´ 1

Thus
ż

x2
?

x2 ´ 1
dx =

1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C

• The above holds when x ą 1. We can confirm that it is also true when x ă ´1 by
showing the right-hand side is a valid antiderivative of the integrand. To do so we
must differentiate our answer. Notice that we do not need to consider the sign of
x +

?
x2 ´ 1 when we differentiate since we have already seen that

d
dx

log |x| = 1
x
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when either x ă 0 or x ą 0. So the following computation applies to both x ą 1 and
x ă ´1. The expressions become quite long so we differentiate each term separately:

d
dx

[
x
a

x2 ´ 1
]
=

[a
x2 ´ 1 +

x2
?

x2 ´ 1

]

=
1?

x2 ´ 1

[
(x2 ´ 1) + x2

]

d
dx

log
ˇ̌
ˇ̌x +

a
x2 ´ 1

ˇ̌
ˇ̌ = 1

x +
?

x2 ´ 1
¨
[

1 +
x?

x2 ´ 1

]

=
1

x +
?

x2 ´ 1
¨ x +

?
x2 ´ 1?

x2 ´ 1

=
1?

x2 ´ 1

Putting things together then gives us

d
dx

[
1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C
]
=

1
2
?

x2 ´ 1

[
(x2 ´ 1) + x2 + 1

]
+ 0

=
x2

?
x2 ´ 1

This tells us that our answer for x ą 1 is also valid when x ă ´1 and so
ż

x2
?

x2 ´ 1
dx =

1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C

when x ă ´1 and when x ą 1.

In this example, we were lucky. The answer that we derived for x ą 1 happened to
be also valid for x ă ´1. This does not always happen with the x = a sec u substitution.
When it doesn’t, we have to apply separate x ą a and x ă ´a analyses that are very similar
to our x ą 1 analysis above. Of course that doubles the tedium. So in the CLP-2 problem
book, we will not pose questions that require separate x ą a and x ă ´a computations.

Example 1.9.6

The method, as we have demonstrated it above, works when our integrand contains
the square root of very specific families of quadratic polynomials. In fact, the same method
works for more general quadratic polynomials — all we need to do is complete the square57.

Example 1.9.7
(ş5

3

?
x2´2x´3

x´1 dx
)

This time we have an integral with a square root in the integrand, but the argument of the

57 If you have not heard of “completing the square” don’t worry. It is not a difficult method and it will
only take you a few moments to learn. It refers to rewriting a quadratic polynomial

P(x) = ax2 + bx + c as P(x) = a(x + h)2 + k

for new constants h, k.
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square root, while a quadratic function of x, is not in one of the standard forms
?

a2 ´ x2,?
a2 + x2,

?
x2 ´ a2. The reason that it is not in one of those forms is that the argument,

x2´2x´3, contains a term , namely´2x that is of degree one in x. So we try to manipulate
it into one of the standard forms by completing the square.

Solution.

• We first rewrite the quadratic polynomial x2 ´ 2x ´ 3 in the form (x ´ a)2 + b for
some constants a, b. The easiest way to do this is to expand both expressions and
compare coefficients of x:

x2 ´ 2x´ 3 = (x´ a)2 + b = (x2 ´ 2ax + a2) + b

So — if we choose ´2a = ´2 (so the coefficients of x1 match) and a2 + b = ´3 (so
the coefficients of x0 match), then both expressions are equal. Hence we set a = 1
and b = ´4. That is

x2 ´ 2x´ 3 = (x´ 1)2 ´ 4

Many of you may have seen this method when learning to sketch parabolas.

• Once this is done we can convert the square root of the integrand into a standard
form by making the simple substitution y = x´ 1. Here goes

ż 5

3

?
x2 ´ 2x´ 3

x´ 1
dx =

ż 5

3

a
(x´ 1)2 ´ 4

x´ 1
dx

=

ż 4

2

a
y2 ´ 4

y
dy with y = x´ 1, dy = dx

=

ż π/3

0

?
4 sec2 u´ 4

2 sec u
2 sec u tan u du with y = 2 sec u

and dy = 2 sec u tan u du

Notice that we could also do this in fewer steps by setting (x ´ 1) = 2 sec u, dx =
2 sec u tan udu.

• To get the limits of integration we used that

– the value of u that corresponds to y = 2 obeys 2 = y = 2 sec u = 2
cos u or

cos u = 1, so that u = 0 works and

– the value of u that corresponds to y = 4 obeys 4 = y = 2 sec u = 2
cos u or

cos u = 1
2 , so that u = π/3 works.

• Now returning to the evaluation of the integral, we simplify and continue.

ż 5

3

?
x2 ´ 2x´ 3

x´ 1
dx =

ż π/3

0
2
a

sec2 u´ 1 tan u du

= 2
ż π/3

0
tan2 u du since sec2 u = 1 + tan2 u
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In taking the square root of sec2 u´ 1 = tan2 u we used that tan u ě 0 on the range
0 ď u ď π

3 .

= 2
ż π/3

0

[
sec2 u´ 1

]
du since sec2 u = 1 + tan2 u, again

= 2
[

tan u´ u
]π/3

0

= 2
[?

3´ π/3
]

Example 1.9.7

1.10Ĳ Partial Fractions

Partial fractions is the name given to a technique of integration that may be used to in-
tegrate any rational function58. We already know how to integrate some simple rational
functions ż

1
x

dx = log |x|+ C
ż

1
1 + x2 dx = arctan(x) + C

Combining these with the substitution rule, we can integrate similar but more complicated
rational functions:ż

1
2x + 3

dx =
1
2

log |2x + 3|+ C
ż

1
3 + 4x2 dx =

1
2
?

3
arctan

(
2x?

3

)
+ C

By summing such terms together we can integrate yet more complicated forms
ż [

x +
1

x + 1
+

1
x´ 1

]
dx =

x2

2
+ log |x + 1|+ log |x´ 1|+ C

However we are not (typically) presented with a rational function nicely decomposed into
neat little pieces. It is far more likely that the rational function will be written as the ratio
of two polynomials. For example:

ż
x3 + x
x2 ´ 1

dx

In this specific example it is not hard to confirm that

x +
1

x + 1
+

1
x´ 1

=
x(x + 1)(x´ 1) + (x´ 1) + (x + 1)

(x + 1)(x´ 1)
=

x3 + x
x2 ´ 1

and hence
ż

x3 + x
x2 ´ 1

dx =

ż [
x +

1
x + 1

+
1

x´ 1

]
dx

=
x2

2
+ log |x + 1|+ log |x´ 1|+ C

58 Recall that a rational function is the ratio of two polynomials.
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Of course going in this direction (from a sum of terms to a single rational function) is
straightforward. To be useful we need to understand how to do this in reverse: decompose
a given rational function into a sum of simpler pieces that we can integrate.

Suppose that N(x) and D(x) are polynomials. The basic strategy is to write N(x)
D(x) as a

sum of very simple, easy to integrate rational functions, namely

(1) polynomials — we shall see below that these are needed when the degree59 of N(x) is
equal to or strictly bigger than the degree of D(x), and

(2) rational functions of the particularly simple form A
(ax+b)n and

(3) rational functions of the form Ax+B
(ax2+bx+c)m .

We already know how to integrate the first two forms, and we’ll see how to integrate the
third form in the near future.

To begin to explore this method of decomposition, let us go back to the example we
just saw

x +
1

x + 1
+

1
x´ 1

=
x(x + 1)(x´ 1) + (x´ 1) + (x + 1)

(x + 1)(x´ 1)
=

x3 + x
x2 ´ 1

The technique that we will use is based on two observations:

(1) The denominators on the left-hand side are the factors of the denominator x2 ´ 1 =
(x´ 1)(x + 1) on the right-hand side.

(2) Use P(x) to denote the polynomial on the left hand side, and then use N(x) and D(x)
to denote the numerator and denominator of the right hand side. That is

P(x) = x N(x) = x3 + x D(x) = x2 ´ 1.

Then the degree of N(x) is the sum of the degrees of P(x) and D(x). This is because
the highest degree term in N(x) is x3, which comes from multiplying P(x) by D(x),
as we see in

x +
1

x + 1
+

1
x´ 1

=

P(x)hkkikkj
x

D(x)hkkkkkkkikkkkkkkj
(x + 1)(x´ 1) +(x´ 1) + (x + 1)

(x + 1)(x´ 1)
=

x3 + x
x2 ´ 1

More generally, the presence of a polynomial on the left hand side is signalled on the
right hand side by the fact that the degree of the numerator is at least as large as the
degree of the denominator.

59 The degree of a polynomial is the largest power of x. For example, the degree of 2x3 + 4x2 + 6x + 8 is
three.
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1.10.1 §§ Partial Fraction Decomposition Examples

Rather than writing up the technique — known as the partial fraction decomposition —
in full generality, we will instead illustrate it through a sequence of examples.

Example 1.10.1
(ş x´3

x2´3x+2dx
)

In this example, we integrate N(x)
D(x) =

x´3
x2´3x+2 .

Solution.

• Step 1. We first check to see if a polynomial P(x) is needed. To do so, we check to
see if the degree of the numerator, N(x), is strictly smaller than the degree of the
denominator D(x). In this example, the numerator, x ´ 3, has degree one and that
is indeed strictly smaller than the degree of the denominator, x2 ´ 3x + 2, which is
two. In this case60 we do not need to extract a polynomial P(x) and we move on to
step 2.

• Step 2. The second step is to factor the denominator

x2 ´ 3x + 2 = (x´ 1)(x´ 2)

In this example it is quite easy, but in future examples (and quite possibly in your
homework, quizzes and exam) you will have to work harder to factor the denomi-
nator. In Appendix A.16 we have written up some simple tricks for factoring poly-
nomials. We will illustrate them in Example 1.10.3 below.

• Step 3. The third step is to write x´3
x2´3x+2 in the form

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

for some constants A and B. More generally, if the denominator consists of n differ-
ent linear factors, then we decompose the ratio as

rational function =
A1

linear factor 1
+

A2

linear factor 2
+ ¨ ¨ ¨+ An

linear factor n

To proceed we need to determine the values of the constants A, B and there are
several different methods to do so. Here are two methods

• Step 3 – Algebra Method. This approach has the benefit of being conceptually clearer
and easier, but the downside is that it is more tedious.

To determine the values of the constants A, B, we put61 the right-hand side back
over the common denominator (x´ 1)(x´ 2).

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

=
A(x´ 2) + B(x´ 1)

(x´ 1)(x´ 2)

60 We will soon get to an example (Example 1.10.2 in fact) in which the numerator degree is at least as
large as the denominator degree — in that situation we have to extract a polynomial P(x) before we
can move on to step 2.

61 That is, we take the decomposed form and sum it back together.
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The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

x´ 3 = A(x´ 2) + B(x´ 1)

Write the right hand side as a polynomial in standard form (i.e. collect up all x terms
and all constant terms)

x´ 3 = (A + B)x + (´2A´ B)

For these two polynomials to be the same, the coefficient of x on the left hand side
and the coefficient of x on the right hand side must be the same. Similarly the co-
efficients of x0 (i.e. the constant terms) must match. This gives us a system of two
equations.

A + B = 1 ´2A´ B = ´3

in the two unknowns A, B. We can solve this system by

– using the first equation, namely A + B = 1, to determine A in terms of B:

A = 1´ B

– Substituting this into the remaining equation eliminates the A from second
equation, leaving one equation in the one unknown B, which can then be solved
for B:

´2A´ B = ´3 substitute A = 1´ B
´2(1´ B)´ B = ´3 clean up

´2 + B = ´3 so B = ´1

– Once we know B, we can substitute it back into A = 1´ B to get A.

A = 1´ B = 1´ (´1) = 2

Hence

x´ 3
x2 ´ 3x + 2

=
2

x´ 1
´ 1

x´ 2

• Step 3 – Sneaky Method. This takes a little more work to understand, but it is more
efficient than the algebra method.

We wish to find A and B for which

x´ 3
(x´ 1)(x´ 2)

=
A

x´ 1
+

B
x´ 2

Note that the denominator on the left hand side has been written in factored form.
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– To determine A, we multiply both sides of the equation by A’s denominator,
which is x´ 1,

x´ 3
x´ 2

= A +
(x´ 1)B

x´ 2

and then we completely eliminate B from the equation by evaluating at x = 1.
This value of x is chosen to make x´ 1 = 0.

x´ 3
x´ 2

ˇ̌
ˇ̌
x=1

= A +
(x´ 1)B

x´ 2

ˇ̌
ˇ̌
x=1

ùñ A =
1´ 3
1´ 2

= 2

– To determine B, we multiply both sides of the equation by B’s denominator,
which is x´ 2,

x´ 3
x´ 1

=
(x´ 2)A

x´ 1
+ B

and then we completely eliminate A from the equation by evaluating at x = 2.
This value of x is chosen to make x´ 2 = 0.

x´ 3
x´ 1

ˇ̌
ˇ̌
x=2

=
(x´ 2)A

x´ 1

ˇ̌
ˇ̌
x=2

+ B ùñ B =
2´ 3
2´ 1

= ´1

Hence we have (the thankfully consistent answer)

x´ 3
x2 ´ 3x + 2

=
2

x´ 1
´ 1

x´ 2

Notice that no matter which method we use to find the constants we can easily check
our answer by summing the terms back together:

2
x´ 1

´ 1
x´ 2

=
2(x´ 2)´ (x´ 1)
(x´ 2)(x´ 1)

=
2x´ 4´ x + 1

x2 ´ 3x + 2
=

x´ 3
x2 ´ 3x + 2

X

Step 4. The final step is to integrate.
ż

x´ 3
x2 ´ 3x + 2

dx =

ż
2

x´ 1
dx +

ż ´1
x´ 2

dx = 2 log |x´ 1| ´ log |x´ 2|+ C

Example 1.10.1

Perhaps the first thing that you notice is that this process takes quite a few steps62. How-
ever no single step is all that complicated; it only takes practice. With that said, let’s do
another, slightly more complicated, one.

Example 1.10.2
(ş 3x3´8x2+4x´1

x2´3x+2 dx
)

In this example, we integrate N(x)
D(x) =

3x3´8x2+4x´1
x2´3x+2 .

Solution.

62 Though, in fairness, we did step 3 twice — and that is the most tedious bit. . . Actually — sometimes
factoring the denominator can be quite challenging. We’ll consider this issue in more detail shortly.
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• Step 1. We first check to see if the degree of the numerator N(x) is strictly smaller
than the degree of the denominator D(x). In this example, the numerator, 3x3 ´
8x2 + 4x´ 1, has degree three and the denominator, x2 ´ 3x + 2, has degree two. As
3 ě 2, we have to implement the first step.

The goal of the first step is to write N(x)
D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial and R(x) being a polynomial of degree strictly smaller
than the degree of D(x). The right hand side is P(x)D(x)+R(x)

D(x) , so we have to express
the numerator in the form N(x) = P(x)D(x) + R(x), with P(x) and R(x) being
polynomials and with the degree of R being strictly smaller than the degree of D.
P(x)D(x) is a sum of expressions of the form axnD(x). We want to pull as many
expressions of this form as possible out of the numerator N(x), leaving only a low
degree remainder R(x).

We do this using long division — the same long division you learned in school, but
with the base 10 replaced by x.

– We start by observing that to get from the highest degree term in the denomina-
tor (x2) to the highest degree term in the numerator (3x3), we have to multiply
it by 3x. So we write,

x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1

In the above expression, the denominator is on the left, the numerator is on the
right and 3x is written above the highest order term of the numerator. Always
put lower powers of x to the right of higher powers of x — this mirrors how you
do long division with numbers; lower powers of ten sit to the right of higher
powers of ten.

– Now we subtract 3x times the denominator, x2´3x+ 2, which is 3x3´9x2 + 6x,
from the numerator.

x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1

3x(x2 − 3x+ 2)

– This has left a remainder of x2 ´ 2x´ 1. To get from the highest degree term in
the denominator (x2) to the highest degree term in the remainder (x2), we have
to multiply by 1. So we write,

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
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– Now we subtract 1 times the denominator, x2 ´ 3x + 2, which is x2 ´ 3x + 2,
from the remainder.

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

3x(x2 − 3x+ 2)

1 (x2 − 3x+ 2)

– This leaves a remainder of x´ 3. Because the remainder has degree 1, which is
smaller than the degree of the denominator (being degree 2), we stop.

– In this example, when we subtracted 3x(x2 ´ 3x + 2) and 1(x2 ´ 3x + 2) from
3x3 ´ 8x2 + 4x´ 1 we ended up with x´ 3. That is,

3x3 ´ 8x2 + 4x´ 1 ´ 3x(x2 ´ 3x + 2) ´ 1(x2 ´ 3x + 2) = x´ 3

or, collecting the two terms proportional to (x2 ´ 3x + 2)

3x3 ´ 8x2 + 4x´ 1 ´ (3x + 1)(x2 ´ 3x + 2) = x´ 3

Moving the (3x + 1)(x2´ 3x + 2) to the right hand side and dividing the whole
equation by x2 ´ 3x + 2 gives

3x3 ´ 8x2 + 4x´ 1
x2 ´ 3x + 2

= 3x + 1 +
x´ 3

x2 ´ 3x + 2

And we can easily check this expression just by summing the two terms on the
right-hand side.

We have written the integrand in the form N(x)
D(x) = P(x) + R(x)

D(x) , with the degree of
R(x) strictly smaller than the degree of D(x), which is what we wanted. Observe
that R(x) is the final remainder of the long division procedure and P(x) is at the top
of the long division computation.

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

P (x)
N(x)D(x)
3x ·D(x)

N(x)− 3x ·D(x)
1 ·D(x)
R(x) = N(x)− (3x+ 1)D(x)

This is the end of Step 1. Oof! You should definitely practice this step.

• Step 2. The second step is to factor the denominator

x2 ´ 3x + 2 = (x´ 1)(x´ 2)

We already did this in Example 1.10.1.
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• Step 3. The third step is to write x´3
x2´3x+2 in the form

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

for some constants A and B. We already did this in Example 1.10.1. We found A = 2
and B = ´1.

• Step 4. The final step is to integrate.

ż
3x3 ´ 8x2 + 4x´ 1

x2 ´ 3x + 2
dx =

ż [
3x + 1

]
dx +

ż
2

x´ 1
dx +

ż ´1
x´ 2

dx

=
3
2

x2 + x + 2 log |x´ 1| ´ log |x´ 2|+ C

You can see that the integration step is quite quick — almost all the work is in preparing
the integrand.

Example 1.10.2

Here is a very solid example. It is quite long and the steps are involved. However
please persist. No single step is too difficult.

Example 1.10.3
(ş x4+5x3+16x2+26x+22

x3+3x2+7x+5 dx
)

In this example, we integrate N(x)
D(x) =

x4+5x3+16x2+26x+22
x3+3x2+7x+5 .

Solution.

• Step 1. Again, we start by comparing the degrees of the numerator and denominator.
In this example, the numerator, x4 + 5x3 + 16x2 + 26x + 22, has degree four and the
denominator, x3 + 3x2 + 7x + 5, has degree three. As 4 ě 3, we must execute the
first step, which is to write N(x)

D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial and R(x) being a polynomial of degree strictly smaller
than the degree of D(x). This step is accomplished by long division, just as we did
in Example 1.10.2. We’ll go through the whole process in detail again.

Actually — before you read on ahead, please have a go at the long division. It is
good practice.

– We start by observing that to get from the highest degree term in the denomi-
nator (x3) to the highest degree term in the numerator (x4), we have to multiply
by x. So we write,
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x3 + 3x2 + 7x+ 5
x
x4+5x3+16x2+26x+22

– Now we subtract x times the denominator x3 + 3x2 + 7x + 5, which is x4 +
3x3 + 7x2 + 5x, from the numerator.

x3 + 3x2 + 7x+ 5
x
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22

x(x3 + 3x2 + 7x+ 5)

– The remainder was 2x3 + 9x2 + 21x + 22. To get from the highest degree term
in the denominator (x3) to the highest degree term in the remainder (2x3), we
have to multiply by 2. So we write,

x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22

– Now we subtract 2 times the denominator x3 + 3x2 + 7x + 5, which is 2x3 +
6x2 + 14x + 10, from the remainder.

x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22
2x3+ 6x2+14x+10

3x2+ 7x+12

x(x3 + 3x2 + 7x+ 5)

2(x3 + 3x2 + 7x+ 5)

– This leaves a remainder of 3x2 + 7x + 12. Because the remainder has degree 2,
which is smaller than the degree of the denominator, which is 3, we stop.

– In this example, when we subtracted x(x3 + 3x2 + 7x + 5) and 2(x3 + 3x2 +
7x + 5) from x4 + 5x3 + 16x2 + 26x + 22 we ended up with 3x2 + 7x + 12. That
is,

x4 + 5x3 + 16x2 + 26x + 22 ´ x(x3 + 3x2 + 7x + 5) ´ 2(x3 + 3x2 + 7x + 5)

= 3x2 + 7x + 12

or, collecting the two terms proportional to (x3 + 3x2 + 7x + 5)

x4 + 5x3 + 16x2 + 26x + 22 ´ (x + 2)(x3 + 3x2 + 7x + 5) = 3x2 + 7x + 12

Moving the (x + 2)(x3 + 3x2 + 7x + 5) to the right hand side and dividing the
whole equation by x3 + 3x2 + 7x + 5 gives

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
3x2 + 7x + 12

x3 + 3x2 + 7x + 5

This is of the form N(x)
D(x) = P(x) + R(x)

D(x) , with the degree of R(x) strictly smaller than
the degree of D(x), which is what we wanted. Observe, once again, that R(x) is
the final remainder of the long division procedure and P(x) is at the top of the long
division computation.
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x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22
2x3+ 6x2+14x+10

3x2+ 7x+12

P (x)

R(x)

• Step 2. The second step is to factor the denominator D(x) = x3 + 3x2 + 7x + 5. In
the “real world” factorisation of polynomials is often very hard. Fortunately63, this
is not the “real world” and there is a trick available to help us find this factorisation.
The reader should take some time to look at Appendix A.16 before proceeding.

– The trick exploits the fact that most polynomials that appear in homework as-
signments and on tests have integer coefficients and some integer roots. Any
integer root of a polynomial that has integer coefficients, like D(x) = x3 + 3x2 +
7x+ 5, must divide the constant term of the polynomial exactly. Why this is true
is explained64 in Appendix A.16.

– So any integer root of x3 + 3x2 + 7x + 5 must divide 5 exactly. Thus the only
integers which can be roots of D(x) are ˘1 and ˘5. Of course, not all of these
give roots of the polynomial — in fact there is no guarantee that any of them
will be. We have to test each one.

– To test if +1 is a root, we sub x = 1 into D(x):

D(1) = 13 + 3(1)2 + 7(1) + 5 = 16

As D(1) ‰ 0, 1 is not a root of D(x).

– To test if ´1 is a root, we sub it into D(x):

D(´1) = (´1)3 + 3(´1)2 + 7(´1) + 5 = ´1 + 3´ 7 + 5 = 0

As D(´1) = 0, ´1 is a root of D(x). As ´1 is a root of D(x),
(
x ´ (´1)

)
=

(x + 1) must factor D(x) exactly. We can factor the (x + 1) out of D(x) =
x3 + 3x2 + 7x + 5 by long division once again.

– Dividing D(x) by (x + 1) gives:

x+ 1
x2+ 2x+ 5
x3+3x2+7x+5
x3+ x2

2x2+7x+5
2x2+2x

5x+5
5x+5

0

x2(x+ 1)

2x(x+ 1)

5(x+ 1)

63 One does not typically think of mathematics assignments or exams as nice kind places. . . The polyno-
mials that appear in the “real world” are not so forgiving. Nature, red in tooth and claw — to quote
Tennyson inappropriately (especially when this author doesn’t know any other words from the poem).

64 Appendix A.16 contains several simple tricks for factoring polynomials. We recommend that you have
a look at them.
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This time, when we subtracted x2(x + 1) and 2x(x + 1) and 5(x + 1) from x3 +
3x2 + 7x + 5 we ended up with 0 — as we knew would happen, because we
knew that x + 1 divides x3 + 3x2 + 7x + 5 exactly. Hence

x3 + 3x2 + 7x + 5 ´ x2(x + 1) ´ 2x(x + 1) ´ 5(x + 1) = 0

or

x3 + 3x2 + 7x + 5 = x2(x + 1) + 2x(x + 1) + 5(x + 1)

or

x3 + 3x2 + 7x + 5 = (x2 + 2x + 5)(x + 1)

– It isn’t quite time to stop yet; we should attempt to factor the quadratic factor,
x2 + 2x + 5. We can use the quadratic formula65 to find the roots of x2 + 2x + 5:

´b˘?b2 ´ 4ac
2a

=
´2˘?4´ 20

2
=
´2˘?´16

2
Since this expression contains the square root of a negative number the equation
x2 + 2x + 5 = 0 has no real solutions; without the use of complex numbers,
x2 + 2x + 5 cannot be factored.

We have reached the end of step 2. At this point we have

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
3x2 + 7x + 12

(x + 1)(x2 + 2x + 5)

• Step 3. The third step is to write 3x2+7x+12
(x+1)(x2+2x+5) in the form

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
A

x + 1
+

Bx + C
x2 + 2x + 5

for some constants A, B and C.

Note that the numerator, Bx + C of the second term on the right hand side is not just
a constant. It is of degree one, which is exactly one smaller than the degree of the
denominator, x2 + 2x + 5. More generally, if the denominator consists of n different
linear factors and m different quadratic factors, then we decompose the ratio as

rational function =
A1

linear factor 1
+

A2

linear factor 2
+ ¨ ¨ ¨+ An

linear factor n

+
B1x + C1

quadratic factor 1
+

B2x + C2

quadratic factor 2
+ ¨ ¨ ¨+ Bmx + Cm

quadratic factor m

65 To be precise, the quadratic equation ax2 + bx + c = 0 has solutions

x =
´b˘

?
b2 ´ 4ac

2a
.

The term b2´ 4ac is called the discriminant and it tells us about the number of solutions. If the discrim-
inant is positive then there are two real solutions. When it is zero, there is a single solution. And if it is
negative, there is no real solutions (you need complex numbers to say more than this).
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To determine the values of the constants A, B, C, we put the right hand side back
over the common denominator (x + 1)(x2 + 2x + 5).

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
A

x + 1
+

Bx + C
x2 + 2x + 5

=
A(x2 + 2x + 5) + (Bx + C)(x + 1)

(x + 1)(x2 + 2x + 5)

The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

3x2 + 7x + 12 = A(x2 + 2x + 5) + (Bx + C)(x + 1)

Again, as in Example 1.10.1, there are a couple of different ways to determine the
values of A, B and C from this equation.

• Step 3 – Algebra Method. The conceptually clearest procedure is to write the right
hand side as a polynomial in standard form (i.e. collect up all x2 terms, all x terms
and all constant terms)

3x2 + 7x + 12 = (A + B)x2 + (2A + B + C)x + (5A + C)

For these two polynomials to be the same, the coefficient of x2 on the left hand side
and the coefficient of x2 on the right hand side must be the same. Similarly the
coefficients of x1 must match and the coefficients of x0 must match.

This gives us a system of three equations

A + B = 3 2A + B + C = 7 5A + C = 12

in the three unknowns A, B, C. We can solve this system by

– using the first equation, namely A + B = 3, to determine A in terms of B:
A = 3´ B.

– Substituting this into the remaining two equations eliminates the A’s from these
two equations, leaving two equations in the two unknowns B and C.

A = 3´ B 2A + B + C = 7 5A + C = 12
ñ 2(3´ B) + B + C = 7 5(3´ B) + C = 12
ñ ´B + C = 1 ´5B + C = ´3

– Now we can use the equation ´B + C = 1, to determine B in terms of C: B =
C´ 1.

– Substituting this into the remaining equation eliminates the B’s leaving an equa-
tion in the one unknown C, which is easy to solve.

B = C´ 1 ´5B + C = ´3
ñ ´5(C´ 1) + C = ´3
ñ ´4C = ´8
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– So C = 2, and then B = C´ 1 = 1, and then A = 3´ B = 2. Hence

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
2

x + 1
+

x + 2
x2 + 2x + 5

• Step 3 – Sneaky Method. While the above method is transparent, it is rather tedious. It
is arguably better to use the second, sneakier and more efficient, procedure. In order
for

3x2 + 7x + 12 = A(x2 + 2x + 5) + (Bx + C)(x + 1)

the equation must hold for all values of x.

– In particular, it must be true for x = ´1. When x = ´1, the factor (x + 1)
multiplying Bx + C is exactly zero. So B and C disappear from the equation,
leaving us with an easy equation to solve for A:

3x2 + 7x + 12
ˇ̌
ˇ
x=´1

=
[

A(x2 + 2x + 5) + (Bx + C)(x + 1)
]

x=´1
ùñ 8 = 4A ùñ A = 2

– Sub this value of A back in and simplify.

3x2 + 7x + 12 = 2(x2 + 2x + 5) + (Bx + C)(x + 1)

x2 + 3x + 2 = (Bx + C)(x + 1)

Since (x + 1) is a factor on the right hand side, it must also be a factor on the
left hand side.

(x + 2)(x + 1) = (Bx + C)(x + 1) ñ (x + 2) = (Bx + C) ñ B = 1, C = 2

So again we find that

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
2

x + 1
+

x + 2
x2 + 2x + 5

X

Thus our integrand can be written as

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
2

x + 1
+

x + 2
x2 + 2x + 5

.

• Step 4. Now we can finally integrate! The first two pieces are easy.
ż
(x + 2)dx = 1

2 x2 + 2x
ż

2
x + 1

dx = 2 log |x + 1|

(We’re leaving the arbitrary constant to the end of the computation.)

The final piece is a little harder. The idea is to complete the square66 in the denomi-
nator

x + 2
x2 + 2x + 5

=
x + 2

(x + 1)2 + 4

66 This same idea arose in Section 1.9. Given a quadratic written as

Q(x) = ax2 + bx + c
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and then make a change of variables to make the fraction look like ay+b
y2+1 . In this case

x + 2
(x + 1)2 + 4

=
1
4

x + 2
( x+1

2 )2 + 1

so we make the change of variables y = x+1
2 , dy = dx

2 , x = 2y´ 1, dx = 2 dy
ż

x + 2
(x + 1)2 + 4

dx =
1
4

ż
x + 2

( x+1
2 )

2
+ 1

dx

=
1
4

ż
(2y´ 1) + 2

y2 + 1
2 dy =

1
2

ż
2y + 1
y2 + 1

dy

=

ż
y

y2 + 1
dy +

1
2

ż
1

y2 + 1
dy

Both integrals are easily evaluated, using the substitution u = y2 + 1, du = 2y dy for
the first.

ż
y

y2 + 1
dy =

ż
1
u

du
2

=
1
2

log |u| = 1
2

log(y2 + 1) =
1
2

log
[(x + 1

2

)2
+ 1
]

1
2

ż
1

y2 + 1
dy =

1
2

arctan y =
1
2

arctan
(x + 1

2

)

That’s finally it. Putting all of the pieces together

ż
x4+5x3+16x2+26x + 22

x3 + 3x2 + 7x + 5
dx =

1
2

x2+ 2x + 2 log |x + 1|

+
1
2

log
[(x+1

2

)2
+ 1
]
+

1
2

arctan
(x+1

2

)
+ C

Example 1.10.3

The best thing after working through a few a nice long examples is to do another nice
long example — it is excellent practice67. We recommend that the reader attempt the
problem before reading through our solution.

rewrite it as

Q(x) = a(x + d)2 + e.

We can determine d and e by expanding and comparing coefficients of x:

ax2 + bx + c = a(x2 + 2dx + d2) + e = ax2 + 2dax + (e + ad2)

Hence d = b/2a and e = c´ ad2.
67 At the risk of quoting Nietzsche, “That which does not kill us makes us stronger.” Though this author

always preferred the logically equivalent contrapositive — “That which does not make us stronger will
kill us.” However no one is likely to be injured by practicing partial fractions or looking up quotes
on Wikipedia. Its also a good excuse to remind yourself of what a contrapositive is — though we will
likely look at them again when we get to sequences and series.
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Example 1.10.4
(ş 4x3+23x2+45x+27

x3+5x2+8x+4 dx
)

In this example, we integrate N(x)
D(x) =

4x3+23x2+45x+27
x3+5x2+8x+4 .

• Step 1. The degree of the numerator N(x) is equal to the degree of the denominator
D(x), so the first step to write N(x)

D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial (which should be of degree 0, i.e. just a constant) and
R(x) being a polynomial of degree strictly smaller than the degree of D(x). By long
division

x3 + 5x2 + 8x+ 4
4

4x3 + 23x2 + 45x+27
4x3 + 20x2 + 32x+16

3x2 + 13x+11

so

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11

x3 + 5x2 + 8x + 4

• Step 2. The second step is to factorise D(x) = x3 + 5x2 + 8x + 4.

– To start, we’ll try and guess an integer root. Any integer root of D(x) must
divide the constant term, 4, exactly. Only ˘1, ˘2, ˘4 can be integer roots of
x3 + 5x2 + 8x + 4.

– We test to see if ˘1 are roots.

D(1) = (1)3 + 5(1)2 + 8(1) + 4 ‰ 0 ñ x = 1 is not a root

D(´1) = (´1)3 + 5(´1)2 + 8(´1) + 4 = 0 ñ x = ´1 is a root

So (x + 1) must divide x3 + 5x2 + 8x + 4 exactly.

– By long division

x+ 1
x2+ 4x+ 4
x3+5x2+8x+4
x3+ x2

4x2+8x+4
4x2+4x

4x+4
4x+4

0

so

x3 + 5x2 + 8x + 4 = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)(x + 2)
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– Notice that we could have instead checked whether or not ˘2 are roots

D(2) = (2)3 + 5(2)2 + 8(2) + 4 ‰ 0 ñ x = 2 is not a root

D(´2) = (´2)3 + 5(´2)2 + 8(´2) + 4 = 0 ñ x = ´2 is a root

We now know that both´1 and´2 are roots of x3 + 5x2 + 8x+ 4 and hence both
(x + 1) and (x + 2) are factors of x3 + 5x2 + 8x + 4. Because x3 + 5x2 + 8x + 4 is
of degree three and the coefficient of x3 is 1, we must have x3 + 5x2 + 8x + 4 =
(x + 1)(x + 2)(x + a) for some constant a. Multiplying out the right hand side
shows that the constant term is 2a. So 2a = 4 and a = 2.

This is the end of step 2. We now know that

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2

• Step 3. The third step is to write 3x2+13x+11
(x+1)(x+2)2 in the form

3x2 + 13x + 11
(x + 1)(x + 2)2 =

A
x + 1

+
B

x + 2
+

C
(x + 2)2

for some constants A, B and C.

Note that there are two terms on the right hand arising from the factor (x + 2)2. One
has denominator (x + 2) and one has denominator (x + 2)2. More generally, for each
factor (x + a)n in the denominator of the rational function on the left hand side, we
include

A1

x + a
+

A2

(x + a)2 + ¨ ¨ ¨+ An

(x + a)n

in the partial fraction decomposition on the right hand side68.

To determine the values of the constants A, B, C, we put the right hand side back
over the common denominator (x + 1)(x + 2)2.

3x2 + 13x + 11
(x + 1)(x + 2)2 =

A
x + 1

+
B

x + 2
+

C
(x + 2)2

=
A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

(x + 1)(x + 2)2

The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

3x2 + 13x + 11 = A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

As in the previous examples, there are a couple of different ways to determine the
values of A, B and C from this equation.

68 This is justified in the (optional) subsection “Justification of the Partial Fraction Decompositions” below.
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• Step 3 – Algebra Method. The conceptually clearest procedure is to write the right
hand side as a polynomial in standard form (i.e. collect up all x2 terms, all x terms
and all constant terms)

3x2 + 13x + 11 = (A + B)x2 + (4A + 3B + C)x + (4A + 2B + C)

For these two polynomials to be the same, the coefficient of x2 on the left hand side
and the coefficient of x2 on the right hand side must be the same. Similarly the
coefficients of x1 and the coefficients of x0 (i.e. the constant terms) must match. This
gives us a system of three equations,

A + B = 3 4A + 3B + C = 13 4A + 2B + C = 11

in the three unknowns A, B, C. We can solve this system by

– using the first equation, namely A + B = 3, to determine A in terms of B:
A = 3´ B.

– Substituting this into the remaining equations eliminates the A, leaving two
equations in the two unknown B, C.

4(3´ B) + 3B + C = 13 4(3´ B) + 2B + C = 11

or

´B + C = 1 ´ 2B + C = ´1

– We can now solve the first of these equations, namely ´B + C = 1, for B in
terms of C, giving B = C´ 1.

– Substituting this into the last equation, namely ´2B + C = ´1, gives ´2(C ´
1) + C = ´1 which is easily solved to give

– C = 3, and then B = C´ 1 = 2 and then A = 3´ B = 1.

Hence

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2 = 4 +

1
x + 1

+
2

x + 2
+

3
(x + 2)2

• Step 3 – Sneaky Method. The second, sneakier, method for finding A, B and C exploits
the fact that 3x2 + 13x + 11 = A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1) must be true
for all values of x. In particular, it must be true for x = ´1. When x = ´1, the factor
(x + 1) multiplying B and C is exactly zero. So B and C disappear from the equation,
leaving us with an easy equation to solve for A:

3x2 + 13x + 11
ˇ̌
ˇ
x=´1

=
[

A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)
]

x=´1

ùñ 1 = A
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Sub this value of A back in and simplify.

3x2 + 13x + 11 = (1)(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

2x2 + 9x + 7 = B(x + 1)(x + 2) + C(x + 1) = (xB + 2B + C)(x + 1)

Since (x + 1) is a factor on the right hand side, it must also be a factor on the left
hand side.

(2x + 7)(x + 1) = (xB + 2B + C)(x + 1) ñ (2x + 7) = (xB + 2B + C)

For the coefficients of x to match, B must be 2. For the constant terms to match,
2B + C must be 7, so C must be 3. Hence we again have

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2 = 4 +

1
x + 1

+
2

x + 2
+

3
(x + 2)2

• Step 4. The final step is to integrate

ż
4x3 + 23x2 + 45x + 27

x3 + 5x2 + 8x + 4
dx =

ż
4dx +

ż
1

x + 1
dx +

ż
2

x + 2
dx +

ż
3

(x + 2)2 dx

= 4x + log |x + 1|+ 2 log |x + 2| ´ 3
x + 2

+ C

Example 1.10.4

The method of partial fractions is not just confined to the problem of integrating ratio-
nal functions. There are other integrals — such as

ş
sec xdx and

ş
sec3 xdx — that can be

transformed (via substitutions) into integrals of rational functions. We encountered both
of these integrals in Sections 1.8 and 1.9 on trigonometric integrals and substitutions.

Example 1.10.5 (
ş

sec xdx)

Solution. In this example, we integrate sec x. It is not yet clear what this integral has to do
with partial fractions. To get to a partial fractions computation, we first make one of our
old substitutions.

ż
sec xdx =

ż
1

cos x
dx massage the expression a little

=

ż
cos x
cos2 x

dx substitute u = sin x, du = cos xdx

= ´
ż

du
u2 ´ 1

and use cos2 x = 1´ sin2 x = 1´ u2

So we now have to integrate 1
u2´1 , which is a rational function of u, and so is perfect for

partial fractions.
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• Step 1. The degree of the numerator, 1, is zero, which is strictly smaller than the
degree of the denominator, u2 ´ 1, which is two. So the first step is skipped.

• Step 2. The second step is to factor the denominator:

u2 ´ 1 = (u´ 1)(u + 1)

• Step 3. The third step is to write 1
u2´1 in the form

1
u2 ´ 1

=
1

(u´ 1)(u + 1)
=

A
u´ 1

+
B

u + 1

for some constants A and B.

• Step 3 – Sneaky Method.

– Multiply through by the denominator to get

1 = A(u + 1) + B(u´ 1)

This equation must be true for all u.
– If we now set u = 1 then we eliminate B from the equation leaving us with

1 = 2A so A = 1/2.

– Similarly, if we set u = ´1 then we eliminate A, leaving

1 = ´2B which implies B = ´1/2.

We have now found that A = 1/2, B = ´1/2, so

1
u2 ´ 1

=
1
2

[ 1
u´ 1

´ 1
u + 1

]
.

• It is always a good idea to check our work.

1/2

u´ 1
+
´1/2

u + 1
=

1/2(u + 1)´ 1/2(u´ 1)
(u´ 1)(u + 1)

=
1

(u´ 1)(u + 1)
X

• Step 4. The final step is to integrate.
ż

sec xdx = ´
ż

du
u2 ´ 1

after substitution

= ´1
2

ż
du

u´ 1
+

1
2

ż
du

u + 1
partial fractions

= ´1
2

log |u´ 1|+ 1
2

log |u + 1|+ C

= ´1
2

log | sin(x)´ 1|+ 1
2

log | sin(x) + 1|+ C rearrange a little

=
1
2

log
ˇ̌
ˇ̌1 + sin x
1´ sin x

ˇ̌
ˇ̌+ C

Notice that since ´1 ď sin x ď 1, we are free to drop the absolute values in the last
line if we wish.
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Example 1.10.5

Another example in the same spirit, though a touch harder. Again, we saw this prob-
lem in Section 1.8 and 1.9.

Example 1.10.6
(ş

sec3 xdx
)

Solution.

• We’ll start by converting it into the integral of a rational function using the substitu-
tion u = sin x, du = cos xdx.

ż
sec3 xdx =

ż
1

cos3 x
dx massage this a little

=

ż
cos x
cos4 x

dx replace cos2 x = 1´ sin2 x = 1´ u2

=

ż
cos xdx

[1´ sin2 x]2

=

ż
du

[1´ u2]2

• We could now find the partial fraction decomposition of the integrand 1
[1´u2]2

by

executing the usual four steps. But it is easier to use

1
u2 ´ 1

=
1
2

[ 1
u´ 1

´ 1
u + 1

]

which we worked out in Example 1.10.5 above.

• Squaring this gives

1

[1´ u2]2
=

1
4

[ 1
u´ 1

´ 1
u + 1

]2

=
1
4

[ 1
(u´ 1)2 ´

2
(u´ 1)(u + 1)

+
1

(u + 1)2

]

=
1
4

[ 1
(u´ 1)2 ´

1
u´ 1

+
1

u + 1
+

1
(u + 1)2

]

where we have again used 1
u2´1 = 1

2

[
1

u´1 ´ 1
u+1

]
in the last step.
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• It only remains to do the integrals and simplify.
ż

sec3 xdx =
1
4

ż [ 1
(u´ 1)2 ´

1
u´ 1

+
1

u + 1
+

1
(u + 1)2

]
du

=
1
4

[
´ 1

u´ 1
´ log |u´ 1|+ log |u + 1| ´ 1

u + 1

]
+ C group carefully

=
´1
4

[ 1
u´ 1

+
1

u + 1

]
+

1
4

[
log |u + 1| ´ log |u´ 1|

]
+ C sum carefully

= ´1
4

2u
u2 ´ 1

+
1
4

log
ˇ̌
ˇu + 1
u´ 1

ˇ̌
ˇ+ C clean up

=
1
2

u
1´ u2 +

1
4

log
ˇ̌
ˇu + 1
u´ 1

ˇ̌
ˇ+ C put u = sin x

=
1
2

sin x
cos2 x

+
1
4

log
ˇ̌
ˇsin x + 1
sin x´ 1

ˇ̌
ˇ+ C

Example 1.10.6

1.10.2 §§ The Form of Partial Fraction Decompositions

In the examples above we used the partial fractions method to decompose rational func-
tions into easily integrated pieces. Each of those examples was quite involved and we
had to spend quite a bit of time factoring and doing long division. The key step in each
of the computations was Step 3 — in that step we decomposed the rational function N(x)

D(x)

(or R(x)
D(x) ), for which the degree of the numerator is strictly smaller than the degree of the

denominator, into a sum of particularly simple rational functions, like A
x´a . We did not,

however, give a systematic description of those decompositions.
In this subsection we fill that gap by describing the general69 form of partial fraction

decompositions. The justification of these forms is not part of the course, but the interested
reader is invited to read the next (optional) subsection where such justification is given.
In the following it is assumed that

• N(x) and D(x) are polynomials with the degree of N(x) strictly smaller than the
degree of D(x).

• K is a constant.

• a1, a2, ¨ ¨ ¨ , aj are all different numbers.

• m1, m2, ¨ ¨ ¨ , mj, and n1, n2, ¨ ¨ ¨ , nk are all strictly positive integers.

• x2 + b1x + c1, x2 + b2x + c2, ¨ ¨ ¨ , x2 + bkx + ck are all different.

69 Well — not the completely general form, in the sense that we are not allowing the use of complex
numbers. As a result we have to use both linear and quadratic factors in the denominator. If we could
use complex numbers we would be able to restrict ourselves to linear factors.
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§§§ Simple Linear Factor Case

If the denominator D(x) = K(x ´ a1)(x ´ a2) ¨ ¨ ¨ (x ´ aj) is a product of j different linear
factors, then

N(x)
D(x)

=
A1

x´ a1
+

A2

x´ a2
+ ¨ ¨ ¨+ Aj

x´ aj

Equation 1.10.7.

We can then integrate each term
ż

A
x´ a

dx = A log |x´ a|+ C.

§§§ General Linear Factor Case

If the denominator D(x) = K(x´ a1)
m1(x´ a2)

m2 ¨ ¨ ¨ (x´ aj)
mj then

N(x)
D(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+ A1,m1

(x´ a1)m1

+
A2,1

x´ a2
+

A2,2

(x´ a2)2 + ¨ ¨ ¨+ A2,m2

(x´ a2)m2
+ ¨ ¨ ¨

+
Aj,1

x´ aj
+

Aj,2

(x´ aj)2 + ¨ ¨ ¨+
Aj,mj

(x´ aj)
mj

Equation 1.10.8.

Notice that we could rewrite each line as

A1

x´ a
+

A2

(x´ a)2 + ¨ ¨ ¨+ Am

(x´ a)m =
A1(x´ a)m´1 + A2(x´ a)m´2 + ¨ ¨ ¨+ Am

(x´ a)m

=
B1xm´1 + B2xm´2 + ¨ ¨ ¨+ Bm

(x´ a)m

which is a polynomial whose degree, m´1, is strictly smaller than that of the denominator
(x´ a)m. But the form of Equation (1.10.8) is preferable because it is easier to integrate.

ż
A

x´ a
dx = A log |x´ a|+ C

ż
A

(x´ a)k dx = ´ 1
k´ 1

¨ A
(x´ a)k´1 provided k ą 1.

§§§ Simple Linear and Quadratic Factor Case

If D(x) = K(x´ a1) ¨ ¨ ¨ (x´ aj)(x2 + b1x + c1) ¨ ¨ ¨ (x2 + bkx + ck) then
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N(x)
D(x)

=
A1

x´ a1
+ ¨ ¨ ¨+ Aj

x´ aj
+

B1x + C1

x2 + b1x + c1
+ ¨ ¨ ¨+ Bkx + Ck

x2 + bkx + ck

Equation 1.10.9.

Note that the numerator of each term on the right hand side has degree one smaller
than the degree of the denominator.

The quadratic terms Bx+C
x2+bx+c are integrated in a two-step process that is best illustrated

with a simple example (see also Example 1.10.3 above).

Example 1.10.10
(ş 2x+7

x2+4x+13dx
)

Solution.

• Start by completing the square in the denominator:

x2 + 4x + 13 = (x + 2)2 + 9 and thus
2x + 7

x2 + 4x + 13
=

2x + 7
(x + 2)2 + 32

• Now set y = (x + 2)/3, dy = 1
3dx, or equivalently x = 3y´ 2, dx = 3dy:

ż
2x + 7

x2 + 4x + 13
dx =

ż
2x + 7

(x + 2)2 + 32 dx

=

ż
6y´ 4 + 7
32y2 + 32 ¨ 3dy

=

ż
6y + 3

3(y2 + 1)
dy

=

ż
2y + 1
y2 + 1

dy

Notice that we chose 3 in y = (x + 2)/3 precisely to transform the denominator into
the form y2 + 1.

• Now almost always the numerator will be a linear polynomial of y and we decom-
pose as follows

ż
2x + 7

x2 + 4x + 13
dx =

ż
2y + 1
y2 + 1

dy

=

ż
2y

y2 + 1
dy +

ż
1

y2 + 1
dy

= log |y2 + 1|+ arctan y + C

= log

ˇ̌
ˇ̌
ˇ

(
x + 2

3

)2

+ 1

ˇ̌
ˇ̌
ˇ+ arctan

(
x + 2

3

)
+ C

Example 1.10.10
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§§§ Optional — General Linear and Quadratic Factor Case

If D(x) = K(x´ a1)
m1 ¨ ¨ ¨ (x´ aj)

mj(x2 + b1x + c1)
n1 ¨ ¨ ¨ (x2 + bkx + ck)

nk then

N(x)
D(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+ A1,m1

(x´ a1)m1
+ ¨ ¨ ¨

+
Aj,1

x´ aj
+

Aj,2

(x´ aj)2 + ¨ ¨ ¨+
Aj,mj

(x´ aj)
mj

+
B1,1x + C1,1

x2 + b1x + c1
+

B1,2x + C1,2

(x2 + b1x + c1)2 +¨ ¨ ¨+ B1,n1 x + C1,n1

(x2 + b1x + c1)n1
+¨ ¨ ¨

+
Bk,1x + Ck,1

x2 + bkx + ck
+

Bk,2x + Ck,2

(x2 + bkx + ck)2 +¨ ¨ ¨+ Bk,nk
x + C1,nk

(x2 + bkx + ck)nk

Equation 1.10.11.

We have already seen how to integrate the simple and general linear terms, and the
simple quadratic terms. Integrating general quadratic terms is not so straightforward.

Example 1.10.12
(ş dx

(x2+1)n

)

This example is not so easy, so it should definitely be considered optional.

Solution. In what follows write

In =

ż
dx

(x2 + 1)n .

• When n = 1 we know that
ż

dx
x2 + 1

= arctan x + C

• Now assume that n ą 1, then
ż

1
(x2 + 1)n dx =

ż
(x2 + 1´ x2)

(x2 + 1)n dx sneaky

=

ż
1

(x2 + 1)n´1 dx´
ż

x2

(x2 + 1)n dx

= In´1 ´
ż

x2

(x2 + 1)n dx

So we can write In in terms of In´1 and this second integral.

• We can use integration by parts to compute the second integral:

ż
x2

(x2 + 1)n dx =

ż
x
2
¨ 2x
(x2 + 1)n dx sneaky
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We set u = x/2 and dv = 2x
(x2+1)n dx, which gives du = 1

2dx and v = ´ 1
n´1 ¨ 1

(x2+1)n´1 .
You can check v by differentiating. Integration by parts gives

ż
x
2
¨ 2x
(x2 + 1)n dx = ´ x

2(n´ 1)(x2 + 1)n´1 +

ż
dx

2(n´ 1)(x2 + 1)n´1

= ´ x
2(n´ 1)(x2 + 1)n´1 +

1
2(n´ 1)

¨ In´1

• Now put everything together:

In =

ż
1

(x2 + 1)n dx

= In´1 +
x

2(n´ 1)(x2 + 1)n´1 ´
1

2(n´ 1)
¨ In´1

=
2n´ 3

2(n´ 1)
In´1 +

x
2(n´ 1)(x2 + 1)n´1

• We can then use this recurrence to write down In for the first few n:

I2 =
1
2

I1 +
x

2(x2 + 1)
+ C

=
1
2

arctan x +
x

2(x2 + 1)

I3 =
3
4

I2 +
x

4(x2 + 1)2

=
3
8

arctan x +
3x

8(x2 + 1)
+

x
4(x2 + 1)2 + C

I4 =
5
6

I3 +
x

6(x2 + 1)3

=
5

16
arctan x +

5x
16(x2 + 1)

+
5x

24(x2 + 1)2 +
x

6(x2 + 1)3 + C

and so forth. You can see why partial fraction questions involving denominators
with repeated quadratic factors do not often appear on exams.

Example 1.10.12

1.10.3 §§ Optional — Justification of the Partial Fraction Decompositions

We will now see the justification for the form of the partial fraction decompositions. We
start by considering the case in which the denominator has only linear factors. Then we’ll
consider the case in which quadratic factors are allowed too70.

70 In fact, quadratic factors are completely avoidable because, if we use complex numbers, then every
polynomial can be written as a product of linear factors. This is the fundamental theorem of algebra.
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§§§ The Simple Linear Factor Case

In the most common partial fraction decomposition, we split up

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

into a sum of the form
A1

x´ a1
+ ¨ ¨ ¨+ Ad

x´ ad

We now show that this decomposition can always be achieved, under the assumptions
that the ai’s are all different and N(x) is a polynomial of degree at most d´ 1. To do so,
we shall repeatedly apply the following Lemma.

Let N(x) and D(x) be polynomials of degree n and d respectively, with n ď d.
Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree
p ă d and a number A such that

N(x)
D(x) (x´ a)

=
P(x)
D(x)

+
A

x´ a

Lemma 1.10.13.

Proof. • To save writing, let z = x ´ a. We then write Ñ(z) = N(z + a) and D̃(z) =
D(z + a), which are again polynomials of degree n and d respectively. We also know
that D̃(0) = D(a) ‰ 0.

• In order to complete the proof we need to find a polynomial P̃(z) of degree p ă d
and a number A such that

Ñ(z)
D̃(z) z

=
P̃(z)
D̃(z)

+
A
z
=

P̃(z)z + AD̃(z)
D̃(z) z

or equivalently, such that

P̃(z)z + AD̃(z) = Ñ(z).

• Now look at the polynomial on the left hand side. Every term in P̃(z)z, has at least
one power of z. So the constant term on the left hand side is exactly the constant
term in AD̃(z), which is equal to AD̃(0). The constant term on the right hand side
is equal to Ñ(0). So the constant terms on the left and right hand sides are the same
if we choose A = Ñ(0)

D̃(0) . Recall that D̃(0) cannot be zero, so A is well defined.

• Now move AD̃(z) to the right hand side.

P̃(z)z = Ñ(z)´ AD̃(z)

The constant terms in Ñ(z) and AD̃(z) are the same, so the right hand side contains
no constant term and the right hand side is of the form Ñ1(z)z for some polynomial
Ñ1(z).
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• Since Ñ(z) is of degree at most d and AD̃(z) is of degree exactly d, Ñ1 is a polynomial
of degree d´ 1. It now suffices to choose P̃(z) = Ñ1(z).

Now back to

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

Apply Lemma 1.10.13, with D(x) = (x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad) and a = a1. It says

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+

P(x)
(x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad)

for some polynomial P of degree at most d´ 2 and some number A1.
Apply Lemma 1.10.13 a second time, with D(x) = (x ´ a3) ˆ ¨ ¨ ¨ ˆ (x ´ ad), N(x) =

P(x) and a = a2. It says

P(x)
(x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A2

x´ a2
+

Q(x)
(x´ a3)ˆ ¨ ¨ ¨ ˆ (x´ ad)

for some polynomial Q of degree at most d´ 3 and some number A2.
At this stage, we know that

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+

A2

x´ a2
+

Q(x)
(x´ a3)ˆ ¨ ¨ ¨ ˆ (x´ ad)

If we just keep going, repeatedly applying Lemma 1, we eventually end up with

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+ ¨ ¨ ¨+ Ad

x´ ad

as required.

§§§ The General Linear Factor Case

Now consider splitting

N(x)
(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

into a sum of the form71

[ A1,1

x´ a1
+ ¨ ¨ ¨+ A1,n1

(x´ a1)n1

]
+ ¨ ¨ ¨+

[ Ad,1

x´ ad
+ ¨ ¨ ¨+ Ad,nd

(x´ ad)nd

]

We now show that this decomposition can always be achieved, under the assumptions
that the ai’s are all different and N(x) is a polynomial of degree at most n1 + ¨ ¨ ¨+ nd ´ 1.
To do so, we shall repeatedly apply the following Lemma.

71 If we allow ourselves to use complex numbers as roots, this is the general case. We don’t need to
consider quadratic (or higher) factors since all polynomials can be written as products of linear factors
with complex coefficients.
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Let N(x) and D(x) be polynomials of degree n and d respectively, with n ă d+m.
Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree
p ă d and numbers A1, ¨ ¨ ¨ , Am such that

N(x)
D(x) (x´ a)m =

P(x)
D(x)

+
A1

x´ a
+

A2

(x´ a)2 + ¨ ¨ ¨+ Am

(x´ a)m

Lemma 1.10.14.

Proof. • As we did in the proof of the previous lemma, we write z = x ´ a. Then
Ñ(z) = N(z + a) and D̃(z) = D(z + a) are polynomials of degree n and d respec-
tively, D̃(0) = D(a) ‰ 0.

• In order to complete the proof we have to find a polynomial P̃(z) of degree p ă d
and numbers A1, ¨ ¨ ¨ , Am such that

Ñ(z)
D̃(z) zm =

P̃(z)
D̃(z)

+
A1

z
+

A2

z2 + ¨ ¨ ¨+ Am

zm

=
P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ AmD̃(z)

D̃(z) zm

or equivalently, such that

P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ Am´1zD̃(z) + AmD̃(z) = Ñ(z)

• Now look at the polynomial on the left hand side. Every single term on the left
hand side, except for the very last one, AmD̃(z), has at least one power of z. So the
constant term on the left hand side is exactly the constant term in AmD̃(z), which is
equal to AmD̃(0). The constant term on the right hand side is equal to Ñ(0). So the
constant terms on the left and right hand sides are the same if we choose Am = Ñ(0)

D̃(0) .

Recall that D̃(0) ‰ 0 so Am is well defined.

• Now move AmD̃(z) to the right hand side.

P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ Am´1zD̃(z) = Ñ(z)´ AmD̃(z)

The constant terms in Ñ(z) and AmD̃(z) are the same, so the right hand side contains
no constant term and the right hand side is of the form Ñ1(z)z with Ñ1 a polynomial
of degree at most d + m´ 2. (Recall that Ñ is of degree at most d + m´ 1 and D̃ is of
degree at most d.) Divide the whole equation by z to get

P̃(z)zm´1 + A1zm´2D̃(z) + A2zm´3D̃(z) + ¨ ¨ ¨+ Am´1D̃(z) = Ñ1(z).

• Now, we can repeat the previous argument. The constant term on the left hand side,
which is exactly equal to Am´1D̃(0) matches the constant term on the right hand
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side, which is equal to Ñ1(0) if we choose Am´1 = Ñ1(0)
D̃(0) . With this choice of Am´1

P̃(z)zm´1 + A1zm´2D̃(z) + A2zm´3D̃(z) + ¨ ¨ ¨+ Am´2zD̃(z)
= Ñ1(z)´ Am´1D̃(z) = Ñ2(z)z

with Ñ2 a polynomial of degree at most d + m´ 3. Divide by z and continue.

• After m steps like this, we end up with

P̃(z)z = Ñm´1(z)´ A1D̃(z)

after having chosen A1 =
Ñm´1(0)

D̃(0) .

• There is no constant term on the right side so that Ñm´1(z)´ A1D̃(z) is of the form
Ñm(z)z with Ñm a polynomial of degree d´ 1. Choosing P̃(z) = Ñm(z) completes
the proof.

Now back to

N(x)
(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

Apply Lemma 1.10.14, with D(x) = (x ´ a2)
n2 ˆ ¨ ¨ ¨ ˆ (x ´ ad)

nd , m = n1 and a = a1. It
says

N(x)
(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+ A1,n1

(x´ a)n1
+

P(x)
(x´ a2)n2 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

Apply Lemma 1.10.14 a second time, with D(x) = (x ´ a3)
n3 ˆ ¨ ¨ ¨ ˆ (x ´ ad)

nd , N(x) =
P(x), m = n2 and a = a2. And so on. Eventually, we end up with

[ A1,1

x´ a1
+ ¨ ¨ ¨+ A1,n1

(x´ a1)n1

]
+ ¨ ¨ ¨+

[ Ad,1

x´ ad
+ ¨ ¨ ¨+ Ad,nd

(x´ ad)nd

]

which is exactly what we were trying to show.

§§§ Really Optional — The Fully General Case

We are now going to see that, in general, if N(x) and D(x) are polynomials with the degree
of N being strictly smaller than the degree of D (which we’ll denote deg(N) ă deg(D))
and if

D(x) = K(x´ a1)
m1 ¨ ¨ ¨ (x´ aj)

mj(x2 + b1x + c1)
n1 ¨ ¨ ¨ (x2 + bkx + ck)

nk (E1)
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(with b2
` ´ 4c` ă 0 for all 1 ď ` ď k so that no quadratic factor can be written as a product

of linear factors with real coefficients) then there are real numbers Ai,j, Bi,j, Ci,j such that

N(x)
D(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+ A1,m1

(x´ a1)m1
+ ¨ ¨ ¨

+
Aj,1

x´ aj
+

Aj,2

(x´ aj)2 + ¨ ¨ ¨+
Aj,mj

(x´ aj)
mj

+
B1,1x + C1,1

x2 + b1x + c1
+

B1,2x + C1,2

(x2 + b1x + c1)2 +¨ ¨ ¨+ B1,n1 x + C1,n1

(x2 + b1x + c1)n1
+¨ ¨ ¨

+
Bk,1x + Ck,1

x2 + bkx + ck
+

Bk,2x + Ck,2

(x2 + bkx + ck)2 +¨ ¨ ¨+ Bk,nk
x + C1,nk

(x2 + bkx + ck)nk

This was (1.10.11).
We start with two simpler results, that we’ll use repeatedly to get (1.10.11). In the

first simpler result, we consider the fraction P(x)
Q1(x) Q2(x) with P(x), Q1(x) and Q2(x) being

polynomials with real coefficients and we are going to assume that when P(x), Q1(x) and
Q2(x) are factored as in (E1), no two of them have a common linear or quadratic factor.
As an example, no two of

P(x) = 2(x´ 3)(x´ 4)(x2 + 3x + 3)

Q1(x) = 2(x´ 1)(x2 + 2x + 2)

Q2(x) = 2(x´ 2)(x2 + 2x + 3)

have such a common factor. But, for

P(x) = 2(x´ 3)(x´ 4)(x2 + x + 1)

Q1(x) = 2(x´ 1)(x2 + 2x + 2)

Q2(x) = 2(x´ 2)(x2 + x + 1)

P(x) and Q2(x) have the common factor x2 + x + 1.

Let P(x), Q1(x) and Q2(x) be polynomials with real coefficients and with
deg(P) ă deg(Q1Q2). Assume that no two of P(x), Q1(x) and Q2(x) have
a common linear or quadratic factor. Then there are polynomials P1, P2 with
deg(P1) ă deg(Q1), deg(P2) ă deg(Q2), and

P(x)
Q1(x) Q2(x)

=
P1(x)
Q1(x)

+
P2(x)
Q2(x)

Lemma 1.10.15.

Proof. We are to find polynomials P1 and P2 that obey

P(x) = P1(x) Q2(x) + P2(x) Q1(x)
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Actually, we are going to find polynomials p1 and p2 that obey

p1(x) Q1(x) + p2(x) Q2(x) = C (E2)

for some nonzero constant C, and then just multiply (E2) by P(x)
C . To find p1, p2 and C

we are going to use something called the Euclidean algorithm. It is an algorithm72 that
is used to efficiently find the greatest common divisors of two numbers. Because Q1(x)
and Q2(x) have no common factors of degree 1 or 2, their “greatest common divisor” has
degree 0, i.e. is a constant.

• The first step is to apply long division to Q1(x)
Q2(x) to find polynomials n0(x) and r0(x)

such that
Q1(x)
Q2(x)

= n0(x) +
r0(x)
Q2(x)

with deg(r0) ă deg(Q2)

or, equivalently,

Q1(x) = n0(x) Q2(x) + r0(x) with deg(r0) ă deg(Q2)

• The second step is to apply long division to Q2(x)
r0(x) to find polynomials n1(x) and

r1(x) such that

Q2(x) = n1(x) r0(x) + r1(x) with deg(r1) ă deg(r0) or r1(x) = 0

• The third step (assuming that r1(x) was not zero) is to apply long division to r0(x)
r1(x) to

find polynomials n2(x) and r2(x) such that

r0(x) = n2(x) r1(x) + r2(x) with deg(r2) ă deg(r1) or r2(x) = 0

• And so on.

As the degree of the remainder ri(x) decreases by at least one each time i is increased by
one, the above iteration has to terminate with some r`+1(x) = 0. That is, we choose ` to be
index of the last nonzero remainder. Here is a summary of all of the long division steps.

Q1(x) = n0(x) Q2(x) + r0(x) with deg(r0) ă deg(Q2)

Q2(x) = n1(x) r0(x) + r1(x) with deg(r1) ă deg(r0)

r0(x) = n2(x) r1(x) + r2(x) with deg(r2) ă deg(r1)

r1(x) = n3(x) r2(x) + r3(x) with deg(r3) ă deg(r2)

...
r`´2(x) = n`(x) r`´1(x) + r`(x) with deg(r`) ă deg(r`´1)

r`´1(x) = n`+1(x) r`(x) + r`+1(x) with r`+1 = 0

Now we are going to take a closer look at all of the different remainders that we have
generated.

72 It appears in Euclid’s Elements, which was written about 300 BC, and it was probably known even
before that.
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• From first long division step, namely Q1(x) = n0(x) Q2(x) + r0(x) we have that the
remainder

r0(x) = Q1(x)´ n0(x) Q2(x)

• From the second long division step, namely Q2(x) = n1(x) r0(x) + r1(x) we have
that the remainder

r1(x) = Q2(x)´ n1(x) r0(x) = Q2(x)´ n1(x)
[
Q1(x)´ n0(x) Q2(x)

]

= A1(x) Q1(x) + B1(x) Q2(x)

with A1(x) = ´n1(x) and B1(x) = 1 + n0(x) n1(x).
• From the third long division step (assuming that r1(x) was not zero), namely r0(x) =

n2(x) r1(x) + r2(x), we have that the remainder

r2(x) = r0(x)´ n2(x) r1(x)

=
[
Q1(x)´ n0(x) Q2(x)

]´ n2(x)
[
A1(x) Q1(x) + B1(x) Q2(x)

]

= A2(x) Q1(x) + B2(x) Q2(x)

with A2(x) = 1´ n2(x) A1(x) and B2(x) = ´n0(x)´ n2(x) B1(x).
• And so on. Continuing in this way, we conclude that the final nonzero remainder

r`(x) = A`(x) Q1(x) + B`(x) Q2(x) for some polynomials A` and B`.

Now the last nonzero remainder r`(x) has to be a nonzero constant C because

˝ it is nonzero by the definition of r`(x) and
˝ if r`(x) were a polynomial of degree at least one, then

– r`(x) would be a factor of r`´1(x) because r`´1(x) = n`+1(x) r`(x) and
– r`(x) would be a factor of r`´2(x) because r`´2(x) = n`(x) r`´1(x) + r`(x) and
– r`(x) would be a factor of r`´3(x) because r`´3(x) = n`´1(x) r`´2(x) + r`´1(x) and
– ¨ ¨ ¨ and ¨ ¨ ¨
– r`(x) would be a factor of r1(x) because r1(x) = n3(x) r2(x) + r3(x) and
– r`(x) would be a factor of r0(x) because r0(x) = n2(x) r1(x) + r2(x) and
– r`(x) would be a factor of Q2(x) because Q2(x) = n1(x) r0(x) + r1(x) and
– r`(x) would be a factor of Q1(x) because Q1(x) = n0(x) Q2(x) + r0(x)

˝ so that r`(x) would be a common factor for Q1(x) and Q2(x), in contradiction to the
hypothesis that no two of P(x), Q1(x) and Q2(x) have a common linear or quadratic
factor.

We now have that A`(x) Q1(x) + B`(x) Q2(x) = r`(x) = C. Multiplying by P(x)
C gives

P̃2(x) Q1(x) + P̃1(x) Q2(x) = P(x) or
P̃1(x)
Q1(x)

+
P̃2(x)
Q2(x)

=
P(x)

Q1(x) Q2(x)

with P̃2(x) = P(x) A`(x)
C and P̃1(x) = P(x) B`(x)

C . We’re not quite done, because there is still
the danger that deg(P̃1) ě deg(Q1) or deg(P̃2) ě deg(Q2). To deal with that possibility,
we long divide P̃1(x)

Q1(x) and call the remainder P1(x).

P̃1(x)
Q1(x)

= N(x) +
P1(x)
Q1(x)

with deg(P1) ă deg(Q1)

168



INTEGRATION 1.10 PARTIAL FRACTIONS

Therefore we have that

P(x)
Q1(x) Q2(x)

=
P1(x)
Q1(x)

+ N(x) +
P̃2(x)
Q2(x)

=
P1(x)
Q1(x)

+
P̃2(x) + N(x)Q2(x)

Q2(x)

Denoting P2(x) = P̃2(x)+ N(x)Q2(x) gives P
Q1 Q2

= P1
Q1

+ P2
Q2

and since deg(P1) ă deg(Q1),
the only thing left to prove is that deg(P2) ă deg(Q2).

We assume that deg(P2) ě deg(Q2) and look for a contradiction. We have

deg(P2Q1) ě deg(Q1Q2) ą deg(P1Q2)

ùñ deg(P) = deg(P1Q2 + P2Q1) = deg(P2Q1) ě deg(Q1Q2)

which contradicts the hypothesis that deg(P) ă deg(Q1Q2) and the proof is complete.

For the second of the two simpler results, that we’ll shortly use repeatedly to get
(1.10.11), we consider P(x)

(x´a)m and P(x)
(x2+bx+c)m .

Let m ě 2 be an integer, and let Q(x) be either x´ a or x2 + bx + c, with a, b and c
being real numbers. Let P(x) be a polynomial with real coefficients, which does
not contain Q(x) as a factor, and with deg(P) ă deg(Qm) = m deg(Q). Then, for
each 1 ď i ď m, there is a polynomial Pi with deg(Pi) ă deg(Q) or Pi = 0, such
that

P(x)
Q(x)m =

P1(x)
Q(x)

+
P2(x)
Q(x)2 +

P3(x)
Q(x)3 + ¨ ¨ ¨+ Pm´1(x)

Q(x)m´1 +
Pm(x)
Q(x)m .

In particular, if Q(x) = x´ a, then each Pi(x) is just a constant Ai, and if Q(x) =
x2 + bx + c, then each Pi(x) is a polynomial Bix + Ci of degree at most one.

Lemma 1.10.16.

Proof. We simply repeatedly use long divison to get

P(x)
Q(x)m =

P(x)
Q(x)

1
Q(x)m´1 =

"
n1(x) +

r1(x)
Q(x)

*
1

Q(x)m´1

=
r1(x)

Q(x)m +
n1(x)
Q(x)

1
Q(x)m´2 =

r1(x)
Q(x)m +

"
n2(x) +

r2(x)
Q(x)

*
1

Q(x)m´2

=
r1(x)

Q(x)m +
r2(x)

Q(x)m´1 +
n2(x)
Q(x)

1
Q(x)m´3

...

=
r1(x)

Q(x)m +
r2(x)

Q(x)m´1 + ¨ ¨ ¨+ rm´2(x)
Q(x)3 +

nm´2(x)
Q(x)

1
Q(x)

=
r1(x)

Q(x)m +
r2(x)

Q(x)m´1 + ¨ ¨ ¨+ rm´2(x)
Q(x)3 +

"
nm´1(x) +

rm´1(x)
Q(x)

*
1

Q(x)

=
r1(x)

Q(x)m +
r2(x)

Q(x)m´1 + ¨ ¨ ¨+ rm´2(x)
Q(x)3 +

rm´1(x)
Q(x)2 +

nm´1(x)
Q(x)
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By the rules of long division every deg(ri) ă deg(Q). It is also true that the final numer-
ator, nm´1, has deg(nm´1) ă deg(Q) — that is, we kept dividing by Q until the degree of
the quotient was less than the degree of Q. To see this, note that deg(P) ă m deg(Q) and

deg(n1) = deg(P)´ deg(Q)

deg(n2) = deg(n1)´ deg(Q) = deg(P)´ 2 deg(Q)

...
deg(nm´1) = deg(nm´2)´ deg(Q) = deg(P)´ (m´ 1)deg(Q)

ă m deg(Q)´ (m´ 1)deg(Q)

= deg(Q)

So, if deg(Q) = 1, then r1, r2, . . . , rm´1, nm´1 are all real numbers, and if deg(Q) = 2, then
r1, r2, . . . , rm´1, nm´1 all have degree at most one.

We are now in a position to get (1.10.11). We use (E1) to factor73 D(x) = (x´ a1)
m1 Q2(x)

and use Lemma 1.10.15 to get

N(x)
D(x)

=
N(x)

(x´ a1)m1 Q2(x)
=

P1(x)
(x´ a1)m1

+
P2(x)
Q2(x)

where deg(P1) ă m1, and deg(P2) ă deg(Q2). Then we use Lemma 1.10.16 to get

N(x)
D(x)

=
P1(x)

(x´ a1)m1
+

P2(x)
Q2(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+ A1,m1

(x´ a1)m1
+

P2(x)
Q2(x)

We continue working on P2(x)
Q2(x) in this way, pulling off of the denominator one (x´ ai)

mi or

one (x2 + bix + ci)
ni at a time, until we exhaust all of the factors in the denominator D(x).

1.11Ĳ Numerical Integration

By now the reader will have come to appreciate that integration is generally quite a bit
more difficult than differentiation. There are a great many simple-looking integrals, such
as

ş
e´x2

dx, that are either very difficult or even impossible to express in terms of stan-
dard functions74. Such integrals are not merely mathematical curiosities, but arise very
naturally in many contexts. For example, the error function

erf(x) =
2?
π

ż x

0
e´t2

dt

is extremely important in many areas of mathematics, and also in many practical applica-
tions of statistics.

73 This is assuming that there is at least one linear factor. If not, we factor D(x) = (x2 + b1x + c1)
n1 Q2(x)

instead.
74 We apologise for being a little sloppy here — but we just want to say that it can be very hard or even

impossible to write some integrals as some finite sized expression involving polynomials, exponen-
tials, logarithms and trigonometric functions. We don’t want to get into a discussion of computability,
though that is a very interesting topic.
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In such applications we need to be able to evaluate this integral (and many others) at
a given numerical value of x. In this section we turn to the problem of how to find (ap-
proximate) numerical values for integrals, without having to evaluate them algebraically.
To develop these methods we return to Riemann sums and our geometric interpretation
of the definite integral as the signed area.

We start by describing (and applying) three simple algorithms for generating, numer-
ically, approximate values for the definite integral

şb
a f (x)dx. In each algorithm, we begin

in much the same way as we approached Riemann sums.

• We first select an integer n ą 0, called the “number of steps”.

• We then divide the interval of integration, a ď x ď b, into n equal subintervals, each
of length ∆x = b´a

n . The first subinterval runs from x0 = a to x1 = a + ∆x. The
second runs from x1 to x2 = a + 2∆x, and so on. The last runs from xn´1 = b´ ∆x
to xn = b.

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

This splits the original integral into n pieces:

ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨+
ż xn

xn´1

f (x)dx

Each subintegral
şxj

xj´1
f (x)dx is approximated by the area of a simple geometric figure.

The three algorithms we consider approximate the area by rectangles, trapezoids and
parabolas (respectively).
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We will explain these rules in detail below, but we give a brief overview here:

(1) The midpoint rule approximates each subintegral by the area of a rectangle of height
given by the value of the function at the midpoint of the subinterval

ż xj

xj´1

f (x)dx « f
(

xj´1 + xj

2

)
∆x

This is illustrated in the leftmost figure above.

(2) The trapezoidal rule approximates each subintegral by the area of a trapezoid with
vertices at (xj´1, 0), (xj´1, f (xj´1)), (xj, f (xj)), (xj, 0):

ż xj

xj´1

f (x)dx « 1
2
[

f (xj´1) + f (xj)
]

∆x

The trapezoid is illustrated in the middle figure above. We shall derive the formula
for the area shortly.

(3) Simpson’s rule approximates two adjacent subintegrals by the area under a parabola
that passes through the points (xj´1, f (xj´1)), (xj, f (xj)) and (xj+1, f (xj+1)):

ż xj+1

xj´1

f (x)dx « 1
3
[

f (xj´1) + 4 f (xj) + f (xj+1)
]

∆x

The parabola is illustrated in the right hand figure above. We shall derive the formula
for the area shortly.

In what follows we need to refer to the midpoint between xj´1 and xj very fre-
quently. To save on writing (and typing) we introduce the notation

x̄j =
1
2
(
xj´1 + xj

)
.

Notation 1.11.1 (Midpoints).
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1.11.1 §§ The Midpoint Rule

The integral
şxj

xj´1
f (x)dx represents the area between the curve y = f (x) and the x–axis

with x running from xj´1 to xj. The width of this region is xj ´ xj´1 = ∆x. The height
varies over the different values that f (x) takes as x runs from xj´1 to xj.

The midpoint rule approximates this area by the area of a rectangle of width xj´ xj´1 =
∆x and height f (x̄j) which is the exact height at the midpoint of the range covered by x.

xj−1 xj

f(xj)

f(xj−1)

x̄jxj−1 xj

f
(xj−1+xj

2

)

The area of the approximating rectangle is f (x̄j)∆x, and the midpoint rule approximates
each subintegral by ż xj

xj´1

f (x)dx « f (x̄j)∆x

.
Applying this approximation to each subinterval and summing gives us the following

approximation of the full integral:

ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨ +
ż xn

xn´1

f (x)dx

« f (x̄1)∆x + f (x̄2)∆x + ¨ ¨ ¨ + f (x̄n)∆x

So notice that the approximation is the sum of the function evaluated at the midpoint
of each interval and then multiplied by ∆x. Our other approximations will have similar
forms.

In summary:

The midpoint rule approximation is

ż b

a
f (x)dx «

[
f (x̄1) + f (x̄2) + ¨ ¨ ¨+ f (x̄n)

]
∆x

where ∆x = b´a
n and

x0 = a x1 = a + ∆x x2 = a + 2∆x ¨ ¨ ¨ xn´1 = b´ ∆x xn = b

x̄1 = x0+x1
2 x̄2 = x1+x2

2 ¨ ¨ ¨ x̄n´1 =
xn´2+xn´1

2 x̄n =
xn´1+xn

2

Equation 1.11.2 (The midpoint rule).
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Example 1.11.3
(ş1

0
4

1+x2 dx
)

We approximate the above integral using the midpoint rule with n = 8 step.

Solution.

• First we set up all the x-values that we will need. Note that a = 0, b = 1, ∆x = 1
8 and

x0 = 0 x1 = 1
8 x2 = 2

8 ¨ ¨ ¨ x7 = 7
8 x8 = 8

8 = 1

Consequently

x̄1 = 1
16 x̄2 = 3

16 x̄3 = 5
16 ¨ ¨ ¨ x̄8 = 15

16

• We now apply Equation (1.11.2) to the integrand f (x) = 4
1+x2 :

ż 1

0

4
1 + x2 dx «

[
f (x̄1)hkkikkj

4
1 + x̄2

1
+

f (x̄2)hkkikkj
4

1 + x̄2
2
+¨ ¨ ¨+

f (x̄n´1)hkkikkj
4

1 + x̄2
7
+

f (x̄n)hkkikkj
4

1 + x̄2
8

]
∆x

=

[
4

1 + 1
162

+
4

1 + 32

162

+
4

1 + 52

162

+
4

1 + 72

162

+
4

1 + 92

162

+
4

1 + 112

162

+
4

1 + 132

162

+
4

1 + 152

162

]
1
8

=
[
3.98444 + 3.86415 + 3.64413 + 3.35738 + 3.03858 + 2.71618 + 2.40941 + 2.12890

]1
8

= 3.1429

where we have rounded to four decimal places.

• In this case we can compute the integral exactly (which is one of the reasons it was
chosen as a first example):

ż 1

0

4
1 + x2 dx = 4 arctan x

ˇ̌
ˇ
1

0
= π

• So the error in the approximation generated by eight steps of the midpoint rule is

|3.1429´ π| = 0.0013

• The relative error is then

|approximate´ exact|
exact

=
|3.1429´ π|

π
= 0.0004

That is the error is 0.0004 times the actual value of the integral.

• We can write this as a percentage error by multiplying it by 100

percentage error = 100ˆ |approximate´ exact|
exact

= 0.04%

That is, the error is about 0.04% of the exact value.
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Example 1.11.3

The midpoint rule gives us quite good estimates of the integral without too much work —
though it is perhaps a little tedious to do by hand75. Of course, it would be very helpful to
quantify what we mean by “good” in this context and that requires us to discuss errors.

Suppose that α is an approximation to A. This approximation has

• absolute error |A´ α| and

• relative error |A´α|
|A| and

• percentage error 100 |A´α|
|A|

Definition 1.11.4.

We will discuss errors further in Section 1.11.4 below.

Example 1.11.5
(şπ

0 sin x dx
)

As a second example, we apply the midpoint rule with n = 8 steps to the above integral.

• We again start by setting up all the x-values that we will need. So a = 0, b = π,
∆x = π

8 and

x0 = 0 x1 = π
8 x2 = 2π

8 ¨ ¨ ¨ x7 = 7π
8 x8 = 8π

8 = π

Consequently,

x̄1 = π
16 x̄2 = 3π

16 ¨ ¨ ¨ x̄7 = 13π
16 x̄8 = 15π

16

• Now apply Equation (1.11.2) to the integrand f (x) = sin x:
ż π

0
sin x dx «

[
sin(x̄1) + sin(x̄2) + ¨ ¨ ¨+ sin(x̄8)

]
∆x

=
[

sin( π
16) + sin(3π

16 ) + sin(5π
16 ) + sin(7π

16 ) + sin(9π
16 ) + sin(11π

16 ) + sin(13π
16 ) + sin(15π

16 )
]

π
8

=
[
0.1951 + 0.5556 + 0.8315 + 0.9808 + 0.9808 + 0.8315 + 0.5556 + 0.1951

]
ˆ 0.3927

= 5.1260ˆ 0.3927 = 2.013

• Again, we have chosen this example so that we can compare it against the exact
value:

ż π

0
sin xdx =

[´ cos x
]π

0 = ´ cos π + cos 0 = 2.

75 Thankfully it is very easy to write a program to apply the midpoint rule.
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• So with eight steps of the midpoint rule we achieved

absolute error = |2.013´ 2| = 0.013

relative error =
|2.013´ 2|

2
= 0.0065

percentage error = 100ˆ |2.013´ 2|
2

= 0.65%

With little work we have managed to estimate the integral to within 1% of its true
value.

Example 1.11.5

1.11.2 §§ The Trapezoidal Rule

Consider again the area represented by the integral
şxj

xj´1
f (x)dx. The trapezoidal rule76

(unsurprisingly) approximates this area by a trapezoid77 whose vertices lie at

(xj´1, 0), (xj´1, f (xj´1)), (xj, f (xj)) and (xj, 0).

xj−1 xj

f(xj)

f(xj−1)

xj−1 xj

f(xj)

f(xj−1)

The trapezoidal approximation of the integral
şxj

xj´1
f (x)dx is the shaded region in the

figure on the right above. It has width xj´ xj´1 = ∆x. Its left hand side has height f (xj´1)
and its right hand side has height f (xj).

As the figure below shows, the area of a trapezoid is its width times its average height.

w x

r

ℓ

y

area ℓw

area (r − ℓ)w/2

area (r + ℓ)w/2

76 This method is also called the “trapezoid rule” and “trapezium rule”.
77 A trapezoid is a four sided polygon, like a rectangle. But, unlike a rectangle, the top and bottom of a

trapezoid need not be parallel.
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So the trapezoidal rule approximates each subintegral by

ż xj

xj´1

f (x)dx « f (xj´1)+ f (xj)
2 ∆x

Applying this approximation to each subinterval and then summing the result gives us
the following approximation of the full integral

ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨ +
ż xn

xn´1

f (x)dx

« f (x0)+ f (x1)
2 ∆x + f (x1)+ f (x2)

2 ∆x + ¨ ¨ ¨ + f (xn´1)+ f (xn)
2 ∆x

=
[

1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

So notice that the approximation has a very similar form to the midpoint rule, excepting
that

• we evaluate the function at the xj’s rather than at the midpoints, and

• we multiply the value of the function at the endpoints x0, xn by 1/2.

In summary:

The trapezoidal rule approximation is

ż b

a
f (x)dx «

[
1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

where

∆x = b´a
n , x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ¨ ¨ ¨ , xn´1 = b´ ∆x, xn = b

Equation 1.11.6 (The trapezoidal rule).

To compare and contrast we apply the trapezoidal rule to the examples we did above
with the midpoint rule.

Example 1.11.7
(ş1

0
4

1+x2 dx — using the trapezoidal rule
)

Solution. We proceed very similarly to Example 1.11.3 and again use n = 8 steps.

• We again have f (x) = 4
1+x2 , a = 0, b = 1, ∆x = 1

8 and

x0 = 0 x1 = 1
8 x2 = 2

8 ¨ ¨ ¨ x7 = 7
8 x8 = 8

8 = 1
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• Applying the trapezoidal rule, Equation (1.11.6), gives

ż 1

0

4
1 + x2 dx «

[
1
2

f (x0)hkkikkj
4

1 + x2
0
+

f (x1)hkkikkj
4

1 + x2
1
+¨ ¨ ¨+

f (xn´1)hkkikkj
4

1 + x2
7
+

1
2

f (xn)hkkikkj
4

1 + x2
8

]
∆x

=

[
1
2

4
1 + 02 +

4
1 + 1

82

+
4

1 + 22

82

+
4

1 + 32

82

+
4

1 + 42

82

+
4

1 + 52

82

+
4

1 + 62

82

+
4

1 + 72

82

+
1
2

4

1 + 82

82

]
1
8

=
[1

2
ˆ 4 + 3.939 + 3.765 + 3.507

+ 3.2 + 2.876 + 2.56 + 2.266 +
1
2
ˆ 2
]1

8
= 3.139

to three decimal places.

• The exact value of the integral is still π. So the error in the approximation generated
by eight steps of the trapezoidal rule is |3.139´π| = 0.0026, which is 100 |3.139´π|

π % =
0.08% of the exact answer. Notice that this is roughly twice the error that we achieved
using the midpoint rule in Example 1.11.3.

Example 1.11.7

Let us also redo Example 1.11.5 using the trapezoidal rule.

Example 1.11.8
(şπ

0 sin x dx — using the trapezoidal rule
)

Solution. We proceed very similarly to Example 1.11.5 and again use n = 8 steps.

• We again have a = 0, b = π, ∆x = π
8 and

x0 = 0 x1 = π
8 x2 = 2π

8 ¨ ¨ ¨ x7 = 7π
8 x8 = 8π

8 = π

• Applying the trapezoidal rule, Equation (1.11.6), gives
ż π

0
sin x dx «

[
1
2 sin(x0) + sin(x1) + ¨ ¨ ¨+ sin(x7) +

1
2 sin(x8)

]
∆x

=
[

1
2 sin 0 + sin π

8 + sin 2π
8 + sin 3π

8 + sin 4π
8 + sin 5π

8 + sin 6π
8 + sin 7π

8 + 1
2 sin 8π

8

]
π
8

=
[

1
2ˆ0 + 0.3827 + 0.7071 + 0.9239 + 1.0000 + 0.9239 + 0.7071 + 0.3827 + 1

2ˆ0
]
ˆ 0.3927

= 5.0274ˆ 0.3927 = 1.974

• The exact answer is
şπ

0 sin x dx = ´ cos x
ˇ̌
ˇ
π

0
= 2. So with eight steps of the trape-

zoidal rule we achieved 100 |1.974´2|
2 = 1.3% accuracy. Again this is approximately

twice the error we achieved in Example 1.11.5 using the midpoint rule.
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Example 1.11.8

These two examples suggest that the midpoint rule is more accurate than the trape-
zoidal rule. Indeed, this observation is born out by a rigorous analysis of the error — see
Section 1.11.4.

1.11.3 §§ Simpson’s Rule

When we use the trapezoidal rule we approximate the area
şxj

xj´1
f (x)dx by the area be-

tween the x-axis and a straight line that runs from (xj´1, f (xj´1)) to (xj, f (xj)) — that is,
we approximate the function f (x) on this interval by a linear function that agrees with the
function at each endpoint. An obvious way to extend this — just as we did when extend-
ing linear approximations to quadratic approximations in our differential calculus course
— is to approximate the function with a quadratic. This is precisely what Simpson’s78 rule
does.

Simpson’s rule approximates the integral over two neighbouring subintervals by the
area between a parabola and the x-axis. In order to describe this parabola we need 3
distinct points (which is why we approximate two subintegrals at a time). That is, we
approximate

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx =

ż x2

x0

f (x)dx

by the area bounded by the parabola that passes through the three points
(
x0, f (x0)

)
,(

x1, f (x1)
)

and
(
x2, f (x2)

)
, the x-axis and the vertical lines x = x0 and x = x2. We repeat

x0 x1 x2

(
x0, f(x0)

)

(
x1, f(x1)

) (
x2, f(x2)

)

this on the next pair of subintervals and approximate
şx4

x2
f (x)dx by the area between the

x–axis and the part of a parabola with x2 ď x ď x4. This parabola passes through the three
points

(
x2, f (x2)

)
,
(
x3, f (x3)

)
and

(
x4, f (x4)

)
. And so on. Because Simpson’s rule does

the approximation two slices at a time, n must be even.
To derive Simpson’s rule formula, we first find the equation of the parabola that passes

through the three points
(
x0, f (x0)

)
,
(
x1, f (x1)

)
and

(
x2, f (x2)

)
. Then we find the area

78 Simpson’s rule is named after the 18th century English mathematician Thomas Simpson, despite its
use a century earlier by the German mathematician and astronomer Johannes Kepler. In many German
texts the rule is often called Kepler’s rule.
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between the x–axis and the part of that parabola with x0 ď x ď x2. To simplify this
computation consider a parabola passing through the points (´h, y´1), (0, y0) and (h, y1).

Write the equation of the parabola as

y = Ax2 + Bx + C

Then the area between it and the x-axis with x running from ´h to h is

ż h

´h

[
Ax2 + Bx + C

]
dx =

[
A
3

x3 +
B
2

x2 + Cx
]h

´h

=
2A
3

h3 + 2Ch it is helpful to write it as

=
h
3

(
2Ah2 + 6C

)

Now, the three points (´h, y´1), (0, y0) and (h, y1) lie on this parabola if and only if

Ah2 ´ Bh + C = y´1 at (´h, y´1)

C = y0 at (0, y0)

Ah2 + Bh + C = y1 at (h, y1)

Adding the first and third equations together gives us

2Ah2 + (B´ B)h + 2C = y´1 + y1

To this we add four times the middle equation

2Ah2 + 6C = y´1 + 4y0 + y1.

This means that

area =

ż h

´h

[
Ax2 + Bx + C

]
dx =

h
3

(
2Ah2 + 6C

)

=
h
3
(y´1 + 4y0 + y1)

Note that here

• h is one half of the length of the x–interval under consideration

• y´1 is the height of the parabola at the left hand end of the interval under consider-
ation

• y0 is the height of the parabola at the middle point of the interval under considera-
tion

• y1 is the height of the parabola at the right hand end of the interval under consider-
ation
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So Simpson’s rule approximates
ż x2

x0

f (x)dx « 1
3 ∆x

[
f (x0) + 4 f (x1) + f (x2)

]

and ż x4

x2

f (x)dx « 1
3 ∆x

[
f (x2) + 4 f (x3) + f (x4)

]

and so on. Summing these all together gives:
ż b

a
f (x)dx =

ż x2

x0

f (x)dx +

ż x4

x2

f (x)dx +

ż x6

x4

f (x)dx + ¨ ¨ ¨+
ż xn

xn´2

f (x)dx

« ∆x
3

[
f (x0) + 4 f (x1) + f (x2)

]
+ ∆x

3

[
f (x2) + 4 f (x3) + f (x4)

]

+ ∆x
3

[
f (x4) + 4 f (x5) + f (x6)

]
+ ¨ ¨ ¨ + ∆x

3

[
f (xn´2) + 4 f (xn´1) + f (xn)

]

=
[

f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

In summary

The Simpson’s rule approximation is

ż b

a
f (x)dx «

[
f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨

¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

where n is even and

∆x = b´a
n , x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ¨ ¨ ¨ , xn´1 = b´ ∆x, xn = b

Equation 1.11.9 (Simpson’s rule).

Notice that Simpson’s rule requires essentially no more work than the trapezoidal rule.
In both rules we must evaluate f (x) at x = x0, x1, . . . , xn, but we add those terms multi-
plied by different constants79.

Let’s put it to work on our two running examples.

Example 1.11.10
(ş1

0
4

1+x2 dx — using Simpson’s rule
)

Solution. We proceed almost identically to Example 1.11.7 and again use n = 8 steps.

79 There is an easy generalisation of Simpson’s rule that uses cubics instead of parabolas. It leads to the
formula

ż b

a
f (x)dx = [ f (x0) + 3 f (x1) + 3 f (x2) + 2 f (x3) + 2 f (x4) + 3 f (x5) + 3 f (x6) + 2 f (x7) + ¨ ¨ ¨+ f (xn)]

3∆x
8

where n is a multiple of 3. This result is known as Simpson’s second rule and Simpson’s 3/8 rule. While
one can push this approach further (using quartics, quintics etc), it can sometimes lead to larger errors
— the interested reader should look up Runge’s phenomenon.
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• We have the same ∆, a, b, x0, . . . , xn as Example 1.11.7.

• Applying Equation 1.11.9 gives
ż 1

0

4
1 + x2 dx «

[
4

1 + 02 + 4
4

1 + 1
82

+ 2
4

1 + 22

82

+ 4
4

1 + 32

82

+ 2
4

1 + 42

82

+ 4
4

1 + 52

82

+ 2
4

1 + 62

82

+ 4
4

1 + 72

82

+
4

1 + 82

82

]
1

8ˆ 3

=
[
4 + 4ˆ 3.938461538 + 2ˆ 3.764705882 + 4ˆ 3.506849315

+ 2ˆ 3.2 + 4ˆ 2.876404494 + 2ˆ 2.56 + 4ˆ 2.265486726 + 2
] 1

8ˆ 3
= 3.14159250

to eight decimal places.

• This agrees with π (the exact value of the integral) to six decimal places. So the error
in the approximation generated by eight steps of Simpson’s rule is |3.14159250 ´
π| = 1.5ˆ 10´7, which is 100 |3.14159250´π|

π % = 5ˆ 10´6% of the exact answer.

Example 1.11.10

It is striking that the absolute error approximating with Simpson’s rule is so much smaller
than the error from the midpoint and trapezoidal rules.

midpoint error = 0.0013
trapezoid error = 0.0026
Simpson error = 0.00000015

Buoyed by this success, we will also redo Example 1.11.8 using Simpson’s rule.

Example 1.11.11
(şπ

0 sin x dx — Simpson’s rule
)

Solution. We proceed almost identically to Example 1.11.8 and again use n = 8 steps.

• We have the same ∆, a, b, x0, . . . , xn as Example 1.11.7.

• Applying Equation 1.11.9 gives
ż π

0
sin x dx «

[
sin(x0) + 4 sin(x1) + 2 sin(x2) + ¨ ¨ ¨+ 4 sin(x7) + sin(x8)

]
∆x
3

=
[

sin(0) + 4 sin(π
8 ) + 2 sin(2π

8 ) + 4 sin(3π
8 ) + 2 sin(4π

8 )

+ 4 sin(5π
8 ) + 2 sin(6π

8 ) + 4 sin(7π
8 ) + sin(8π

8 )
]

π
8ˆ3

=
[
0 + 4ˆ 0.382683 + 2ˆ 0.707107 + 4ˆ 0.923880 + 2ˆ 1.0

+ 4ˆ 0.923880 + 2ˆ 0.707107 + 4ˆ 0.382683 + 0
]

π
8ˆ3

= 15.280932ˆ 0.130900
= 2.00027
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• With only eight steps of Simpson’s rule we achieved 1002.00027´2
2 = 0.014% accuracy.

Example 1.11.11

Again we contrast the error we achieved with the other two rules:

midpoint error = 0.013
trapezoid error = 0.026
Simpson error = 0.00027

This completes our derivation of the midpoint, trapezoidal and Simpson’s rules for
approximating the values of definite integrals. So far we have not attempted to see how
efficient and how accurate the algorithms are in general. That’s our next task.

1.11.4 §§ Three Simple Numerical Integrators – Error Behaviour

Now we are armed with our three (relatively simple) methods for numerical integration
we should give thought to how practical they might be in the real world80. Two obvious
considerations when deciding whether or not a given algorithm is of any practical value
are

(a) the amount of computational effort required to execute the algorithm and

(b) the accuracy that this computational effort yields.

For algorithms like our simple integrators, the bulk of the computational effort usually
goes into evaluating the function f (x). The number of evaluations of f (x) required for n
steps of the midpoint rule is n, while the number required for n steps of the trapezoidal
and Simpson’s rules is n + 1. So all three of our rules require essentially the same amount
of effort – one evaluation of f (x) per step.

To get a first impression of the error behaviour of these methods, we apply them to a
problem whose answer we know exactly:

ż π

0
sin x dx = ´ cos x

ˇ̌π
0 = 2.

To be a little more precise, we would like to understand how the errors of the three meth-
ods change as we increase the effort we put in (as measured by the number of steps n). The
following table lists the error in the approximate value for this number generated by our
three rules applied with three different choices of n. It also lists the number of evaluations
of f required to compute the approximation.

Midpoint Trapezoidal Simpson’s
n error # evals error # evals error # evals
10 8.2ˆ 10´3 10 1.6ˆ 10´2 11 1.1ˆ 10´4 11

100 8.2ˆ 10´5 100 1.6ˆ 10´4 101 1.1ˆ 10´8 101
1000 8.2ˆ 10´7 1000 1.6ˆ 10´6 1001 1.1ˆ 10´12 1001

80 Indeed, even beyond the “real world” of many applications in first year calculus texts, some of the
methods we have described are used by actual people (such as ship builders, engineers and surveyors)
to estimate areas and volumes of actual objects!
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Observe that

• Using 101 evaluations of f worth of Simpson’s rule gives an error 75 times smaller
than 1000 evaluations of f worth of the midpoint rule.

• The trapezoidal rule error with n steps is about twice the midpoint rule error with n
steps.

• With the midpoint rule, increasing the number of steps by a factor of 10 appears to
reduce the error by about a factor of 100 = 102 = n2.

• With the trapezoidal rule, increasing the number of steps by a factor of 10 appears
to reduce the error by about a factor of 102 = n2.

• With Simpson’s rule, increasing the number of steps by a factor of 10 appears to
reduce the error by about a factor of 104 = n4.

So it looks like

approx value of
ż b

a
f (x)dx given by n midpoint steps «

ż b

a
f (x)dx + KM ¨ 1

n2

approx value of
ż b

a
f (x)dx given by n trapezoidal steps «

ż b

a
f (x)dx + KT ¨ 1

n2

approx value of
ż b

a
f (x)dx given by n Simpson’s steps «

ż b

a
f (x)dx + KM ¨ 1

n4

with some constants KM, KT and KS. It also seems that KT « 2KM.

184



INTEGRATION 1.11 NUMERICAL INTEGRATION

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

x = log2 n

y = log2 en

1 2 3 4 5 6 7 8 9 10 12

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

−26

−28

midpoint rule
y = −0.2706− 2.0011 x

trapezoidal rule
y = 0.7253− 2.0008 x

■

■

■

■

■

■

■

■

■

■

x = log2 n

y = log2 en

1 2 3 4 5 6 7 8 9 10

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

−26

−28

−30

−32

−34

−36

−38

−40

Simpson’s rule
y = 0.35− 4.03 x

A log-log plot of the error in the n step approximation to
ż π

0
sin x dx.

Figure 1.11.1.

To test these conjectures for the behaviour of the errors we apply our three rules with
about ten different choices of n of the form n = 2m with m integer. Figure 1.11.1 con-
tains two graphs of the results. The left-hand plot shows the results for the midpoint and
trapezoidal rules and the right-hand plot shows the results for Simpson’s rule.

For each rule we are expecting (based on our conjectures above) that the error

en = |exact value ´ approximate value|
with n steps is (roughly) of the form

en = K
1
nk

for some constants K and k. We would like to test if this is really the case, by graphing
Y = en against X = n and seeing if the graph “looks right”. But it is not easy to tell
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whether or not a given curve really is Y = K
Xk , for some specific k, by just looking at it.

However, your eye is pretty good at determining whether or not a graph is a straight line.
Fortunately, there is a little trick that turns the curve Y = K

Xk into a straight line – no matter
what k is.

Instead of plotting Y against X, we plot log Y against log X. This transformation81

works because when Y = K
Xk

log Y = log K´ k log X

So plotting y = log Y against x = log X gives the straight line y = log K ´ kx, which has
slope ´k and y–intercept log K.

The three graphs in Figure 1.11.1 plot y = log2 en against x = log2 n for our three rules.
Note that we have chosen to use logarithms82 with this “unusual base” because it makes
it very clear how much the error is improved if we double the number of steps used. To be
more precise — one unit step along the x-axis represents changing n ÞÑ 2n. For example,
applying Simpson’s rule with n = 24 steps results in an error of 0000166, so the point
(x = log2 24 = 4, y = log2 0000166 =

log 0000166
log 2 = ´15.8) has been included on the graph.

Doubling the effort used — that is, doubling the number of steps to n = 25— results
in an error of 0.00000103. So, the data point (x = log2 25 = 5 , y = log2 0.00000103 =
ln 0.00000103

ln 2 = ´19.9) lies on the graph. Note that the x-coordinates of these points differ
by 1 unit.

For each of the three sets of data points, a straight line has also been plotted “through”
the data points. A procedure called linear regression83 has been used to decide precisely
which straight line to plot. It provides a formula for the slope and y–intercept of the
straight line which “best fits” any given set of data points. From the three lines, it sure
looks like k = 2 for the midpoint and trapezoidal rules and k = 4 for Simpson’s rule.
It also looks like the ratio between the value of K for the trapezoidal rule, namely K =
20.7253, and the value of K for the midpoint rule, namely K = 2´0.2706, is pretty close to 2:
20.7253/2´0.2706 = 20.9959.

The intuition, about the error behaviour, that we have just developed is in fact correct
— provided the integrand f (x) is reasonably smooth. To be more precise

81 There is a variant of this trick that works even when you don’t know the answer to the integral ahead
of time. Suppose that you suspect that the approximation satisfies

Mn = A + K 1
nk

where A is the exact value of the integral and suppose that you don’t know the values of A, K and k.
Then

Mn ´M2n = K 1
nk ´ K 1

(2n)k = K
(
1´ 1

2k

) 1
nk

so plotting y = log(Mn ´M2n) against x = log n gives the straight line y = log
[
K
(
1´ 1

2k

)]
´ kx.

82 Now is a good time for a quick revision of logarithms — see “Whirlwind review of logarithms” in
Section 2.7 of the CLP-1 text.

83 Linear regression is not part of this course as its derivation requires some multivariable calculus. It is a
very standard technique in statistics.
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Assume that | f 2(x)| ď M for all a ď x ď b. Then

the total error introduced by the midpoint rule is bounded by
M
24

(b´ a)3

n2

and

the total error introduced by the trapezoidal rule is bounded by
M
12

(b´ a)3

n2

when approximating
ż b

a
f (x)dx. Further, if | f (4)(x)| ď L for all a ď x ď b, then

the total error introduced by Simpson’s rule is bounded by
L

180
(b´ a)5

n4 .

Theorem 1.11.12 (Numerical integration errors).

The first of these error bounds in proven in the following (optional) section. Here are
some examples which illustrate how they are used. First let us check that the above result
is consistent with our data in Figure 1.11.1

Example 1.11.13
(
Midpoint rule error approximating

şπ
0 sin x dx

)

• The integral
şπ

0 sin x dx has b´ a = π.

• The second derivative of the integrand satisfies
ˇ̌
ˇ̌ d2

dx2 sin x
ˇ̌
ˇ̌ = | ´ sin x| ď 1

So we take M = 1.

• So the error, en, introduced when n steps are used is bounded by

|en| ď M
24

(b´ a)3

n2

=
π3

24
1
n2

« 1.29
1
n2

• The data in the graph in Figure 1.11.1 gives

|en| « 2´.2706 1
n2 = 0.83

1
n2

which is consistent with the bound |en| ď π3

24
1

n2 .
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Example 1.11.13

In a typical application we would be asked to evaluate a given integral to some spec-
ified accuracy. For example, if you are manufacturer and your machinery can only cut

materials to an accuracy of 1
10

th
of a millimeter, there is no point in making design specifi-

cations more accurate than 1
10

th
of a millimeter.

Example 1.11.14

Suppose, for example, that we wish to use the midpoint rule to evaluate84

ż 1

0
e´x2

dx

to within an accuracy of 10´6.

Solution.

• The integral has a = 0 and b = 1.

• The first two derivatives of the integrand are

d
dx

e´x2
= ´2xe´x2

and

d2

dx2 e´x2
=

d
dx
(´ 2xe´x2)

= ´2e´x2
+ 4x2e´x2

= 2(2x2 ´ 1)e´x2

• As x runs from 0 to 1, 2x2 ´ 1 increases from ´1 to 1, so that

0 ď x ď 1 ùñ |2x2 ´ 1| ď 1, e´x2 ď 1 ùñ ˇ̌
2(2x2 ´ 1)e´x2 ˇ̌ ď 2

So we take M = 2.

• The error introduced by the n step midpoint rule is at most

en ď M
24

(b´ a)3

n2

ď 2
24

(1´ 0)3

n2 =
1

12n2

• We need this error to be smaller than 10´6 so

en ď 1
12n2 ď 10´6 and so

12n2 ě 106 clean up

n2 ě 106

12
= 83333.3 . . . square root both sides

n ě 288.7

So 289 steps of the midpoint rule will do the job.

84 This is our favourite running example of an integral that cannot be evaluated algebraically — we need
to use numerical methods.
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• In fact n = 289 results in an error of about 3.7ˆ 10´7.

Example 1.11.14

That seems like far too much work, and the trapezoidal rule will have twice the error. So
we should look at Simpson’s rule.

Example 1.11.15

Suppose now that we wish evaluate
ş1

0 e´x2
dx to within an accuracy of 10´6 — but now

using Simpson’s rule. How many steps should we use?

Solution.

• Again we have a = 0, b = 1.

• We then need to bound d4

dx4 e´x2
on the domain of integration, 0 ď x ď 1.

d3

dx3 e´x2
=

d
dx

 
2(2x2 ´ 1)e´x2(

= 8xe´x2 ´ 4x(2x2 ´ 1)e´x2

= 4(´2x3 + 3x)e´x2

d4

dx4 e´x2
=

d
dx

 
4(´2x3 + 3x)e´x2(

= 4(´6x2 + 3)e´x2´ 8x(´2x3 + 3x)e´x2

= 4(4x4 ´ 12x2 + 3)e´x2

• Now, for any x, e´x2 ď 1. Also, for 0 ď x ď 1,

0 ď x2, x4 ď 1 so

3 ď 4x4 + 3 ď 7 and

´12 ď ´12x2 ď 0 adding these together gives

´9 ď 4x4 ´ 12x2 + 3 ď 7

Consequently, |4x4 ´ 12x2 + 3| is bounded by 9 and so

ˇ̌
ˇ̌ d4

dx4 e´x2
ˇ̌
ˇ̌ ď 4ˆ 9 = 36

So take L = 36.

• The error introduced by the n step Simpson’s rule is at most

en ď L
180

(b´ a)5

n4

ď 36
180

(1´ 0)5

n4 =
1

5n4
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• In order for this error to be no more than 10´6 we require n to satisfy

en ď 1
5n4 ď 10´6 and so

5n4 ě 106

n4 ě 200000 take fourth root
n ě 21.15

So 22 steps of Simpson’s rule will do the job.

• n = 22 steps actually results in an error of 3.5 ˆ 10´8. The reason that we get an
error so much smaller than we need is that we have overestimated the number of
steps required. This, in turn, occurred because we made quite a rough bound ofˇ̌
ˇ d4

dx4 f (x)
ˇ̌
ˇ ď 36. If we are more careful then we will get a slightly smaller n. It

actually turns out85 that you only need n = 10 to approximate within 10´6.

Example 1.11.15

1.11.5 §§ Optional — An Error Bound for the Midpoint Rule

We now try develop some understanding as to why we got the above experimental results.
We start with the error generated by a single step of the midpoint rule. That is, the error
introduced by the approximation

ż x1

x0

f (x)dx « f (x̄1)∆x where ∆x = x1 ´ x0, x̄1 = x0+x1
2

To do this we are going to need to apply integration by parts in a sneaky way. Let us start
by considering86 a subinterval α ď x ď β and let’s call the width of the subinterval 2q so
that β = α + 2q. If we were to now apply the midpoint rule to this subinterval, then we
would write

ż β

α
f (x)dx « 2q ¨ f (α + q) = q f (α + q) + q f (β´ q)

since the interval has width 2q and the midpoint is α + q = β´ q.
The sneaky trick we will employ is to write

ż β

α
f (x)dx =

ż α+q

α
f (x)dx +

ż β

β´q
f (x)dx

85 The authors tested this empirically.
86 We chose this interval so that we didn’t have lots of subscripts floating around in the algebra.
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and then examine each of the integrals on the right-hand side (using integration by parts)
and show that they are each of the form

ż α+q

α
f (x)dx « q f (α + q) + small error term

ż β

β´q
f (x)dx « q f (β´ q) + small error term

Let us apply integration by parts to
şα+q

α f (x)dx — with u = f (x), dv = dx so du =
f 1(x)dx and we will make the slightly non-standard choice of v = x´ α:

ż α+q

α
f (x)dx =

[
(x´ α) f (x)

]α+q
α

´
ż α+q

α
(x´ α) f 1(x)dx

= q f (α + q)´
ż α+q

α
(x´ α) f 1(x)dx

Notice that the first term on the right-hand side is the term we need, and that our non-
standard choice of v allowed us to avoid introducing an f (α) term.

Now integrate by parts again using u = f 1(x), dv = (x ´ α)dx, so du = f 2(x), v =
(x´α)2

2 :

ż α+q

α
f (x)dx = q f (α + q)´

ż α+q

α
(x´ α) f 1(x)dx

= q f (α + q)´
[
(x´ α)2

2
f 1(x)

]α+q

α

+

ż α+q

α

(x´ α)2

2
f 2(x)dx

= q f (α + q)´ q2

2
f 1(α + q) +

ż α+q

α

(x´ α)2

2
f 2(x)dx

To obtain a similar expression for the other integral, we repeat the above steps and obtain:

ż β

β´q
f (x)dx = q f (β´ q) +

q2

2
f 1(β´ q) +

ż β

β´q

(x´ β)2

2
f 2(x)dx

Now add together these two expressions

ż α+q

α
f (x)dx +

ż β

β´q
f (x)dx = q f (α + q) + q f (β´ q) +

q2

2
( f 1(β´ q)´ f 1(α + q))

+

ż α+q

α

(x´ α)2

2
f 2(x)dx +

ż β

β´q

(x´ β)2

2
f 2(x)dx

Then since α + q = β´ q we can combine the integrals on the left-hand side and eliminate
some terms from the right-hand side:

ż β

α
f (x)dx = 2q f (α + q) +

ż α+q

α

(x´ α)2

2
f 2(x)dx +

ż β

β´q

(x´ β)2

2
f 2(x)dx
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Rearrange this expression a little and take absolute values
ˇ̌
ˇ̌
ˇ

ż β

α
f (x)dx´ 2q f (α + q)

ˇ̌
ˇ̌
ˇ ď

ˇ̌
ˇ̌
ż α+q

α

(x´ α)2

2
f 2(x)dx

ˇ̌
ˇ̌+

ˇ̌
ˇ̌
ˇ

ż β

β´q

(x´ β)2

2
f 2(x)dx

ˇ̌
ˇ̌
ˇ

where we have also made use of the triangle inequality87. By assumption | f 2(x)| ď M on
the interval α ď x ď β, so

ˇ̌
ˇ̌
ˇ

ż β

α
f (x)dx´ 2q f (α + q)

ˇ̌
ˇ̌
ˇ ď M

ż α+q

α

(x´ α)2

2
dx + M

ż β

β´q

(x´ β)2

2
dx

=
Mq3

3
=

M(β´ α)3

24

where we have used q = β´α
2 in the last step.

Thus on any interval xi ď x ď xi+1 = xi + ∆x
ˇ̌
ˇ̌
ż xi+1

xi

f (x)dx´ ∆x f
(

xi + xi+1

2

)ˇ̌
ˇ̌ ď M

24
(∆x)3

Putting everything together we see that the error using the midpoint rule is bounded
by
ˇ̌
ˇ̌
ˇ

ż b

a
f (x)dx´ [ f (x̄1) + f (x̄2) + ¨ ¨ ¨+ f (x̄n)]∆x

ˇ̌
ˇ̌
ˇ

ď
ˇ̌
ˇ̌
ż x1

x0

f (x)dx´ ∆x f (x̄1)

ˇ̌
ˇ̌+ ¨ ¨ ¨+

ˇ̌
ˇ̌
ˇ

ż xn

xn´1

f (x)dx´ ∆x f (x̄n)

ˇ̌
ˇ̌
ˇ

ď nˆ M
24

(∆x)3 = nˆ M
24

(
b´ a

n

)3

=
M(b´ a)3

24n2

as required.
A very similar analysis shows that, as was stated in Theorem 1.11.12 above,

• the total error introduced by the trapezoidal rule is bounded by
M
12

(b´ a)3

n2 ,

• the total error introduced by Simpson’s rule is bounded by
M

180
(b´ a)5

n4

1.12Ĳ Improper Integrals

1.12.1 §§ Definitions

To this point we have only considered nicely behaved integrals
şb

a f (x)dx. Though the
algebra involved in some of our examples was quite difficult, all the integrals had

87 The triangle inequality says that for any real numbers x, y

|x + y| ď |x|+ |y|.
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• finite limits of integration a and b, and

• a bounded integrand f (x) (and in fact continuous except possibly for finitely many
jump discontinuities).

Not all integrals we need to study are quite so nice.

An integral having either an infinite limit of integration or an unbounded inte-
grand is called an improper integral.

Definition 1.12.1.

Two examples are

ż 8

0

dx
1 + x2 and

ż 1

0

dx
x

The first has an infinite domain of integration and the integrand of the second tends to 8
as x approaches the left end of the domain of integration. We’ll start with an example that
illustrates the traps that you can fall into if you treat such integrals sloppily. Then we’ll
see how to treat them carefully.

Example 1.12.2
(ş1
´1

1
x2 dx

)

Consider the integral

ż 1

´1

1
x2 dx

If we “do” this integral completely naively then we get

ż 1

´1

1
x2 dx =

x´1

´1

ˇ̌
ˇ̌
1

´1

=
1
´1

´ ´1
´1

= ´2

which is wrong88. In fact, the answer is ridiculous. The integrand 1
x2 ą 0, so the integral

has to be positive.
The flaw in the argument is that the fundamental theorem of calculus, which says that

if F1(x) = f (x) then
şb

a f (x)dx = F(b)´ F(a)

88 Very wrong. But it is not an example of “not even wrong” — which is a phrase attributed to the physicist
Wolfgang Pauli who was known for his harsh critiques of sloppy arguments. The phrase is typically
used to describe arguments that are so incoherent that not only can one not prove they are true, but
they lack enough coherence to be able to show they are false. The interested reader should do a little
searchengineing and look at the concept of falisfyability.
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is applicable only when F1(x) exists and equals f (x) for all a ď x ď b. In this case F1(x) =
1
x2 does not exist for x = 0. The given integral is improper. We’ll see later that the correct
answer is +8.

Example 1.12.2

Let us put this example to one side for a moment and turn to the integral
ş8

a
dx

1+x2 . In this
case, the integrand is bounded but the domain of integration extends to +8. We can eval-
uate this integral by sneaking up on it. We compute it on a bounded domain of integration,
like

şR
a

dx
1+x2 , and then take the limit R Ñ 8. Let us put this into practice:

a R x

y = f(x)

Example 1.12.3
(ş8

a
dx

1+x2

)

Solution.

• Since the domain extends to +8we first integrate on a finite domain

ż R

a

dx
1 + x2 = arctan x

ˇ̌
ˇ̌
R

a

= arctan R´ arctan a

• We then take the limit as R Ñ +8:

ż 8

a

dx
1 + x2 = lim

RÑ8

ż R

a

dx
1 + x2

= lim
RÑ8

[
arctan R´ arctan a

]

=
π

2
´ arctan a.

Example 1.12.3

To be more precise, we actually formally define an integral with an infinite domain
as the limit of the integral with a finite domain as we take one or more of the limits of
integration to infinity.
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(a) If the integral
şR

a f (x) dx exists for all R ą a, then

ż 8

a
f (x) dx = lim

RÑ8

ż R

a
f (x) dx

when the limit exists (and is finite).

(b) If the integral
şb

r f (x) dx exists for all r ă b, then

ż b

´8

f (x) dx = lim
rÑ´8

ż b

r
f (x) dx

when the limit exists (and is finite).

(c) If the integral
şR

r f (x) dx exists for all r ă R, then

ż 8

´8

f (x) dx = lim
rÑ´8

ż c

r
f (x) dx + lim

RÑ8

ż R

c
f (x) dx

when both limits exist (and are finite). Any c can be used.

When the limit(s) exist, the integral is said to be convergent. Otherwise it is said
to be divergent.

Definition 1.12.4 (Improper integral with infinite domain of integration).

We must also be able to treat an integral like
ş1

0
dx
x that has a finite domain of integration

but whose integrand is unbounded near one limit of integration89 Our approach is similar
— we sneak up on the problem. We compute the integral on a smaller domain, such asş1

t
dx
x , with t ą 0, and then take the limit t Ñ 0+.

Example 1.12.5
(ş1

0
1
x dx

)

Solution.

• Since the integrand is unbounded near x = 0, we integrate on the smaller domain
t ď x ď 1 with t ą 0:

ż 1

t

1
x

dx = log |x|
ˇ̌
ˇ̌
1

t
= ´ log |t|

• We then take the limit as t Ñ 0+ to obtain
ż 1

0

1
x

dx = lim
tÑ0+

ż 1

t

1
x

dx = lim
tÑ0+

´ log |t| = +8

89 This will, in turn, allow us to deal with integrals whose integrand is unbounded somewhere inside the
domain of integration.
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Thus this integral diverges to +8.

Example 1.12.5

t 1 x

y

y = 1
x

Indeed, we define integrals with unbounded integrands via this process:

(a) If the integral
şb

t f (x) dx exists for all a ă t ă b, then

ż b

a
f (x) dx = lim

tÑa+

ż b

t
f (x) dx

when the limit exists (and is finite).

(b) If the integral
şT

a f (x) dx exists for all a ă T ă b, then

ż b

a
f (x) dx = lim

TÑb´

ż T

a
f (x) dx

when the limit exists (and is finite).

(c) Let a ă c ă b. If the integrals
şT

a f (x) dx and
şb

t f (x) dx exist for all a ă T ă c
and c ă t ă b, then

ż b

a
f (x) dx = lim

TÑc´

ż T

a
f (x) dx + lim

tÑc+

ż b

t
f (x) dx

when both limit exist (and are finite).

When the limit(s) exist, the integral is said to be convergent. Otherwise it is said
to be divergent.

Definition 1.12.6 (Improper integral with unbounded integrand).
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Notice that (c) is used when the integrand is unbounded at some point in the middle
of the domain of integration, such as was the case in our original example

ż 1

´1

1
x2 dx

A quick computation shows that this integral diverges to +8
ż 1

´1

1
x2 dx = lim

aÑ0´

ż a

´1

1
x2 dx + lim

bÑ0+

ż 1

b

1
x2 dx

= lim
aÑ0´

[
1´ 1

a

]
+ lim

bÑ0+

[
1
b
´ 1
]

= +8
More generally, if an integral has more than one “source of impropriety” (for exam-

ple an infinite domain of integration and an integrand with an unbounded integrand or
multiple infinite discontinuities) then you split it up into a sum of integrals with a single
“source of impropriety” in each. For the integral, as a whole, to converge every term in
that sum has to converge.

For example

Example 1.12.7
(ş8
´8

dx
(x´2)x2

)

Consider the integral
ż 8

´8

dx
(x´ 2)x2

• The domain of integration that extends to both +8 and ´8.

• The integrand is singular (i.e. becomes infinite) at x = 2 and at x = 0.

• So we would write the integral as

ż 8

´8

dx
(x´ 2)x2 =

ż a

´8

dx
(x´ 2)x2 +

ż 0

a

dx
(x´ 2)x2 +

ż b

0

dx
(x´ 2)x2

+

ż 2

b

dx
(x´ 2)x2 +

ż c

2

dx
(x´ 2)x2 +

ż 8

c

dx
(x´ 2)x2

where

– a is any number strictly less than 0,

– b is any number strictly between 0 and 2, and

– c is any number strictly bigger than 2.

So, for example, take a = ´1, b = 1, c = 3.

• When we examine the right-hand side we see that
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– the first integral has domain of integration extending to ´8
– the second integral has an integrand that becomes unbounded as x Ñ 0´,
– the third integral has an integrand that becomes unbounded as x Ñ 0+,
– the fourth integral has an integrand that becomes unbounded as x Ñ 2´,
– the fifth integral has an integrand that becomes unbounded as x Ñ 2+, and
– the last integral has domain of integration extending to +8.

• Each of these integrals can then be expressed as a limit of an integral on a small
domain.

Example 1.12.7

1.12.2 §§ Examples

With the more formal definitions out of the way, we are now ready for some (important)
examples.

Example 1.12.8
(ş8

1
dx
xp with p ą 0

)

Solution.

• Fix any p ą 0.

• The domain of the integral
ş8

1
dx
xp extends to +8 and the integrand 1

xp is continuous
and bounded on the whole domain.

• So we write this integral as the limit
ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp

• The antiderivative of 1/xp changes when p = 1, so we will split the problem into
three cases, p ą 1, p = 1 and p ă 1.

• When p ą 1,
ż R

1

dx
xp =

1
1´ p

x1´p
ˇ̌
ˇ̌
R

1

=
R1´p ´ 1

1´ p
Taking the limit as R Ñ 8 gives

ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp

= lim
RÑ8

R1´p ´ 1
1´ p

=
´1

1´ p
=

1
p´ 1

198



INTEGRATION 1.12 IMPROPER INTEGRALS

since 1´ p ă 0.

• Similarly when p ă 1 we have
ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp = lim

RÑ8

R1´p ´ 1
1´ p

= +8
because 1´ p ą 0 and the term R1´p diverges to +8.

• Finally when p = 1
ż R

1

dx
x

= log |R| ´ log 1 = log R

Then taking the limit as R Ñ 8 gives us
ż 8

1

dx
xp = lim

RÑ8
log |R| = +8.

• So summarising, we have
ż 8

1

dx
xp =

#
divergent if p ď 1

1
p´1 if p ą 1

Example 1.12.8

Example 1.12.9
(ş1

0
dx
xp with p ą 0

)

Solution.

• Again fix any p ą 0.

• The domain of integration of the integral
ş1

0
dx
xp is finite, but the integrand 1

xp becomes
unbounded as x approaches the left end, 0, of the domain of integration.

• So we write this integral as
ż 1

0

dx
xp = lim

tÑ0+

ż 1

t

dx
xp

• Again, the antiderivative changes at p = 1, so we split the problem into three cases.

• When p ą 1 we have
ż 1

t

dx
xp =

1
1´ p

x1´p
ˇ̌
ˇ̌
1

t

=
1´ t1´p

1´ p
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Since 1´ p ă 0 when we take the limit as t Ñ 0 the term t1´p diverges to +8 and
we obtain

ż 1

0

dx
xp = lim

tÑ0+

1´ t1´p

1´ p
= +8

• When p = 1 we similarly obtain
ż 1

0

dx
x

= lim
tÑ0+

ż 1

t

dx
x

= lim
tÑ0+

(´ log |t|)

= +8

• Finally, when p ă 1 we have
ż 1

0

dx
xp = lim

tÑ0+

ż 1

t

dx
xp

= lim
tÑ0+

1´ t1´p

1´ p
=

1
1´ p

since 1´ p ą 0.

• In summary

ż 1

0

dx
xp =

#
1

1´p if p ă 1

divergent if p ě 1

Example 1.12.9

Example 1.12.10
(ş8

0
dx
xp with p ą 0

)

Solution.

• Yet again fix p ą 0.

• This time the domain of integration of the integral
ş8

0
dx
xp extends to +8, and in

addition the integrand 1
xp becomes unbounded as x approaches the left end, 0, of the

domain of integration.

• So we split the domain in two — given our last two examples, the obvious place to
cut is at x = 1: ż 8

0

dx
xp =

ż 1

0

dx
xp +

ż 8

1

dx
xp

• We saw, in Example 1.12.9, that the first integral diverged whenever p ě 1, and we
also saw, in Example 1.12.8, that the second integral diverged whenever p ď 1.
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• So the integral
ş8

0
dx
xp diverges for all values of p.

Example 1.12.10

Example 1.12.11
(ş1
´1

dx
x

)

This is a pretty subtle example. Look at the sketch below: This suggests that the signed

−1
1

x

y

y = 1
x

area to the left of the y–axis should exactly cancel the area to the right of the y–axis making
the value of the integral

ş1
´1

dx
x exactly zero.

But both of the integrals

ż 1

0

dx
x

= lim
tÑ0+

ż 1

t

dx
x

= lim
tÑ0+

[
log x

]1

t
= lim

tÑ0+
log

1
t

= +8
ż 0

´1

dx
x

= lim
TÑ0´

ż T

´1

dx
x

= lim
TÑ0´

[
log |x|

]T

´1
= lim

TÑ0´
log |T| = ´8

diverge so
ş1
´1

dx
x diverges. Don’t make the mistake of thinking that8´8 = 0. It is undefined.

And it is undefined for good reason.
For example, we have just seen that the area to the right of the y–axis is

lim
tÑ0+

ż 1

t

dx
x

= +8

and that the area to the left of the y–axis is (substitute ´7t for T above)

lim
tÑ0+

ż ´7t

´1

dx
x

= ´8
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If8´8 = 0, the following limit should be 0.

lim
tÑ0+

[ ż 1

t

dx
x

+

ż ´7t

´1

dx
x

]
= lim

tÑ0+

[
log

1
t
+ log | ´ 7t|

]

= lim
tÑ0+

[
log

1
t
+ log(7t)

]

= lim
tÑ0+

[
´ log t + log 7 + log t

]
= lim

tÑ0+
log 7

= log 7

This appears to give 8´8 = log 7. Of course the number 7 was picked at random. You
can make8´8 be any number at all, by making a suitable replacement for 7.

Example 1.12.11

Example 1.12.12 (Example 1.12.2 revisited)

The careful computation of the integral of Example 1.12.2 is
ż 1

´1

1
x2 dx = lim

TÑ0´

ż T

´1

1
x2 dx + lim

tÑ0+

ż 1

t

1
x2 dx

= lim
TÑ0´

[
´ 1

x

]T

´1
+ lim

tÑ0+

[
´ 1

x

]1

t

= 8+8
Hence the integral diverges to +8.

Example 1.12.12

Example 1.12.13
(ş8
´8

dx
1+x2

)

Since

lim
RÑ8

ż R

0

dx
1 + x2 = lim

RÑ8

[
arctan x

]R

0
= lim

RÑ8
arctan R =

π

2

lim
rÑ´8

ż 0

r

dx
1 + x2 = lim

rÑ´8

[
arctan x

]0

r
= lim

rÑ´8
´ arctan r =

π

2

The integral
ş8
´8

dx
1+x2 converges and takes the value π.

Example 1.12.13

Example 1.12.14

For what values of p does
ş8

e
dx

x(log x)p converge?

Solution.
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• For x ě e, the denominator x(log x)p is never zero. So the integrand is bounded
on the entire domain of integration and this integral is improper only because the
domain of integration extends to +8 and we proceed as usual.

• We have

ż 8

e

dx
x(log x)p = lim

RÑ8

ż R

e

dx
x(log x)p use substitution

= lim
RÑ8

ż log R

1

du
up with u = log x, du =

dx
x

= lim
RÑ8

$
&
%

1
1´p

[
(log R)1´p ´ 1

]
if p ‰ 1

log(log R) if p = 1

=

#
divergent if p ď 1

1
p´1 if p ą 1

In this last step we have used similar logic that that used in Example 1.12.8, but with
R replaced by log R.

Example 1.12.14

Example 1.12.15 (the gamma function)

The gamma function Γ(x) is defined by the improper integral

Γ(t) =
ż 8

0
xt´1e´x dx

We shall now compute Γ(n) for all natural numbers n.

• To get started, we’ll compute

Γ(1) =
ż 8

0
e´x dx = lim

RÑ8

ż R

0
e´x dx = lim

RÑ8

[
´ e´x

]R

0
= 1
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• Then compute

Γ(2) =
ż 8

0
xe´x dx

= lim
RÑ8

ż R

0
xe´x dx use integration by parts with

u = x, dv = e´xdx,

v = ´e´x, du = dx

= lim
RÑ8

[
´ xe´x

ˇ̌
ˇ
R

0
+

ż R

0
e´x dx

]

= lim
RÑ8

[
´ xe´x ´ e´x

]R

0

= 1

For the last equality, we used that lim
xÑ8

xe´x = 0.

• Now we move on to general n, using the same type of computation as we just used
to evaluate Γ(2). For any natural number n,

Γ(n + 1) =
ż 8

0
xne´x dx

= lim
RÑ8

ż R

0
xne´x dx again integrate by parts with

u = xn, dv = e´xdx,

v = ´e´x, du = nxn´1dx

= lim
RÑ8

[
´ xne´x

ˇ̌
ˇ
R

0
+

ż R

0
nxn´1e´x dx

]

= lim
RÑ8

n
ż R

0
xn´1e´x dx

= nΓ(n)

To get to the third row, we used that lim
xÑ8

xne´x = 0.

• Now that we know Γ(2) = 1 and Γ(n + 1) = nΓ(n), for all n P N, we can compute
all of the Γ(n)’s.

Γ(2) = 1
Γ(3) = Γ(2 + 1)= 2Γ(2) = 2 ¨ 1
Γ(4) = Γ(3 + 1)= 3Γ(3) = 3 ¨ 2 ¨ 1
Γ(5) = Γ(4 + 1)= 4Γ(4) = 4 ¨ 3 ¨ 2 ¨ 1

...
Γ(n) = (n´ 1) ¨ (n´ 2) ¨ ¨ ¨ 4 ¨ 3 ¨ 2 ¨ 1 = (n´ 1)!
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That is, the factorial is just90 the Gamma function shifted by one.

Example 1.12.15

1.12.3 §§ Convergence Tests for Improper Integrals

It is very common to encounter integrals that are too complicated to evaluate explicitly.
Numerical approximation schemes, evaluated by computer, are often used instead (see
Section 1.11). You want to be sure that at least the integral converges before feeding it into
a computer91. Fortunately it is usually possible to determine whether or not an improper
integral converges even when you cannot evaluate it explicitly.

Remark 1.12.16. For pedagogical purposes, we are going to concentrate on the problem
of determining whether or not an integral

ş8
a f (x) dx converges, when f (x) has no singu-

larities for x ě a. Recall that the first step in analyzing any improper integral is to write it
as a sum of integrals each of has only a single “source of impropriety” — either a domain
of integration that extends to +8, or a domain of integration that extends to ´8, or an
integrand which is singular at one end of the domain of integration. So we are now going
to consider only the first of these three possibilities. But the techniques that we are about
to see have obvious analogues for the other two possibilities.

Now let’s start. Imagine that we have an improper integral
ş8

a f (x) dx, that f (x) has
no singularities for x ě a and that f (x) is complicated enough that we cannot evaluate the
integral explicitly92. The idea is find another improper integral

ş8
a g(x) dx

• with g(x) simple enough that we can evaluate the integral
ş8

a g(x) dx explicitly, or
at least determine easily whether or not

ş8
a g(x) dx converges, and

• with g(x) behaving enough like f (x) for large x that the integral
ş8

a f (x) dx con-
verges if and only if

ş8
a g(x) dx converges.

So far, this is a pretty vague strategy. Here is a theorem which starts to make it more
precise.

90 The Gamma function is far more important than just a generalisation of the factorial. It appears all over
mathematics, physics, statistics and beyond. It has all sorts of interesting properties and its definition
can be extended from natural numbers n to all numbers excluding 0,´1,´2,´3, . . . . For example, one
can show that

Γ(1´ z)Γ(z) =
π

sin πz
.

91 Applying numerical integration methods to a divergent integral may result in perfectly reasonably
looking but very wrong answers.

92 You could, for example, think of something like our running example
ş8

a e´t2
dt.
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Let a be a real number. Let f and g be functions that are defined and continuous
for all x ě a and assume that g(x) ě 0 for all x ě a.

(a) If | f (x)| ď g(x) for all x ě a and if
ş8

a g(x) dx converges then
ş8

a f (x) dx also
converges.

(b) If f (x) ě g(x) for all x ě a and if
ş8

a g(x) dx diverges then
ş8

a f (x) dx also
diverges.

Theorem 1.12.17 (Comparison).

We will not prove this theorem, but, hopefully, the following supporting arguments
should at least appear reasonable to you. Consider the figure below:

• If
ş8

a g(x) dx converges, then the area of
 
(x, y)

ˇ̌
x ě a, 0 ď y ď g(x)

(
is finite.

When | f (x)| ď g(x), the region
 
(x, y)

ˇ̌
x ě a, 0 ď y ď | f (x)| ( is contained inside

 
(x, y)

ˇ̌
x ě a, 0 ď y ď g(x)

(

and so must also have finite area. Consequently the areas of both the regions
 
(x, y)

ˇ̌
x ě a, 0 ď y ď f (x)

(
and

 
(x, y)

ˇ̌
x ě a, f (x) ď y ď 0

(

are finite too93.

• If
ş8

a g(x) dx diverges, then the area of
 
(x, y)

ˇ̌
x ě a, 0 ď y ď g(x)

(
is infinite.

When f (x) ě g(x), the region
 
(x, y)

ˇ̌
x ě a, 0 ď y ď f (x)

(
contains the region

 
(x, y)

ˇ̌
x ě a, 0 ď y ď g(x)

(

and so also has infinite area.

Example 1.12.18
(ş8

1 e´x2
dx
)

We cannot evaluate the integral
ş8

1 e´x2
dx explicitly94, however we would still like to un-

93 We have separated the regions in which f (x) is positive and negative, because the integral
ş8

a f (x) dx
represents the signed area of the union of

 
(x, y)

ˇ̌
x ě a, 0 ď y ď f (x)

(
and

 
(x, y)

ˇ̌
x ě a, f (x) ď

y ď 0
(

.
94 It has been the subject of many remarks and footnotes.
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derstand if it is finite or not — does it converge or diverge?

Solution. We will use Theorem 1.12.17 to answer the question.

• So we want to find another integral that we can compute and that we can compare toş8
1 e´x2

dx. To do so we pick an integrand that looks like e´x2
, but whose indefinite

integral we know — such as e´x.

• When x ě 1, we have x2 ě x and hence e´x2 ď e´x. Thus we can use Theorem 1.12.17
to compare

ż 8

1
e´x2

dx with
ż 8

1
e´xdx

• The integral

ż 8

1
e´x dx = lim

RÑ8

ż R

1
e´x dx

= lim
RÑ8

[
´ e´x

]R

1

= lim
RÑ8

[
e´1 ´ e´R

]
= e´1

converges.

• So, by Theorem 1.12.17, with a = 1, f (x) = e´x2
and g(x) = e´x, the integralş8

1 e´x2
dx converges too (it is approximately equal to 0.1394).

Example 1.12.18

Example 1.12.19
(ş8

1/2 e´x2
dx
)

Solution.

• The integral
ş8

1/2 e´x2
dx is quite similar to the integral

ş8
1 e´x2

dx of Example 1.12.18.
But we cannot just repeat the argument of Example 1.12.18 because it is not true that
e´x2 ď e´x when 0 ă x ă 1.

• In fact, for 0 ă x ă 1, x2 ă x so that e´x2 ą e´x.

• However the difference between the current example and Example 1.12.18 is

ż 8

1/2
e´x2

dx´
ż 8

1
e´x2

dx =

ż 1

1/2
e´x2

dx

which is clearly a well defined finite number (its actually about 0.286). It is important
to note that we are being a little sloppy by taking the difference of two integrals like
this — we are assuming that both integrals converge. More on this below.
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• So we would expect that
ş8

1/2 e´x2
dx should be the sum of the proper integral inte-

gral
ş1

1/2 e´x2
dx and the convergent integral

ş8
1 e´x2

dx and so should be a conver-
gent integral. This is indeed the case. The Theorem below provides the justification.

Example 1.12.19

Let a and c be real numbers with a ă c and let the function f (x) be continuous
for all x ě a. Then the improper integral

ş8
a f (x) dx converges if and only if the

improper integral
ş8

c f (x) dx converges.

Theorem 1.12.20.

Proof. By definition the improper integral
ş8

a f (x) dx converges if and only if the limit

lim
RÑ8

ż R

a
f (x) dx = lim

RÑ8

[ ż c

a
f (x) dx +

ż R

c
f (x) dx

]

=

ż c

a
f (x) dx + lim

RÑ8

ż R

c
f (x) dx

exists and is finite. (Remember that, in computing the limit,
şc

a f (x) dx is a finite constant
independent of R and so can be pulled out of the limit.) But that is the case if and only if
the limit limRÑ8

şR
c f (x) dx exists and is finite, which in turn is the case if and only if the

integral
ş8

c f (x) dx converges.

Example 1.12.21

Does the integral
ş8

1

?
x

x2+x dx converge or diverge?

Solution.

• Our first task is to identify the potential sources of impropriety for this integral.

• The domain of integration extends to +8, but we must also check to see if the in-
tegrand contains any singularities. On the domain of integration x ě 1 so the de-
nominator is never zero and the integrand is continuous. So the only problem is at
+8.

• Our second task is to develop some intuition95. As the only problem is that the
domain of integration extends to infinity, whether or not the integral converges will
be determined by the behavior of the integrand for very large x.

95 This takes practice, practice and more practice. At the risk of alliteration — please perform plenty of
practice problems.
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• When x is very large, x2 is much much larger than x (which we can write as x2 " x)
so that the denominator x2 + x « x2 and the integrand

?
x

x2 + x
«
?

x
x2 =

1
x3/2

• By Example 1.12.8, with p = 3/2, the integral
ş8

1
dx

x3/2 converges. So we would expect

that
ş8

1

?
x

x2+x dx converges too.

• Our final task is to verify that our intuition is correct. To do so, we want to apply
part (a) of Theorem 1.12.17 with f (x) =

?
x

x2+x and g(x) being 1
x3/2 , or possibly some

constant times 1
x3/2 . That is, we need to show that for all x ě 1 (i.e. on the domain of

integration)
?

x
x2 + x

ď A
x3/2

for some constant A. Let’s try this.

• Since x ě 1 we know that

x2 + x ą x2

Now take the reciprocal of both sides:

1
x2 + x

ă 1
x2

Multiply both sides by
?

x (which is always positive, so the sign of the inequality
does not change)

?
x

x2 + x
ă
?

x
x2 =

1
x3/2

• So Theorem 1.12.17(a) and Example 1.12.8, with p = 3/2 do indeed show that the
integral

ş8
1

?
x

x2+x dx converges.

Example 1.12.21

Notice that in this last example we managed to show that the integral exists by finding
an integrand that behaved the same way for large x. Our intuition then had to be bolstered
with some careful inequalities to apply the comparison Theorem 1.12.17. It would be
nice to avoid this last step and be able jump from the intuition to the conclusion without
messing around with inequalities. Thankfully there is a variant of Theorem 1.12.17 that is
often easier to apply and that also fits well with the sort of intuition that we developed to
solve Example 1.12.21.
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A key phrase in the previous paragraph is “behaves the same way for large x”. A good
way to formalise this expression — “ f (x) behaves like g(x) for large x” — is to require
that the limit

lim
xÑ8

f (x)
g(x)

exists and is a finite nonzero number.

Suppose that this is the case and call the limit L ‰ 0. Then

• the ratio f (x)
g(x) must approach L as x tends to +8.

• So when x is very large — say x ą B, for some big number B — we must have that

1
2

L ď f (x)
g(x)

ď 2L for all x ą B

Equivalently, f (x) lies between L
2 g(x) and 2Lg(x), for all x ě B.

• Consequently, the integral of f (x) converges if and only if the integral of g(x) con-
verges, by Theorems 1.12.17 and 1.12.20.

These considerations lead to the following variant of Theorem 1.12.17.

Let ´8 ă a ă 8. Let f and g be functions that are defined and continuous for all
x ě a and assume that g(x) ě 0 for all x ě a.

(a) If
ş8

a g(x) dx converges and the limit

lim
xÑ8

f (x)
g(x)

exists, then
ş8

a f (x) dx converges.

(b) If
ş8

a g(x) dx diverges and the limit

lim
xÑ8

f (x)
g(x)

exists and is nonzero, then
ş8

a f (x) diverges.

Note that in (b) the limit must exist and be nonzero, while in (a) we only require
that the limit exists (it can be zero).

Theorem 1.12.22 ( Limiting comparison).

Here is an example of how Theorem 1.12.22 is used.

Example 1.12.23
(ş8

1
x+sin x
e´x+x2 dx

)

Does the integral
ż 8

1

x + sin x
e´x + x2 dx converge or diverge?

Solution.
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• Our first task is to identify the potential sources of impropriety for this integral.

• The domain of integration extends to +8. On the domain of integration the de-
nominator is never zero so the integrand is continuous. Thus the only problem is at
+8.

• Our second task is to develop some intuition about the behavior of the integrand
for very large x. A good way to start is to think about the size of each term when x
becomes big.

• When x is very large:

– e´x ! x2, so that the denominator e´x + x2 « x2, and

– | sin x| ď 1 ! x, so that the numerator x + sin x « x, and

– the integrand x+sin x
e´x+x2 « x

x2 = 1
x .

Notice that we are using A ! B to mean that “A is much much smaller than B”.
Similarly A " B means “A is much much bigger than B”. We don’t really need to be
too precise about its meaning beyond this in the present context.

• Now, since
ş8

1
dx
x diverges, we would expect

ş8
1

x+sin x
e´x+x2 dx to diverge too.

• Our final task is to verify that our intuition is correct. To do so, we set

f (x) =
x + sin x
e´x + x2 g(x) =

1
x

and compute

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x + sin x
e´x + x2 ˜

1
x

= lim
xÑ8

(1 + sin x/x)x
(e´x/x2 + 1)x2 ˆ x

= lim
xÑ8

1 + sin x/x
e´x/x2 + 1

= 1

• Since
ş8

1 g(x) dx =
ş8

1
dx
x diverges, by Example 1.12.8 with p = 1, Theorem 1.12.22(b)

now tells us that
ş8

1 f (x) dx =
ş8

1
x+sin x
e´x+x2 dx diverges too.

Example 1.12.23
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APPLICATIONS OF INTEGRATION

Chapter 2

In the previous chapter we defined the definite integral, based on its interpretation as the
area of a region in the xy–plane. We also developed a bunch of theory to help us work with
integrals. This abstract definition, and the associated theory, turns out to be extremely
useful simply because ”areas of regions in the xy–plane” appear in a huge number of
different settings, many of which seem superficially not to involve ”areas of regions in the
xy–plane”. Here are some examples.

• The work involved in moving a particle or in pumping a fluid out of a reservoir. See
section 2.1.

• The average value of a function. See section 2.2.

• The center of mass of an object. See section 2.3.

• The time dependence of temperature. See section 2.4.

• Radiocarbon dating. See section 2.4.

Let us start with the first of these examples.

2.1Ĳ Work

While computing areas and volumes are nice mathematical applications of integration
we can also use integration to compute quantities of importance in physics and statistics.
One such quantity is work. Work is a way of quantifying the amount of energy that is
required to act against a force1. In SI2 metric units the force F has units newtons (which

1 For example — if your expensive closed-source textbook has fallen on the floor, work quantifies the
amount of energy required to lift the object from the floor acting against the force of gravity.

2 SI is short for “le système international d’unités” which is French for “the international system of units”.
It is the most recent internationally sanctioned version of the metric system, published in 1960. It aims
to establish sensible units of measurement (no cubic furlongs per hogshead-Fahrenheit). It defines
seven base units — metre (length), kilogram (mass), second (time), kelvin (temperature), ampere (elec-
tric current), mole (quantity of substance) and candela (luminous intensity). From these one can then
establish derived units — such as metres per second for velocity and speed.
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APPLICATIONS OF INTEGRATION 2.1 WORK

are kilogram–metres per second squared), x has units metres and the work W has units
joules (which are newton–metres or kilogram–metres squared per second squared).

The work done by a force F(x) in moving an object from x = a to x = b is

W =

ż b

a
F(x) dx

In particular, if the force is a constant, F, independent of x, the work is F ¨ (b´ a).

Definition 2.1.1.

Here is some motivation for this definition. Consider a particle of mass m moving
along the x–axis. Let the position of the particle at time t be x(t). The particle starts at
position a at time α, moves to the right, finishing at position b ą a at time β. While the
particle moves, it is subject to a position-dependent force F(x). Then Newton’s law of
motion3 says4 that force is mass times acceleration

m
d2x
dt2 (t) = F

(
x(t)

)

Now consider our definition of work above. It tells us that the work done in moving the
particle from x = a to x = b is

W =

ż b

a
F(x)dx

However, we know the position as a function of time, so we can substitute x = x(t),
dx = dx

dt dt (using Theorem 1.4.6) and rewrite the above integral:

W =

ż b

a
F(x)dx =

ż t=β

t=α
F(x(t))

dx
dt

dt

Using Newton’s second law we can rewrite our integrand:

= m
ż β

α

d2x
dt2

dx
dt

dt

= m
ż β

α

dv
dt

v(t)dt since v(t) =
dx
dt

= m
ż β

α

d
dt

(
1
2

v(t)2
)

dt

3 Specifically, the second of Newton’s three law of motion. These were first published in 1687 in his
“Philosophiæ Naturalis Principia Mathematica”.

4 It actually says something more graceful in Latin - Mutationem motus proportionalem esse vi motrici
impressae, et fieri secundum lineam rectam qua vis illa imprimitur. Or — The alteration of motion is
ever proportional to the motive force impressed; and is made in the line in which that force is impressed.
It is amazing what you can find on the internet.
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What happened here? By the chain rule, for any function f (t):

d
dt

(
1
2

f (t)2
)
= f (t) f 1(t).

In the above computation we have used this fact with f (t) = v(t). Now using the funda-
mental theorem of calculus (Theorem 1.3.1 part 2), we have

W = m
ż β

α

d
dt

(
1
2

v(t)2
)

dt

=
1
2

mv(β)2 ´ 1
2

mv(α)2.

By definition, the function 1
2 mv(t)2 is the kinetic energy5 of the particle at time t. So the

work W of Definition 2.1.1 is the change in kinetic energy from the time the particle was
at x = a to the time it was at x = b.

Example 2.1.2 (Hooke’s Law)

Imagine that a spring lies along the x-axis. The left hand end is fixed to a wall, but the
right hand end lies freely at x = 0. So the spring is at its “natural length”.

k

x = 0

• Now suppose that we wish to stretch out the spring so that its right hand end is at
x = L.

• Hooke’s Law6 says that when a (linear) spring is stretched (or compressed) by x
units beyond its natural length, it exerts a force of magnitude kx, where the constant
k is the spring constant of that spring.

• In our case, once we have stretched the spring by x units to the right, the spring
will be trying to pull back the right hand end by applying a force of magnitude kx
directed to the left.

• For us to continue stretching the spring we will have to apply a compensating force
of magnitude kx directed to the right. That is, we have to apply the force F(x) =
+kx.

5 This is not a physics text so we will not be too precise. Roughly speaking, kinetic energy is the energy
an object possesses due to it being in motion, as opposed to potential energy, which is the energy of
the object due to its position in a force field. Leibniz and Bernoulli determined that kinetic energy is
proportional to the square of the velocity, while the modern term “kinetic energy” was first used by
Lord Kelvin (back while he was still William Thompson).

6 Robert Hooke (1635–1703) was an English contemporary of Isaac Newton (1643–1727). It was in a 1676
letter to Hooke that Newton wrote “If I have seen further it is by standing on the shoulders of Giants.”
There is some thought that this was sarcasm and Newton was actually making fun of Hooke, who had
a spinal deformity. However at that time Hooke and Newton were still friends. Several years later they
did have a somewhat public falling-out over some of Newton’s work on optics.
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• So to stretch a spring by L units from its natural length we have to supply the work

W =

ż L

0
kxdx =

1
2

kL2

Example 2.1.2

Example 2.1.3 (Spring)

A spring has a natural length of 0.1m. If a 12N force is needed to keep it stretched to a
length of 0.12m, how much work is required to stretch it from 0.12m to 0.15m?

Solution. In order to answer this question we will need to determine the spring constant
and then integrate the appropriate function.

• Our first task is to determine the spring constant k. We are told that when the spring
is stretched to a length of 0.12m, i.e. to a length of 0.12´ 0.1 = 0.02m beyond its
natural length, then the spring generates a force of magnitude 12N.

• Hooke’s law states that the force exerted by the spring, when it is stretched by x
units, has magnitude kx, so

12 = k ¨ 0.02 = k ¨ 2
100

thus

k = 600.

• So to stretch the spring

– from a length of 0.12m, i.e. a length of x = 0.12 ´ 0.1 = 0.02m beyond its
natural length,

– to a length of 0.15m, i.e. a length of x = 0.15´ 0.1 = 0.05m beyond its natural
length,

takes work

W =

ż 0.05

0.02
kxdx =

[
1
2

kx2
]0.05

0.02

= 300
(
0.052 ´ 0.022)

= 0.63J

Example 2.1.3

Example 2.1.4 (Pumping Out a Reservoir)

A cylindrical reservoir7 of height h and radius r is filled with a fluid of density ρ. We

7 We could assign units to these measurements — such as metres for the lengths h and r, and kilograms
per cubic metre for the density ρ.
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APPLICATIONS OF INTEGRATION 2.1 WORK

would like to know how much work is required to pump all of the fluid out the top of the
reservoir.

x

dx

x
h

r

Solution. We are going to tackle this problem by applying the standard integral calculus
“slice into small pieces” strategy. This is how we computed areas and volumes — slice the
problem into small pieces, work out how much each piece contributes, and then add up
the contributions using an integral.

• Start by slicing the reservoir (or rather the fluid inside it) into thin, horizontal, cylin-
drical pancakes, as in the figure above. We proceed by determining how much work
is required to pump out this pancake volume of fluid8.

• Each pancake is a squat cylinder with thickness dx and circular cross section of ra-
dius r and area πr2. Hence it has volume πr2dx and mass ρˆ πr2dx.

• Near the surface of the Earth gravity exerts a downward force of mg on a body of
mass m. The constant g = 9.8m/sec2 is called the standard acceleration due to gravity9.
For us to raise the pancake we have to apply a compensating upward force of mg,
which, for our pancake, is

F = gρˆ πr2dx

• To remove the pancake at height x from the reservoir we need to raise it to height h.
So we have to lift it a distance h´ x using the force F = πρgr2dx, which takes work
πρgr2 (h´ x)dx.

• The total work to empty the whole reservoir is

W =

ż h

0
π ρg r2(h´ x)dx = π ρg r2

ż h

0
(h´ x)dx

= π ρg r2
[

hx´ x2

2

]h

0

=
π

2
ρg r2h2

8 Potential for a bad “work out how much work out” pun here.
9 This quantity is not actually constant — it varies slightly across the surface of earth depending on

local density, height above sea-level and centrifugal force from the earth’s rotation. It is, for example,
slightly higher in Oslo and slightly lower in Singapore. It is actually defined to be 9.80665 m/sec2 by the
International Organisation for Standardization.
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• If we measure lengths in metres and mass in kilograms, then this quantity has units
of Joules. If we instead used feet and pounds10 then this would have units of “foot–
pounds”. One foot-pound is equal to 1.355817. . . Joules.

Example 2.1.4

Example 2.1.5 (Escape Velocity)

Suppose that you shoot a probe straight up from the surface of the Earth — at what initial
speed must the probe move in order to escape Earth’s gravity?

Solution. We determine this by computing how much work must be done in order to
escape Earth’s gravity. If we assume that all of this work comes from the probe’s initial
kinetic energy, then we can establish the minimum initial velocity required.

• The work done by gravity when a mass moves from the surface of the Earth to a
height h above the surface is

W =

ż h

0
F(x)dx

where F(x) is the gravitational force acting on the mass at height x above the Earth’s
surface.

• The gravitational force11 of the Earth acting on a particle of mass m at a height x
above the surface of the Earth is

F = ´ GMm
(R + x)2 ,

where G is the gravitational constant, M is the mass of the Earth and R is the radius
of the Earth. Note that R + x is the distance from the object to the centre of the Earth.
Additionally, note that this force is negative because gravity acts downward.

10 It is extremely mysterious to the authors why a person would do science or engineering in imperial
units. One of the authors still has nightmares about having had to do so as a student.

11 Newton published his inverse square law of universal gravitation in his Principia in 1687. His law
states that the gravitational force between two masses m1 and m2 is

F = ´G
m1m2

r2

where r is the distance separating the (centres of the) masses and G = 6.674ˆ 10´11Nm2/kg2 is the
gravitational constant. Notice that r measures the separation between the centres of the masses not the
distance between the surfaces of the objects.
Also, do not confuse G with g — standard acceleration due to gravity. The first measurement of G
was performed by Henry Cavendish in 1798 — the interested reader should look up the “Cavendish
experiment” for details of this very impressive work.
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• So the work done by gravity on the probe, as it travels from the surface of the Earth
to a height h, is

W = ´
ż h

0

GMm
(R + x)2 dx

= ´GMm
ż h

0

1
(R + x)2 dx

A quick application of the substitution rule with u = R + x gives

= ´GMm
ż u(h)

u(0)

1
u2 du

= ´GMm
[
´1

u

]u=R+h

u=R

=
GMm
R + h

´ GMm
R

• So if the probe completely escapes the Earth and travels all the way to h = 8, gravity
does work

lim
hÑ8

[GMm
R + h

´ GMm
R

]
= ´GMm

R

The minus sign means that gravity has removed energy GMm
R from the probe.

• To finish the problem we need one more assumption. Let us assume that all of this
energy comes from the probe’s initial kinetic energy and that the probe is not fitted
with any sort of rocket engine. Hence the initial kinetic energy 1

2 mv2 (coming from
an initial velocity v) must be at least as large as the work computed above. That is
we need

1
2

mv2 ě GMm
R

which rearranges to give

v ě
c

2GM
R

• The right hand side of this inequality,
b

2GM
R , is called the escape velocity.

Example 2.1.5

Example 2.1.6 (Lifting a Cable)

A 10–metre–long cable of mass 5kg is used to lift a bucket of water, with mass 8kg, out of
a well. Find the work done.

Solution. Denote by y the height of the bucket above the top of the water in the well. So
the bucket is raised from y = 0 to y = 10. The cable has mass density 0.5kg/m. So when
the bucket is at height y,
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• the cable that remains to be lifted has mass 0.5(10´ y) kg and
• the remaining cable and water is subject to a downward gravitational force of mag-

nitude
[
0.5(10´ y) + 8

]
g =

[
13´ y

2

]
g, where g = 9.8 m/sec2.

So to raise the bucket from height y to height y + dy we need to apply a compensating
upward force of

[
13´ y

2

]
g through distance dy. This takes work

[
13´ y

2

]
g dy. So the total

work required is

ż 10

0

[
13´ y

2

]
g dy = g

[
13y´ y2

4

]10

0
=
[
130´ 25

]
g = 105g = 1029 J

Example 2.1.6

2.2Ĳ Averages

Another frequent12 application of integration is computing averages and other statistical
quantities. We will not spend too much time on this topic — that is best left to a proper
course in statistics — however, we will demonstrate the application of integration to the
problem of computing averages.

Let us start with the definition13 of the average of a finite set of numbers.

12 Awful pun. The two main approaches to statistics are frequentism and Bayesianism; the latter named
after Bayes’ Theorem which is, in turn, named for Reverend Thomas Bayes. While this (both the ap-
proaches to statistics and their history and naming) is a very interesting and quite philosophical topic,
it is beyond the scope of this course. The interested reader has plenty of interesting reading here to
interest them.

13 We are being a little loose here with the distinction between mean and average. To be much more
pedantic — the average is the arithmetic mean. Other interesting “means” are the geometric and har-
monic means:

arithmetic mean =
1
n
(y1 + y2 + ¨ ¨ ¨+ yn)

geometric mean = (y1 ¨ y2 ¨ ¨ ¨ yn)
1/n

harmonic mean =

[
1
n

(
1
y1

+
1
y2

+ ¨ ¨ ¨
1
yn

)]´1

All of these quantities, along with the median and mode, are ways to measure the typical value of a set
of numbers. They all have advantages and disadvantages — another interesting topic beyond the scope
of this course, but plenty of fodder for the interested reader and their favourite search engine. But let us
put pedantry (and beyond-the-scope-of-the-course-reading) aside and just use the terms average and
mean interchangeably for our purposes here.
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The average (mean) of a set of n numbers y1, y2, ¨ ¨ ¨ , yn is

yave = ȳ = 〈y〉 = y1 + y2 + ¨ ¨ ¨+ yn

n

The notations yave, ȳ and 〈y〉 are all commonly used to represent the average.

Definition 2.2.1.

Now suppose that we want to take the average of a function f (x) with x running
continuously from a to b. How do we even define what that means? A natural approach
is to

• select, for each natural number n, a sample of n, more or less uniformly distributed,
values of x between a and b,

• take the average of the values of f at the selected points,

• and then take the limit as n tends to infinity.

Unsurprisingly, this process looks very much like how we computed areas and volumes
previously. So let’s get to it.

• First fix any natural number n.

• Subdivide the interval a ď x ď b into n equal subintervals, each of width ∆x = b´a
n .

• The subinterval number i runs from xi´1 to xi with xi = a + i b´a
n .

• Select, for each 1 ď i ď n, one value of x from subinterval number i and call it x˚i . So
xi´1 ď x˚i ď xi.

• The average value of f at the selected points is

1
n

nÿ

i=1

f (x˚i ) =
1

b´ a

nÿ

i=1

f (x˚i )∆x since ∆x =
b´ a

n

giving us a Riemann sum.

Now when we take the limit n Ñ 8we get exactly 1
b´a

şb
a f (x)dx. That’s why we define

Let f (x) be an integrable function defined on the interval a ď x ď b. The average
value of f on that interval is

fave = f̄ = 〈 f 〉 = 1
b´ a

ż b

a
f (x) dx

Definition 2.2.2.
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Consider the case when f (x) is positive. Then rewriting Definition 2.2.2 as

fave (b´ a) =
ż b

a
f (x)dx

x

y y = f(x)

a b

fave

gives us a link between the average value and the area under the curve. The right-hand
side is the area of the region

 
(x, y)

ˇ̌
a ď x ď b, 0 ď y ď f (x)

(

while the left-hand side can be seen as the area of a rectangle of width b ´ a and height
fave. Since these areas must be the same, we interpret fave as the height of the rectangle
which has the same width and the same area as

 
(x, y)

ˇ̌
a ď x ď b, 0 ď y ď f (x)

(
.

Let us start with a couple of simple examples and then work our way up to harder
ones.

Example 2.2.3

Let f (x) = x and g(x) = x2 and compute their average values over 1 ď x ď 5.

Solution. We can just plug things into the definition.

fave =
1

5´ 1

ż 5

1
xdx

=
1
4

[
x2

2

]5

1

=
1
8
(25´ 1) =

24
8

= 3

as we might expect. And then

gave =
1

5´ 1

ż 5

1
x2dx

=
1
4

[
x3

3

]5

1

=
1
12

(125´ 1) =
124
12

=
31
3

Example 2.2.3

Something a little more trigonometric
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Example 2.2.4

Find the average value of sin(x) over 0 ď x ď π/2.

Solution. Again, we just need the definition.

average =
1

π/2´ 0

ż π/2

0
sin(x)dx

=
2
π
¨
[
´ cos(x)

]π/2

0

=
2
π
(´ cos(π/2) + cos(0))

=
2
π

.

Example 2.2.4

We could keep going. . . But better to do some more substantial examples.

Example 2.2.5 (Average velocity)

Let x(t) be the position at time t of a car moving along the x–axis. The velocity of the car at
time t is the derivative v(t) = x1(t). The average velocity of the car over the time interval
a ď t ď b is

vave =
1

b´ a

ż b

a
v(t)dt

=
1

b´ a

ż b

a
x1(t)dt

=
x(b)´ x(a)

b´ a
by the fundamental theorem of calculus.

The numerator in this formula is just the displacement (net distance travelled — if x1(t) ě
0, it’s the distance travelled) between time a and time b and the denominator is just the
time it took.

Notice that this is exactly the formula we used way back at the start of your differen-
tial calculus class to help introduce the idea of the derivative. Of course this is a very
circuitous way to get to this formula — but it is reassuring that we get the same answer.

Example 2.2.5

A very physics example.

Example 2.2.6 (Peak vs RMS voltage)
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When you plug a light bulb into a socket14 and turn it on, it is subjected to a voltage

V(t) = V0 sin(ωt´ δ)

where

• V0 = 170 volts,

• ω = 2π ˆ 60 (which corresponds to 60 cycles per second15) and

• the constant δ is an (unimportant) phase. It just shifts the time at which the voltage
is zero

The voltage V0 is the “peak voltage” — the maximum value the voltage takes over time.
More typically we quote the “root mean square” voltage16 (or RMS-voltage). In this exam-
ple we explain the difference, but to simplify the calculations, let us simplify the voltage
function and just use

V(t) = V0 sin(t)

Since the voltage is a sine-function, it takes both positive and negative values. If we
take its simple average over 1 period then we get

Vave =
1

2π ´ 0

ż 2π

0
V0 sin(t)dt

=
V0

2π

[
´ cos(t)

]2π

0

=
V0

2π
(´ cos(2π) + cos 0) =

V0

2π
(´1 + 1)

= 0

This is clearly not a good indication of the typical voltage.
What we actually want here is a measure of how far the voltage is from zero. Now

we could do this by taking the average of |V(t)|, but this is a little harder to work with.
Instead we take the average of the square17 of the voltage (so it is always positive) and

14 A normal household socket delivers alternating current, rather than the direct current USB supplies. At
the risk of yet another “the interested reader” suggestion — the how and why household plugs supply
AC current is another worthwhile and interesting digression from studying integration. The interested
reader should look up the “War of Currents”. The diligent and interested reader should bookmark this,
finish the section and come back to it later.

15 Some countries supply power at 50 cycles per second. Japan actually supplies both — 50 cycles in the
east of the country and 60 in the west.

16 This example was written in North America where the standard voltage supplied to homes is 120 volts.
Most of the rest of the world supplies homes with 240 volts. The main reason for this difference is the
development of the light bulb. The USA electrified earlier when the best voltage for bulb technology
was 110 volts. As time went on, bulb technology improved and countries that electrified later took
advantage of this (and the cheaper transmission costs that come with higher voltage) and standardised
at 240 volts. So many digressions in this section!

17 For a finite set of numbers one can compute the “quadratic mean” which is another way to generalise
the notion of the average:

quadratic mean =

c
1
n
(
y2

1 + y2
2 + ¨ ¨ ¨+ y2

n
)
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then take the square root at the end. That is

Vrms =

d
1

2π ´ 0

ż 2π

0
V(t)2dt

=

d
1

2π

ż 2π

0
V2

0 sin2(t)dt

=

d
V2

0
2π

ż 2π

0
sin2(t)dt

This is called the “root mean square” voltage.
Though we do know how to integrate sine and cosine, we don’t (yet) know how to in-

tegrate their squares. A quick look at double-angle formulas18 gives us a way to eliminate
the square:

cos(2θ) = 1´ 2 sin2 θ ùñ sin2 θ =
1´ cos(2θ)

2

Using this we manipulate our integrand a little more:

Vrms =

d
V2

0
2π

ż 2π

0

1
2
(1´ cos(2t))dt

=

d
V2

0
4π

[
t´ 1

2
sin(2t)

]2π

0

=

d
V2

0
4π

(
2π ´ 1

2
sin(4π)´ 0 +

1
2

sin(0)
)

=

d
V2

0
4π
¨ 2π

=
V0?

2

So if the peak voltage is 170 volts then the RMS voltage is 170?
2
« 120.2.

Example 2.2.6

Continuing this very physics example:

Example 2.2.7

Let us take our same light bulb with voltage (after it is plugged in) given by

V(t) = V0 sin(ωt´ δ)

where

18 A quick glance at Appendix A.14 will refresh your memory.
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• V0 is the peak voltage,

• ω = 2π ˆ 60, and

• the constant δ is an (unimportant) phase.

If the light bulb is “100 watts”, then what is its resistance?
To answer this question we need the following facts from physics.

• If the light bulb has resistance R ohms, this causes, by Ohm’s law, a current of

I(t) =
1
R

V(t)

(amps) to flow through the light bulb.

• The current I is the number of units of charge moving through the bulb per unit
time.

• The voltage is the energy required to move one unit of charge through the bulb.

• The power is the energy used by the bulb per unit time and is measured in watts.

So the power is the product of the current times the voltage and, so

P(t) = I(t)V(t) =
V(t)2

R
=

V2
0

R
sin2(ωt´ δ)

The average power used over the time interval a ď t ď b is

Pave =
1

b´ a

ż b

a
P(t) dt =

V2
0

R(b´ a)

ż b

a
sin2(ωt´ δ) dt

Notice that this is almost exactly the form we had in the previous example when comput-
ing the root mean square voltage.

Again we simplify the integrand using the identity

cos(2θ) = 1´ 2 sin2 θ ùñ sin2 θ =
1´ cos(2θ)

2

So

Pave =
1

b´ a

ż b

a
P(t) dt =

V2
0

2R(b´ a)

ż b

a

[
1´ cos(2ωt´ 2δ)

]
dt

=
V2

0
2R(b´ a)

[
t´ sin(2ωt´ 2δ)

2ω

]b

a

=
V2

0
2R(b´ a)

[
b´ a´ sin(2ωb´ 2δ)

2ω
+

sin(2ωa´ 2δ)

2ω

]

=
V2

0
2R
´ V2

0
4ωR(b´ a)

[
sin(2ωb´ 2δ)´ sin(2ωa´ 2δ)

]
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In the limit as the length of the time interval b´ a tends to infinity, this converges to V2
0

2R .
The resistance R of a “100 watt bulb” obeys

V2
0

2R
= 100 so that R =

V2
0

200
.

We finish this example off with two side remarks.

• If we translate the peak voltage to the root mean square voltage using

V0 = Vrms ¨
?

2

then we have

P =
V2

rms
R

• If we were using direct voltage rather than alternating current then the computation
is much simpler. The voltage and current are constants, so

P = V ¨ I but I = V/R by Ohm’s law

=
V2

R
So if we have a direct current giving voltage equal to the root mean square voltage,
then we would expend the same power.

Example 2.2.7

§§ Optional — Return to the Mean Value Theorem

Here is another application of the Definition 2.2.2 of the average value of a function on
an interval. The following theorem can be thought of as an analogue of the mean value
theorem (which was covered in your differential calculus class) but for integrals. The
theorem says that a continuous function f (x) must be exactly equal to its average value
for some x. For example, if you went for a drive along the x–axis and you were at x(a)
at time a and at x(b) at time b, then your velocity x1(t) had to be exactly your average
velocity x(b)´x(a)

b´a at some time t between a and b. In particular, if your average velocity
was greater than the speed limit, you were definitely speeding at some point during the
trip. This is, of course, no great surprise19.

Let f (x) be a continuous function on the interval a ď x ď b. Then there is some c
obeying a ă c ă b such that

1
b´ a

ż b

a
f (x)dx = f (c) or

ż b

a
f (x)dx = f (c) (b´ a)

Theorem 2.2.8 (Mean Value Theorem for Integrals).

19 There are many unsurprising things that are true, but there are also many unsurprising things that
surprisingly turn out to be false. Mathematicians like to prove things - surprising or not.
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Proof. We will apply the mean value theorem (Theorem 2.13.4 in the CLP-1 text) to the
function

F(x) =
ż x

a
f (t)dt

By the part 1 of the fundamental theorem of calculus (Theorem 1.3.1), F1(x) = f (x), so the
mean value theorem says that there is a a ă c ă b with

f (c) = F1(c) =
F(b)´ F(a)

b´ a
=

1
b´ a

#ż b

a
f (t)dt´

ż a

a
f (t)dt

+

=
1

b´ a

ż b

a
f (x)dx

In the next section, we will encounter an application in which we want to take the
average value of a function f (x), but in doing so we want some values of x to count more
than other values of x. That is, we want to weight some x’s more than other x’s. To do so,
we choose a “weight function” w(x) ě 0 with w(x) larger for more important x’s. Then
we define the weighted average of f as follows.

Let f (x) and w(x) be integrable functions defined on the interval a ď x ď b with
w(x) ě 0 for all a ď x ď b and with

şb
a w(x)dx ą 0. The average value of f on

that interval, weighted by w, is

şb
a f (x)w(x)dx
şb

a w(x)dx

We typically refer to this simply as the weighted average of f .

Definition 2.2.9.

Here are a few remarks concerning this definition.

• The definition has been rigged so that, if f (x) = 1 for all x, then the weighted aver-
age of f is 1, no matter what weight function w(x) is used.

• If the weight function w(x) = C for some constant C ą 0 then the weighted average

şb
a f (x)w(x)dx
şb

a w(x)dx
=

şb
a f (x)C dx
şb

a C dx
=

şb
a f (x)dx

b´ a

is just the usual average.

• For any function w(x) ě 0 and any a ă b, we have
şb

a w(x)dx ě 0. But for the defini-
tion of weighted average to make sense, we need to be able to divide by

şb
a w(x)dx.

So we need
şb

a w(x)dx ‰ 0.
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The next theorem says that a continuous function f (x) must be equal to its weighted
average at some point x.

Let f (x) and w(x) be continuous functions on the interval a ď x ď b. Assume
that w(x) ą 0 for all a ă x ă b. Then there is some c obeying a ă c ă b such that

şb
a f (x)w(x)dx
şb

a w(x)dx
= f (c) or

ż b

a
f (x)w(x)dx = f (c)

ż b

a
w(x)dx

Theorem 2.2.10 (Mean Value Theorem for Weighted Integrals).

Proof. We will apply the generalised mean value theorem (Theorem 3.4.38 in the CLP-1
text) to

F(x) =
ż x

a
f (t)w(t)dt G(x) =

ż x

a
w(t)dt

By the part 1 of the fundamental theorem of calculus (Theorem 1.3.1), F1(x) = f (x)w(x)
and G1(x) = w(x), so the generalised mean value theorem says that there is a a ă c ă b
with

f (c) =
F1(c)
G1(c)

=
F(b)´ F(a)
G(b)´ G(a)

=

şb
a f (t)w(t)dt´ şa

a f (t)w(t)dt
şb

a w(t)dt´ şa
a w(t)dt

=

şb
a f (t)w(t)dt
şb

a w(t)dt

Example 2.2.11

In this example, we will take a number of weighted averages of the simple function
f (x) = x over the simple interval a = 1 ď x ď 2 = b. As x increases from 1 to 2, the
function f (x) increases linearly from 1 to 2. So it is no shock that the ordinary average of
f is exactly its middle value:

1
b´ a

ż b

a
f (t)dt =

1
2´ 1

ż 2

1
t dt =

3
2

Pick any natural number N ě 1 and consider the weight function wN(x) = xN. Note that
wN(x) increases as x increases. So wN(x) weights bigger x’s more than it weights smaller
x’s. In particular wN weights the point x = 2 by a factor of 2N (which is greater than 1
and grows to infinity as N grows to infinity) more than it weights the point x = 1. The
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weighted average of f is
şb

a f (t)wN(t)dt
şb

a wN(t)dt
=

ş2
1 tN+1 dt
ş2

1 tN dt
=

2N+2´1
N+2

2N+1´1
N+1

=
N + 1
N + 2

2N+2 ´ 1
2N+1 ´ 1

=

$
’’’’’’’’’’&
’’’’’’’’’’%

2ˆ7
3ˆ3 = 1.555 if N = 1
3ˆ15
4ˆ7 = 1.607 if N = 2
4ˆ31
5ˆ15 = 1.653 if N = 3
5ˆ63
6ˆ31 = 1.694 if N = 4
1.889 if N = 16
1.992 if N = 256

As we would expect, the wN-weighted average is between 1.5 (which is the ordinary,
unweighted, average) and 2 (which is the biggest value of f in the interval) and grows as
N grows. The limit as N Ñ 8 of the wN-weighted average is

lim
NÑ8

N + 1
N + 2

2N+2 ´ 1
2N+1 ´ 1

= lim
NÑ8

N + 2´ 1
N + 2

2N+2 ´ 2 + 1
2N+1 ´ 1

= lim
NÑ8

[
1´ 1

N + 2

] [
2 +

1
2N+1 ´ 1

]

= 2

Example 2.2.11

Example 2.2.12

Here is an example which shows what can go wrong with Theorem 2.2.10 if we allow the
weight function w(x) to change sign. Let a = ´0.99 and b = 1. Let

w(x) =

#
1 if x ě 0
´1 if x ă 0

f (x) =

#
x if x ě 0
0 if x ă 0

Then
ż b

a
f (x)w(x)dx =

ż 1

0
x dx =

1
2

ż b

a
w(x)dx =

ż 1

0
dx´

ż 0

´0.99
dx = 1´ 0.99 = 0.01

As c runs from a to b, f (c)
şb

a w(x)dx = 0.01 f (c) runs from 0 to 0.01 and, in particular,
never takes a value anywhere near

şb
a f (x)w(x)dx = 1

2 . There is no c value which works.

Example 2.2.12
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2.3Ĳ Centre of Mass and Torque

2.3.1 §§ Centre of Mass

If you support a body at its center of mass (in a uniform gravitational field) it balances
perfectly. That’s the definition of the center of mass of the body. If the body consists of a

m1 m2 m3 m4

finite number of masses m1, ¨ ¨ ¨ , mn attached to an infinitely strong, weightless (idealized)
rod with mass number i attached at position xi, then the center of mass is at the (weighted)
average value of x:

x̄ =

řn
i=1 mixiřn

i=1 mi
(2.3.1)

The denominator m =
řn

i=1 mi is the total mass of the body. This formula for the center of
mass is derived in the following (optional) section. See (2.3.8).

For many (but certainly not all) purposes an (extended rigid) body acts like a point
particle located at its center of mass. For example it is very common to treat the Earth as
a point particle. Here is a more detailed example in which we think of a body as being
made up of a number of component parts and compute the center of mass of the body as
a whole by using the center of masses of the component parts. Suppose that we have a
dumbbell which consists of

• a left end made up of particles of masses ml,1, ¨ ¨ ¨ , ml,3 located at xl,1, ¨ ¨ ¨ , xl,3 and
• a right end made up of particles of masses mr,1, ¨ ¨ ¨ , mr,4 located at xr,1, ¨ ¨ ¨ , xr,4 and
• an infinitely strong, weightless (idealized) rod joining all of the particles.

Then the mass and center of mass of the left end are

Ml = ml,1 + ¨ ¨ ¨+ ml,3 X̄l =
ml,1xl,1 + ¨ ¨ ¨+ ml,3xl,3

Ml

and the mass and center of mass of the right end are

Mr = mr,1 + ¨ ¨ ¨+ mr,4 X̄r =
mr,1xr,1 + ¨ ¨ ¨+ mr,4xr,4

Mr

The mass and center of mass of the entire dumbbell are

M = ml,1 + ¨ ¨ ¨+ ml,3 + mr,1 + ¨ ¨ ¨+ mr,4

= Ml + Mr

x̄ =
ml,1xl,1 + ¨ ¨ ¨+ ml,3xl,3 + mr,1xr,1 + ¨ ¨ ¨+ mr,4xr,4

M

=
MlX̄l + MrX̄r

Mr + Ml
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So we can compute the center of mass of the entire dumbbell by treating it as being made
up of two point particles, one of mass Ml located at the centre of mass of the left end, and
one of mass Mr located at the center of mass of the right end.

Example 2.3.1 (Work and Centre of Mass)

Here is another example in which an extended body acts like a point particle located at its
centre of mass. Imagine that there are a finite number of masses m1, ¨ ¨ ¨ , mn arrayed along
a (vertical) z–axis with mass number i attached at height zi. Note that the total mass of the
array is M =

řn
i=1 mi and that the centre of mass of the array is at height

z̄ =

řn
i=1 miziřn
i=1 mi

=
1
M

nÿ

i=1

mizi

Now suppose that we lift all of the masses, against gravity, to height Z. So after the
lift there is a total mass M located at height Z. The ith mass is subject to a downward
gravitational force of mig. So to lift the ith mass we need to apply a compensating upward
force of mig through a distance of Z ´ zi. This takes work mig(Z ´ zi). So the total work
required to lift all n masses is

Work =
nÿ

i=1

mig(Z´ zi)

= gZ
nÿ

i=1

mi ´ g
nÿ

i=1

mizi

= gZM´ gMz̄
= Mg(Z´ z̄)

z

m1 z1

m2 z2

m3 z3

m4 z4

M Z

So the work required to lift the array of n particles is identical to the work required to lift
a single particle, whose mass, M, is the total mass of the array, from height z̄, the centre of
mass of the array, to height Z.

Example 2.3.1

Example 2.3.2 (Example 2.3.1, continued)

Imagine, as in Example 2.3.1, that there are a finite number of masses m1, ¨ ¨ ¨ , mn arrayed
along a (vertical) z–axis with mass number i attached at height zi. Again, the total mass
and centre of mass of the array are

M =
nÿ

i=1

mi z̄ =

řn
i=1 miziřn
i=1 mi

=
1
M

nÿ

i=1

mizi

Now suppose that we lift, for each 1 ď i ď n, mass number i, against gravity, from its
initial height zi to a final height Zi. So after the lift we have a new array of masses with
total mass and centre of mass

M =
nÿ

i=1

mi Z̄ =

řn
i=1 miZiřn

i=1 mi
=

1
M

nÿ

i=1

miZi
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To lift the ith mass took work mig(Zi ´ zi). So the total work required to lift all n masses
was

Work =
nÿ

i=1

mig(Zi ´ zi)

= g
nÿ

i=1

miZi ´ g
nÿ

i=1

mizi

= gMZ̄´ gMz̄ = Mg(Z̄´ z̄)

So the work required to lift the array of n particles is identical to the work required to lift
a single particle, whose mass, M, is the total mass of the array, from height z̄, the initial
centre of mass of the array, to height Z̄, the final centre of mass of the array.

Example 2.3.2

Now we’ll extend the above ideas to cover more general classes of bodies. If the body
consists of mass distributed continuously along a straight line, say with mass density
ρ(x)kg/m and with x running from a to b, rather than consisting of a finite number of
point masses, the formula for the center of mass becomes

x̄ =

şb
a x ρ(x)dx
şb

a ρ(x)dx
(2.3.2)

Think of ρ(x)dx as the mass of the “almost point particle” between x and x + dx.
If the body is a two dimensional object, like a metal plate, lying in the xy–plane, its cen-

ter of mass is a point (x̄, ȳ) with x̄ being the (weighted) average value of the x–coordinate
over the body and ȳ being the (weighted) average value of the y–coordinate over the body.
To be concrete, suppose the body fills the region

 
(x, y)

ˇ̌
a ď x ď b, B(x) ď y ď T(x)

(

in the xy–plane. For simplicity, we will assume that the density of the body is a constant,
say ρ. When the density is constant, the center of mass is also called the centroid and is
thought of as the geometric center of the body.

To find the centroid of the body, we use our standard “slicing” strategy. We slice the
body into thin vertical strips, as illustrated in the figure below. Here is a detailed descrip-

x b

T (x)

B(x)

x

y

y = T (x)

y = B(x)

a
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tion of a generic strip.

• The strip has width dx.
• Each point of the strip has essentially the same x–coordinate. Call it x.
• The top of the strip is at y = T(x) and the bottom of the strip is at y = B(x).
• So the strip has

– height T(x)´ B(x)
– area [T(x)´ B(x)]dx
– mass ρ[T(x)´ B(x)]dx
– centroid, i.e. middle point,

(
x , B(x)+T(x)

2

)
.

In computing the centroid of the entire body, we may treat each strip as a single particle
of mass ρ[T(x)´ B(x)]dx located at

(
x , B(x)+T(x)

2

)
. So the mass of the entire body is

M = ρ

ż b

a
[T(x)´ B(x)]dx = ρA (2.3.3a)

where A =
şb

a [T(x)´ B(x)]dx is the area of the region. The coordinates of the centroid are

x̄ =

şb
a x

mass of slicehkkkkkkkkkkikkkkkkkkkkj
ρ[T(x)´ B(x)]dx

M
=

şb
a x[T(x)´ B(x)]dx

A
(2.3.3b)

ȳ =

şb
a

average y on slicehkkkkikkkkj
B(x)+T(x)

2

mass of slicehkkkkkkkkkkikkkkkkkkkkj
ρ[T(x)´ B(x)]dx
M

=

şb
a [T(x)2 ´ B(x)2]dx

2A
(2.3.3c)

We can of course also slice up the body using horizontal slices. If the body has constant

x

y

x = L(y)x = R(y)

L(y) R(y)

c

d

density ρ and fills the region
 
(x, y)

ˇ̌
L(y) ď x ď R(y), c ď y ď d

(
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then the same computation as above gives the mass of the body to be

M = ρ

ż d

c
[R(y)´ L(y)]dy = ρA (2.3.4a)

where A =
şd

c [R(y)´ L(y)]dy is the area of the region, and gives the coordinates of the
centroid to be

x̄ =

şd
c

average x on slicehkkkkikkkkj
R(y)+L(y)

2

mass of slicehkkkkkkkkkkikkkkkkkkkkj
ρ[R(y)´ L(y)]dy
M

=

şd
c [R(y)

2 ´ L(y)2]dy
2A

(2.3.4b)

ȳ =

şd
c y

mass of slicehkkkkkkkkkkikkkkkkkkkkj
ρ[R(y)´ L(y)]dy

M
=

şd
c y[R(y)´ L(y)]dy

A
(2.3.4c)

Example 2.3.3

Find the x–coordinate of the centroid (centre of gravity) of the plane region R that lies in
the first quadrant x ě 0, y ě 0 and inside the ellipse 4x2 + 9y2 = 36. (The area bounded

by the ellipse x2

a2 +
y2

b2 = 1 is πab square units.)

x

y 4x2 + 9y2 = 36

Solution. In standard form 4x2 + 9y2 = 36 is x2

9 + y2

4 = 1. So, on R, x runs from 0 to 3
and R has area A = 1

4 π ˆ 3ˆ 2 = 3
2 π. For each fixed x, between 0 and 3, y runs from 0 to

2
b

1´ x2

9 . So, applying (2.3.3.b) with a = 0, b = 3, T(x) = 2
b

1´ x2

9 and B(x) = 0,

x̄ =
1
A

ż 3

0
x T(x)dx =

1
A

ż 3

0
x 2

c
1´ x2

9
dx =

4
3π

ż 3

0
x

c
1´ x2

9
dx

Sub in u = 1´ x2

9 , du = ´2
9 x dx.

x̄ = ´9
2

4
3π

ż 0

1

?
u du = ´9

2
4

3π

[u3/2

3/2

]0

1
= ´9

2
4

3π

[
´ 2

3

]
=

4
π

Example 2.3.3
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Example 2.3.4

Find the centroid of the quarter circular disk x ě 0, y ě 0, x2 + y2 ď r2.

x

y
x2 + y2 = r2

Solution. By symmetry, x̄ = ȳ. The area of the quarter disk is A = 1
4 πr2. By (2.3.3.b) with

a = 0, b = r, T(x) =
?

r2 ´ x2 and B(x) = 0,

x̄ =
1
A

ż r

0
x
a

r2 ´ x2 dx

To evaluate the integral, sub in u = r2 ´ x2, du = ´2x dx.
ż r

0
x
a

r2 ´ x2 dx =

ż 0

r2

?
u

du
´2

= ´1
2

[u3/2

3/2

]0

r2
=

r3

3
(2.3.5)

So

x̄ =
4

πr2

[r3

3

]
=

4r
3π

As we observed above, we should have x̄ = ȳ. But, just for practice, let’s compute ȳ
by the integral formula (2.3.3.c), again with a = 0, b = r, T(x) =

?
r2 ´ x2 and B(x) = 0,

ȳ =
1

2A

ż r

0

(a
r2 ´ x2

)2 dx =
2

πr2

ż r

0

(
r2 ´ x2)dx

=
2

πr2

[
r2x´ x3

3

]r

0
=

2
πr2

2r3

3

=
4r
3π

as expected.
Example 2.3.4

Example 2.3.5

Find the centroid of the half circular disk y ě 0, x2 + y2 ď r2.

x

y
x2 + y2 = r2
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Solution. Once again, we have a symmetry —- namely the half disk is symmetric about
the y–axis. So the centroid lies on the y–axis and x̄ = 0. The area of the half disk is
A = 1

2 πr2. By (2.3.3.c), with a = ´r, b = r, T(x) =
?

r2 ´ x2 and B(x) = 0,

ȳ =
1

2A

ż r

´r

(a
r2 ´ x2

)2 dx =
1

πr2

ż r

´r

(
r2 ´ x2)dx

=
2

πr2

ż r

0

(
r2 ´ x2)dx since the integrand is even

=
2

πr2

[
r2x´ x3

3

]r

0

=
4r
3π

Example 2.3.5

Example 2.3.6

Find the centroid of the region R in the diagram.

(2, 2)
2

1

21

2

R

quarter
circle

Solution. By symmetry, x̄ = ȳ. The region R is a 2ˆ 2 square with one quarter of a circle
of radius 1 removed and so has area 2ˆ 2´ 1

4 π = 16´π
4 . The top of R is y = T(x) = 2. The

bottom is y = B(x) with B(x)=
?

1´ x2 when 0 ď x ď 1 and B(x)=0 when 1 ď x ď 2. So

ȳ = x̄ =
1
A

[ ż 1

0
x[2´

a
1´ x2]dx +

ż 2

1
x[2´ 0]dx

]

=
4

16´ π

[
x2ˇ̌1

0 + x2ˇ̌2
1 ´

ż 1

0
x
a

1´ x2 dx
]

=
4

16´ π

[
4´ 1

3

]
by (2.3.5) with r = 1

=
44

48´ 3π

Example 2.3.6
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Example 2.3.7

Prove that the centroid of any triangle is located at the point of intersection of the medians.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite
side.

Solution. Choose a coordinate system so that the vertices of the triangle are located at
(a, 0), (0, b) and (c, 0). (In the figure below, a is negative.) The line joining (a, 0) and (0, b)

(a, 0) (c, 0)

(0, b)

x = c
b
(b− y)x = a

b
(b− y)

has equation bx + ay = ab. (Check that (a, 0) and (0, b) both really are on this line.) The
line joining (c, 0) and (0, b) has equation bx + cy = bc. (Check that (c, 0) and (0, b) both
really are on this line.) Hence for each fixed y between 0 and b, x runs from a ´ a

b y to
c´ c

b y.
We’ll use horizontal strips to compute x̄ and ȳ. We could just apply (2.3.4) with c = 0,

d = b, R(y) = c
b (b´ y) (which is gotten by solving bx + cy = bc for x) and L(y) = a

b (b´ y)
(which is gotten by solving bx + ay = ab for x).

But rather than memorizing or looking up those formulae, we’ll derive them for this
example. So consider a thin strip at height y as illustrated in the figure above.

• The strip has length

`(y) =
[ c

b
(b´ y)´ a

b
(b´ y)

]
=

c´ a
b

(b´ y)

• The strip has width dy.
• On this strip, y has average value y.
• On this strip, x has average value 1

2

[ a
b (b´ y) + c

b (b´ y)
]
= a+c

2b (b´ y).

As the area of the triangle is A = 1
2(c´ a)b,

ȳ =
1
A

ż b

0
y `(y) dy =

2
(c´ a)b

ż b

0
y

c´ a
b

(b´ y) dy =
2
b2

ż b

0
(by´ y2) dy =

2
b2

(
b

b2

2
´ b3

3

)

=
2
b2

b3

6
=

b
3
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x̄ =
1
A

ż b

0

a + c
2b

(b´ y) `(y) dy =
2

(c´ a)b

ż b

0

a + c
2b

(b´ y)
c´ a

b
(b´ y) dy =

a + c
b3

ż b

0
(y´ b)2 dy

=
a + c

b3

[1
3
(y´ b)3

]b

0
=

a + c
b3

b3

3
=

a + c
3

We have found that the centroid of the triangle is at (x̄, ȳ) =
( a+c

3 , b
3

)
. We shall now show

that this point lies on all three medians.

• One vertex is at (a, 0). The opposite side runs from (0, b) and (c, 0) and so has mid-
point 1

2(c, b). The line from (a, 0) to 1
2(c, b) has slope b/2

c/2´a = b
c´2a and so has equa-

tion y = b
c´2a (x´ a). As b

c´2a (x̄´ a) = b
c´2a

( a+c
3 ´ a

)
= 1

3
b

c´2a (c + a´ 3a) = b
3 = ȳ,

the centroid does indeed lie on this median. In this computation we have implicitly
assumed that c ‰ 2a so that the denominator c´ 2a ‰ 0. In the event that c = 2a, the
median runs from (a, 0) to

(
a, b

2

)
and so has equation x = a. When c = 2a we also

have x̄ = a+c
3 = a, so that the centroid still lies on the median.

• Another vertex is at (c, 0). The opposite side runs from (a, 0) and (0, b) and so has
midpoint 1

2(a, b). The line from (c, 0) to 1
2(a, b) has slope b/2

a/2´c = b
a´2c and so has

equation y = b
a´2c (x ´ c). As b

a´2c (x̄ ´ c) = b
a´2c

( a+c
3 ´ c

)
= 1

3
b

a´2c (a + c ´ 3c) =
b
3 = ȳ, the centroid does indeed lie on this median. In this computation we have
implicitly assumed that a ‰ 2c so that the denominator a´ 2c ‰ 0. In the event that
a = 2c, the median runs from (c, 0) to

(
c, b

2

)
and so has equation x = c. When a = 2c

we also have x̄ = a+c
3 = c, so that the centroid still lies on the median.

• The third vertex is at (0, b). The opposite side runs from (a, 0) and (c, 0) and so has
midpoint

( a+c
2 , 0

)
. The line from (0, b) to

( a+c
2 , 0

)
has slope ´b

(a+c)/2 = ´ 2b
a+c and so

has equation y = b ´ 2b
a+c x. As b ´ 2b

a+c x̄ = b ´ 2b
a+c

a+c
3 = b

3 = ȳ, the centroid does
indeed lie on this median. This time, we have implicitly assumed that a + c ‰ 0. In
the event that a + c = 0, the median runs from (0, b) to (0, 0) and so has equation
x = 0. When a + c = 0 we also have x̄ = a+c

3 = 0, so that the centroid still lies on the
median.

Example 2.3.7

2.3.2 §§ Optional — Torque

Newton’s law of motion says that the position x(t) of a single particle moving under the
influence of a force F obeys mx2(t) = F. Similarly, the positions xi(t), 1 ď i ď n, of a set
of particles moving under the influence of forces Fi obey mx2i (t) = Fi, 1 ď i ď n. Often
systems of interest consist of some small number of rigid bodies. Suppose that we are
interested in the motion of a single rigid body, say a piece of wood. The piece of wood is
made up of a huge number of atoms. So the system of equations determining the motion
of all of the individual atoms in the piece of wood is huge. On the other hand, because
the piece of wood is rigid, its configuration is completely determined by the position of,
for example, its centre of mass and its orientation. (Rather than get into what is precisely
meant by “orientation”, let’s just say that it is certainly determined by, for example, the
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positions of a few of the corners of the piece of wood). It is possible to extract from the
huge system of equations that determine the motion of all of the individual atoms, a small
system of equations that determine the motion of the centre of mass and the orientation.
We can avoid some vector analysis, that is beyond the scope of this course, by assuming
that our rigid body is moving in two rather than three dimensions.

So, imagine a piece of wood moving in the xy–plane. Furthermore, imagine that the

piece of wood consists of a huge number of particles joined by a huge number of weight-
less but very strong steel rods. The steel rod joining particle number one to particle num-
ber two just represents a force acting between particles number one and two. Suppose
that

• there are n particles, with particle number i having mass mi
• at time t, particle number i has x–coordinate xi(t) and y–coordinate yi(t)
• at time t, the external force (gravity and the like) acting on particle number i has x–

coordinate Hi(t) and y–coordinate Vi(t). Here H stands for horizontal and V stands
for vertical.

• at time t, the force acting on particle number i, due to the steel rod joining particle
number i to particle number j has x–coordinate Hi,j(t) and y–coordinate Vi,j(t). If
there is no steel rod joining particles number i and j, just set Hi,j(t) = Vi,j(t) = 0. In
particular, Hi,i(t) = Vi,i(t) = 0.

The only assumptions that we shall make about the steel rod forces are

(A1) for each i ‰ j, Hi,j(t) = ´Hj,i(t) and Vi,j(t) = ´Vj,i(t). In words, the steel rod joining
particles i and j applies equal and opposite forces to particles i and j.

(A2) for each i ‰ j, there is a function Mi,j(t) such that Hi,j(t) = Mi,j(t)
[
xi(t)´ xj(t)

]
and

Vi,j(t) = Mi,j(t)
[
yi(t)´ yj(t)

]
. In words, the force due to the rod joining particles i

and j acts parallel to the line joining particles i and j. For (A1) to be true, we need
Mi,j(t) = Mj,i(t).

Newton’s law of motion, applied to particle number i, now tells us that

mix2i (t) = Hi(t) +
nÿ

j=1

Hi,j(t) (Xi)

miy2i (t) = Vi(t) +
nÿ

j=1

Vi,j(t) (Yi)
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Adding up all of the equations (Xi), for i = 1, 2, 3, ¨ ¨ ¨ , n and adding up all of the
equations (Yi), for i = 1, 2, 3, ¨ ¨ ¨ , n gives

nÿ

i=1

mix2i (t) =
nÿ

i=1

Hi(t) +
ÿ

1ďi,jďn

Hi,j(t) (ΣiXi)

nÿ

i=1

miy2i (t) =
nÿ

i=1

Vi(t) +
ÿ

1ďi,jďn

Vi,j(t) (ΣiYi)

The sum
ř

1ďi,jďn Hi,j(t) contains H1,2(t) exactly once and it also contains H2,1(t) exactly
once and these two terms cancel exactly, by assumption (A1). In this way, all terms inř

1ďi,jďn Hi,j(t) with i ‰ j exactly cancel. All terms with i = j are assumed to be zero.
So

ř
1ďi,jďn Hi,j(t) = 0. Similarly,

ř
1ďi,jďn Vi,j(t) = 0, so the equations (ΣiXi) and (ΣiYi)

simplify to

nÿ

i=1

mix2i (t) =
nÿ

i=1

Hi(t) (ΣiXi)

nÿ

i=1

miy2i (t) =
nÿ

i=1

Vi(t) (ΣiYi)

Denote by

M =
nÿ

i=1

mi

the total mass of the system, by

X(t) =
1
M

nÿ

i=1

mixi(t) and Y(t) =
1
M

nÿ

i=1

miyi(t)

the x– and y–coordinates of the centre of mass of the system at time t and by

H(t) =
nÿ

i=1

Hi(t) and V(t) =
nÿ

i=1

Vi(t)

the x– and y–coordinates of the total external force acting on the system at time t. In this
notation, the equations (ΣiXi) and (ΣiYi) are

MX2(t) = H(t) MY2(t) = V(t) (2.3.6)

So the centre of mass of the system moves just like a single particle of mass M subject to
the total external force.

Now multiply equation (Yi) by xi(t), subtract from it equation (Xi) multiplied by yi(t),
and sum over i. This gives the equation

ř
i
[
xi(t) (Yi)´ yi(t) (Xi)

]
:

nÿ

i=1

mi
[
xi(t)y2i (t)´ yi(t)x2i (t)

]
=

nÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]
+

ÿ

1ďi,jďn

[
xi(t)Vi,j(t)´ yi(t)Hi,j(t)

]
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By the assumption (A2)

x1(t)V1,2(t)´ y1(t)H1,2(t) = x1(t)M1,2(t)
[
y1(t)´ y2(t)

]´ y1(t)M1,2(t)
[
x1(t)´ x2(t)

]

= M1,2(t)
[
y1(t)x2(t)´ x1(t)y2(t)

]

x2(t)V2,1(t)´ y2(t)H2,1(t) = x2(t)M2,1(t)
[
y2(t)´ y1(t)

]´ y2(t)M2,1(t)
[
x2(t)´ x1(t)

]

= M2,1(t)
[´ y1(t)x2(t) + x1(t)y2(t)

]

= M1,2(t)
[´ y1(t)x2(t) + x1(t)y2(t)

]

So the i = 1, j = 2 term in
ř

1ďi,jďn
[
xi(t)Vi,j(t) ´ yi(t)Hi,j(t)

]
exactly cancels the i = 2,

j = 1 term. In this way all of the terms in
ř

1ďi,jďn
[
xi(t)Vi,j(t) ´ yi(t)Hi,j(t)

]
with i ‰ j

cancel. Each term with i = j is exactly zero. So
ř

1ďi,jďn
[
xi(t)Vi,j(t)´ yi(t)Hi,j(t)

]
= 0 and

nÿ

i=1

mi
[
xi(t)y2i (t)´ yi(t)x2i (t)

]
=

nÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]

Define

L(t) =
nÿ

i=1

mi
[
xi(t)y1i(t)´ yi(t)x1i(t)

]

T(t) =
nÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]

In this notation
d
dt

L(t) = T(t) (2.3.7)

• Equation (2.3.7) plays the role of Newton’s law of motion for rotational motion.

• T(t) is called the torque and plays the role of “rotational force”.

• L(t) is called the angular momentum (about the origin) and is a measure of the rate
at which the piece of wood is rotating.

– For example, if a particle of mass m is traveling in a circle of radius r, centred
on the origin, at ω radians per unit time, then x(t) = r cos(ωt), y(t) = r sin(ωt)
and

m
[
x(t)y1(t)´ y(t)x1(t)

]
= m

[
r cos(ωt) rω cos(ωt)´ r sin(ωt)

(´ rω sin(ωt)
)]

= mr2 ω

is proportional to ω, which is the rate of rotation about the origin.

x

y
x2 + y2 = r2

ωt
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In any event, in order for the piece of wood to remain stationary, that is to have xi(t) and
yi(t) be constant for all 1 ď i ď n, we need to have

X2(y) = Y2(t) = L(t) = 0

and then equations (2.3.6) and (2.3.7) force

H(t) = V(t) = T(t) = 0

Now suppose that the piece of wood is a seesaw that is long and thin and is lying on
the x–axis, supported on a fulcrum at x = p. Then every yi = 0 and the torque simplifies
to T(t) =

řn
i=1 xi(t)Vi(t). The forces consist of

• gravity, mig, acting downwards on particle number i, for each 1 ď i ď n and the

• force F imposed by the fulcrum that is pushing straight up on the particle at x = p.

m1g m2g m3g m4g

F

So

• The net vertical force is V(t) = F ´
nř

i=1
mig = F ´ Mg. If the seesaw is to remain

stationary, this must be zero so that F = Mg.

• The total torque (about the origin) is

T = Fp´
nÿ

i=1

migxi = Mgp´
nÿ

i=1

migxi

If the seesaw is to remain stationary, this must also be zero and the fulcrum must be
placed at

p =
1
M

nÿ

i=1

mixi (2.3.8)

which is the centre of mass of the piece of wood.

2.4Ĳ Separable Differential Equations

A differential equation is an equation for an unknown function that involves the deriva-
tive of the unknown function. Differential equations play a central role in modelling a
huge number of different phenomena. Here is a table giving a bunch of named differen-
tial equations and what they are used for. It is far from complete.
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Newton’s Law of Motion describes motion of particles

Maxwell’s equations describes electromagnetic radiation

Navier–Stokes equations describes fluid motion

Heat equation describes heat flow

Wave equation describes wave motion

Schrödinger equation describes atoms, molecules and crystals

Stress-strain equations describes elastic materials

Black–Scholes models used for pricing financial options

Predator–prey equations describes ecosystem populations

Einstein’s equations connects gravity and geometry

Ludwig–Jones–Holling’s equation models spruce budworm/Balsam fir ecosystem

Zeeman’s model models heart beats and nerve impulses

Sherman–Rinzel–Keizer model for electrical activity in Pancreatic β–cells

Hodgkin–Huxley equations models nerve action potentials

We are just going to scratch the surface of the study of differential equations. Most
universities offer half a dozen different undergraduate courses on various aspects of dif-
ferential equations. We will just look at one special, but important, type of equation.

2.4.1 §§ Separate and Integrate

A separable differential equation is an equation for a function y(x) of the form

dy
dx

(x) = f (x) g
(
y(x)

)

Definition 2.4.1.

We’ll start by developing a recipe for solving separable differential equations. Then
we’ll look at many examples. Usually one suppresses the argument of y(x) and writes the
equation20

dy
dx

= f (x) g(y)

and solves such an equation by cross multiplying/dividing to get all of the y’s, including
the dy on one side of the equation and all of the x’s, including the dx, on the other side of
the equation.

dy
g(y)

= f (x)dx

20 Look at the right hand side of the equation. The x–dependence is separated from the y–dependence.
That’s the reason for the name “separable”.
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(We are of course assuming that g(y) is nonzero.) Then you integrate both sides
ż

dy
g(y)

=

ż
f (x)dx (2.4.1)

This looks illegal, and indeed is illegal — dy
dx is not a fraction. But we’ll now see that the

answer is still correct. This procedure is simply a mnemonic device to help you remember
the answer (2.4.1).

• Our goal is to find all functions y(x) that obey dy
dx (x) = f (x) g

(
y(x)

)
.

• Assuming that g is nonzero,

y1(x) = f (x) g(y(x)) ðñ y1(x)
g(y(x))

= f (x) ðñ
ż

y1(x)
g(y(x))

dx =

ż
f (x)dx

ðñ
ż

dy
g(y)

ˇ̌
ˇ̌
y=y(x)

=

ż
f (x)dx

with the substitution y = y(x), dy = y1(x)dx

• That’s our answer (2.4.1) again.

Let G(y) be an antiderivative of 1
g(y) (i.e. G1(y) = 1

g(y) ) and F(x) be an antiderivative
of f (x) (i.e. F1(x) = f (x)). If we reinstate the argument of y, (2.4.1) is

G
(
y(x)

)
= F(x) + C (2.4.2)

Observe that the solution (2.4.2) contains an arbitrary constant, C. The value of this ar-
bitrary constant can not be determined by the differential equation. You need additional
data to determine it. Often this data consists of the value of the unknown function for one
value of x. That is, often the problem you have to solve is of the form

dy
dx

(x) = f (x) g
(
y(x)

)
y(x0) = y0

where f (x) and g(y) are given functions and x0 and y0 are given numbers. This type of
problem is called an “initial value problem”. It is solved by first using the method above
to find the general solution to the differential equation, including the arbitrary constant
C, and then using the “initial condition” y(x0) = y0 to determine the value of C. We’ll see
examples of this shortly.

Example 2.4.2

The differential equation
dy
dx

= xe´y

is separable, and we now find all of its solutions by using our mnemonic device. We start
by cross–multiplying so as to move all y’s to the left hand side and all x’s to the right hand
side.

ey dy = x dx
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Then we integrate both sides
ż

eydy =

ż
xdx ðñ ey =

x2

2
+ C

The C on the right hand side contains both the arbitrary constant for the indefinite integralş
eydy and the arbitrary constant for the indefinite integral

ş
xdx. Finally, we solve for y,

which is really a function of x.

y(x) = log
(x2

2
+ C

)

Recall that we are using log to refer to the natural (base e) logarithm.
Note that C is an arbitrary constant. It can take any value. It cannot be determined

by the differential equation itself. In applications C is usually determined by a require-
ment that y take some prescribed value (determined by the application) when x is some
prescribed value. For example, suppose that we wish to find a function y(x) that obeys
both

dy
dx

= xe´y and y(0) = 1

We know that, to have dy
dx = xe´y satisfied, we must have y(x) = log

( x2

2 + C
)
, for some

constant C. To also have y(0) = 1, we must have

1 = y(0) = log
(x2

2
+ C

)ˇ̌
ˇ̌
x=0

= log C ðñ log C = 1 ðñ C = e

So our final solution is y(x) = log
( x2

2 + e
)
.

Example 2.4.2

Example 2.4.3

Let a and b be any two constants. We’ll now solve the family of differential equations

dy
dx

= a(y´ b)

using our mnemonic device.

dy
y´ b

= a dx ùñ
ż

dy
y´ b

=

ż
a dx ùñ log |y´ b| = ax + c ùñ |y´ b| = eax+c = eceax

ùñ y´ b = Ceax

where C is either +ec or ´ec. Note that as c runs over all real numbers, +ec runs over
all strictly positive real numbers and ´ec runs over all strictly negative real numbers. So,
so far, C can be any real number except 0. But we were a bit sloppy here. We implicitly
assumed that y ´ b was nonzero, so that we could divide it across. None–the–less, the
constant function y = b, which corresponds to C = 0, is a perfectly good solution — when
y is the constant function y = b, both dy

dx and a(y´ b) are zero. So the general solution to
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dy
dx = a(y´ b) is y(x) = Ceax + b, where the constant C can be any real number. Note that
when y(x) = Ceax + b we have y(0) = C + b. So C = y(0)´ b and the general solution is

y(x) = ty(0)´ bu eax + b

Example 2.4.3

This is worth stating as a theorem.

Let a and b be constants. The differentiable function y(x) obeys the differential
equation

dy
dx

= a(y´ b)

if and only if
y(x) = ty(0)´ bu eax + b

Theorem 2.4.4.

Example 2.4.5

Solve dy
dx = y2

Solution. When y ‰ 0,

dy
dx

= y2 ùñ dy
y2 = dx ùñ y´1

´1
= x + C ùñ y = ´ 1

x + C

When y = 0, this computation breaks down because dy
y2 contains a division by 0. We can

check if the function y(x) = 0 satisfies the differential equation by just subbing it in:

y(x) = 0 ùñ y1(x) = 0, y(x)2 = 0 ùñ y1(x) = y(x)2

So y(x) = 0 is a solution and the full solution is

y(x) = 0 or y(x) = ´ 1
x + C

, for any constant C

Example 2.4.5

Example 2.4.6

When a raindrop falls it increases in size so that its mass m(t), is a function of time t. The
rate of growth of mass, i.e. dm

dt , is km(t) for some positive constant k. According to New-
ton’s law of motion, d

dt (mv) = gm, where v is the velocity of the raindrop (with v being
positive for downward motion) and g is the acceleration due to gravity. Find the terminal
velocity, lim

tÑ8
v(t), of a raindrop.
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Solution. In this problem we have two unknown functions, m(t) and v(t), and two dif-
ferential equations, dm

dt = km and d
dt (mv) = gm. The first differential equation, dm

dt = km,
involves only m(t), not v(t), so we use it to determine m(t). By Theorem 2.4.4, with b = 0,
a = k, y replaced by m and x replaced by t,

dm
dt

= km ùñ m(t) = m(0)ekt

Now that we know m(t) (except for the value of the constant m(0)), we can substitute it
into the second differential equation, which we can then use to determine the remaining
unknown function v(t). Observe that the second equation, d

dt (mv) = gm(t) = gm(0)ekt

tells that the derivative of the function y(t) = m(t)v(t) is gm(0)ekt. So y(t) is just an
antiderivative of gm(0)ekt.

dy
dt

= gm(t) = gm(0)ekt ùñ y(t) =
ż

gm(0)ekt dt = gm(0)
ekt

k
+ C

Now that we know y(t) = m(t)v(t) = m(0)ektv(t), we can get v(t) just by dividing out
the m(0)ekt.

y(t) = gm(0)
ekt

k
+ C ùñ m(0)ektv(t) = gm(0)

ekt

k
+ C ùñ v(t) =

g
k
+

C
m(0)ekt

Our solution, v(t), contains two arbitrary constants, namely C and m(0). They will be
determined by, for example, the mass and velocity at time t = 0. But since we are only
interested in the terminal velocity lim

tÑ8
v(t), we don’t need to know C and m(0). Since

k ą 0, lim
tÑ8

C
ekt = 0 and the terminal velocity lim

tÑ8
v(t) = g

k .

Example 2.4.6

Example 2.4.7

A glucose solution is administered intravenously into the bloodstream at a constant rate
r. As the glucose is added, it is converted into other substances at a rate that is propor-
tional to the concentration at that time. The concentration, C(t), of the glucose in the
bloodstream at time t obeys the differential equation

dC
dt

= r´ kC

where k is a positive constant of proportionality.

(a) Express C(t) in terms of k and C(0).

(b) Find lim
tÑ8

C(t).

Solution. (a) Since r´ kC = ´k
(
C´ r

k
)

the given equation is

dC
dt

= ´k
(
C´ r

k
)
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which is of the form solved in Theorem 2.4.4 with a = ´k and b = r
k . So the solution is

C(t) =
r
k
+
(

C(0)´ r
k

)
e´kt

(b) For any k ą 0, lim
tÑ8

e´kt = 0. Consequently, for any C(0) and any k ą 0, lim
tÑ8

C(t) = r
k .

We could have predicted this limit without solving for C(t). If we assume that C(t) ap-
proaches some equilibrium value Ce as t approaches infinity, then taking the limits of both
sides of dC

dt = r´ kC as t Ñ 8 gives

0 = r´ kCe ùñ Ce =
r
k

Example 2.4.7

2.4.2 §§ Optional — Carbon Dating

Scientists can determine the age of objects containing organic material by a method called
carbon dating or radiocarbon dating21. The bombardment of the upper atmosphere by cosmic
rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half–life of about 5730
years. Vegetation absorbs carbon dioxide from the atmosphere through photosynthesis
and animals acquire 14C by eating plants. When a plant or animal dies, it stops replacing
its carbon and the amount of 14C begins to decrease through radioactive decay. Therefore
the level of radioactivity also decreases. More precisely, let Q(t) denote the amount of 14C
in the plant or animal t years after it dies. The number of radioactive decays per unit time,
at time t, is proportional to the amount of 14C present at time t, which is Q(t). Thus

dQ
dt

(t) = ´kQ(t) (2.4.3)

Here k is a constant of proportionality that is determined by the half–life. We shall explain
what half–life is, and also determine the value of k, in Example 2.4.8, below.

Before we do so, let’s think about the sign in (2.4.3).

• Recall that Q(t) denotes a quantity, namely the amount of 14C present at time t.
There cannot be a negative amount of 14C. Nor can this quantity be zero. (We would
not use carbon dating when there is no 14C present.) Consequently, Q(t) ą 0.

• As the time t increases, Q(t) decreases, because 14C is being continuously converted
into 14N by radioactive decay22. Thus dQ

dt (t) ă 0.

• The signs Q(t) ą 0 and dQ
dt (t) ă 0 are consistent with (2.4.3) provided the constant

of proportionality k ą 0.

21 Willard Libby, of Chicago University was awarded the Nobel Prize in Chemistry in 1960, for developing
radiocarbon dating.

22 The precise transition is 14C Ñ 14N + e´ + ν̄e where e´ is an electron and ν̄e is an electron neutrino.
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• In (2.4.3), we chose to call the constant of proportionality “´k”. We did so in order to
make k ą 0. We could just as well have chosen to call the constant of proportionality
“K”. That is, we could have replaced (2.4.3) by dQ

dt (t) = KQ(t). The constant of
proportionality K would have to be negative, (and K and k would be related by
K = ´k).

Example 2.4.8

In this example, we determine the value of the constant of proportionality k in (2.4.3) that
corresponds to the half–life of 14C, which is 5730 years.

• Imagine that some plant or animal contains a quantity Q0 of 14C at its time of death.
Let’s choose the zero point of time t = 0 to be the instant that the plant or animal
died.

• Denote by Q(t) the amount of 14C in the plant or animal t years after it died. Then
Q(t) must obey both (2.4.3) and Q(0) = Q0.

• Theorem 2.4.4, with b = 0 and a = ´k, then tells us that Q(t) = Q0e´kt for all t ě 0.

• By definition, the half–life of 14C is the length of time that it takes for half of the 14C
to decay. That is, the half–life t1/2 is determined by

Q(t1/2) =
1
2 Q(0) = 1

2 Q0 but we know that Q(t) = Q0e´kt

Q0e´kt1/2 = 1
2 Q0 now cancel Q0

e´kt1/2 = 1
2

Taking the logarithm of both sides gives

´kt1/2 = log
1
2
= ´ log 2 ùñ k =

log 2
t1/2

Recall that, in this text, we use log x to indicate the natural logarithm. That is,

log x = loge x = log x

We are told that, for 14C, the half–life t1/2 = 5730, so

k =
log 2
5730

= 0.000121 to 6 decimal places

Example 2.4.8

From the work in the above example we have accumulated enough new facts to make
a corollary to Theorem 2.4.4.

249



APPLICATIONS OF INTEGRATION 2.4 SEPARABLE DIFFERENTIAL EQUATIONS

The function Q(t) satisfies the equation

dQ
dt

= ´kQ(t)

if and only if

Q(t) = Q(0) e´kt

The half–life is defined to be the time t1/2 which obeys

Q
(
t1/2

)
=

1
2

Q(0)

The half–life is related to the constant k by

t1/2 =
log 2

k

Corollary 2.4.9.

Now here is a typical problem that is solved using Corollary 2.4.9.

Example 2.4.10

A particular piece of parchment contains about 64% as much 14C as plants do today. Esti-
mate the age of the parchment.

Solution. Let Q(t) denote the amount of 14C in the parchment t years after it was first
created. By (2.4.3) and Example 2.4.8

dQ
dt

(t) = ´kQ(t) with k =
log 2
5730

= 0.000121

By Corollary 2.4.9

Q(t) = Q(0) e´kt

The time at which Q(t) reaches 0.64 Q(0) is determined by

Q(t) = 0.64 Q(0) but Q(t) = Q(0) e´kt

Q(0) e´kt = 0.64 Q(0) cancel Q(0)

e´kt = 0.64 take logarithms
´kt = log 0.64

t =
log 0.64
´k

=
log 0.64
´0.000121

= 3700 to 2 significant digits

That is, the parchment23 is about 37 centuries old.

23 The British Museum has an Egyptian mathematical text from the seventeenth century B.C.
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Example 2.4.10

We have stated that the half-life of 14C is 5730 years. How can this be determined? We
can explain this using the following example.

Example 2.4.11

A scientist in a B-grade science fiction film is studying a sample of the rare and fictitious
element, implausium. With great effort he has produced a sample of pure implausium.
The next day — 17 hours later — he comes back to his lab and discovers that his sample
is now only 37% pure. What is the half-life of the element?

Solution. We can again set up our problem using Corollary 2.4.9. Let Q(t) denote the
quantity of implausium at time t, measured in hours. Then we know

Q(t) = Q(0) ¨ e´kt

We also know that

Q(17) = 0.37Q(0).

That enables us to determine k via

Q(17) = 0.37Q(0) = Q(0)e´17k divide both sides by Q(0)

0.37 = e´17k

and so

k = ´ log 0.37
17

= 0.05849

We can then convert this to the half life using Corollary 2.4.9:

t1/2 =
log 2

k
« 11.85 hours

While this example is entirely fictitious, one really can use this approach to measure the
half-life of materials.

Example 2.4.11

2.4.3 §§ Optional — Newton’s Law of Cooling

Newton’s law of cooling says:

The rate of change of temperature of an object is proportional to the difference in tem-
perature between the object and its surroundings. The temperature of the surroundings
is sometimes called the ambient temperature.
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If we denote by T(t) the temperature of the object at time t and by A the temperature of its
surroundings, Newton’s law of cooling says that there is some constant of proportionality,
K, such that

dT
dt

(t) = K
[
T(t)´ A

]
(2.4.4)

This mathematical model of temperature change works well when studying a small object
in a large, fixed temperature, environment. For example, a hot cup of coffee in a large
room24. Let’s start by thinking a little about the sign of the constant of proportionality. At
any time t, there are three possibilities.

• If T(t) ą A, that is, if the body is warmer than its surroundings, we would expect
heat to flow from the body into its surroundings and so we would expect the body
to cool off so that dT

dt (t) ă 0. For this expectation to be consistent with (2.4.4), we
need K ă 0.

• If T(t) ă A, that is the body is cooler than its surroundings, we would expect heat
to flow from the surroundings into the body and so we would expect the body to
warm up so that dT

dt (t) ą 0. For this expectation to be consistent with (2.4.4), we
again need K ă 0.

• Finally if T(t) = A, that is the body and its environment have the same temperature,
we would not expect any heat to flow between the two and so we would expect that
dT
dt (t) = 0. This does not impose any condition on K.

In conclusion, we would expect K ă 0. Of course, we could have chosen to call the
constant of proportionality ´k, rather than K. Then the differential equation would be
dT
dt = ´k

(
T ´ A

)
and we would expect k ą 0.

Example 2.4.12

The temperature of a glass of iced tea is initially 5˝. After 5 minutes, the tea has heated to
10˝ in a room where the air temperature is 30˝.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?

(c) Determine when the tea will reach a temperature of 20˝.

Solution. (a)

• Denote by T(t) the temperature of the tea t minutes after it was removed from the
fridge, and let A = 30 be the ambient temperature.

• By Newton’s law of cooling,

dT
dt

= K(T ´ A) = K(T ´ 30)

for some, as yet unknown, constant of proportionality K.

24 It does not work so well when the object is of a similar size to its surroundings since the temperature of
the surroundings will rise as the object cools. It also fails when there are phase transitions involved —
for example, an ice-cube melting in a warm room does not obey Newton’s law of cooling.

252



APPLICATIONS OF INTEGRATION 2.4 SEPARABLE DIFFERENTIAL EQUATIONS

• By Theorem 2.4.4 with a = K and b = 30,

T(t) = [T(0)´ 30] eKt + 30 = 30´ 25eKt

since the initial temperature T(0) = 5.

• This solution is not complete because it still contains an unknown constant, namely
K. We have not yet used the given data that T(5) = 10. We can use it to determine
K. At t = 5,

T(5) = 30´ 25e5K = 10 ùñ e5K =
20
25

ùñ 5K = log
20
25

ùñ K =
1
5

log
4
5
= ´0.044629

to six decimal places.

(b) To find the temperature at 10 minutes we can just use the solution we have determined
above.

T(10) = 30´ 25e10K

= 30´ 25e10ˆ 1
5 log 4

5

= 30´ 25e2 log 4
5 = 30´ 25elog 16

25

= 30´ 16 = 14˝

(c) The temperature is 20˝ when

30´ 25eKt = 20 ùñ eKt =
10
25

ùñ Kt = log
10
25

ùñ t =
1
K

log
2
5
= 20.5 min

to one decimal place.
Example 2.4.12

Example 2.4.13

A dead body is discovered at 3:45pm in a room where the temperature is 20˝C. At that time
the temperature of the body 1s 27˝C. Two hours later, at 5:45pm, the temperature of the
body is 25.3˝C. What was the time of death? Note that the normal (adult human) body
temperature is 37˝C.

Solution. We will assume that the body’s temperature obeys Newton’s law of cooling.

• Denote by T(t) the temperature of the body at time t, with t = 0 corresponding to
3:45pm. We wish to find the time of death — call it td.

• There is a lot of data in the statement of the problem. We are told

(1) the ambient temperature: A = 20
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(2) the temperature of the body when discovered: T(0) = 27

(3) the temperature of the body 2 hours later: T(2) = 25.3

(4) assuming the person was a healthy adult right up until he died, the temperature
at the time of death: T(td) = 37.

• Theorem 2.4.4 with a = K and b = A = 20

T(t) = [T(0)´ A] eKt + A = 20 + 7eKt

Two unknowns remain, K and td.

• We can find the first, K, by using the condition (3), which says T(2) = 25.3.

25.3 = T(2) = 20 + 7e2K ùñ 7e2K = 5.3 ùñ 2K = log
(5.3

7

)

ùñ K = 1
2 log

(5.3
7

)
= ´0.139

• Finally, td is determined by the condition (4).

37 = T(td) = 20 + 7e´0.139td ùñ e´0.139td = 17
7 ùñ ´0.139td = log

(17
7

)

ùñ td = ´ 1
0.139 log

(17
7

)
= ´6.38

to two decimal places. Now 6.38 hours is 6 hours and 0.38ˆ 60 = 23 minutes. So
the time of death was 6 hours and 23 minutes before 3:45pm, which is 9:22am.

Example 2.4.13

A slightly tricky example — we need to determine the ambient temperature from three
measurements at different times.

Example 2.4.14

A glass of room-temperature water is carried out onto a balcony from an apartment where
the temperature is 22˝C. After one minute the water has temperature 26˝C and after two
minutes it has temperature 28˝C. What is the outdoor temperature?

Solution. We will assume that the temperature of the water obeys Newton’s law of cool-
ing.

• Let A be the outdoor temperature and T(t) be the temperature of the water t minutes
after it is taken outside.

• By Newton’s law of cooling,

T(t) = A +
(
T(0)´ A

)
eKt

Theorem 2.4.4 with a = K and b = A. Notice there are 3 unknowns here — A, T(0)
and K — so we need three pieces of information to find them all.

• We are told T(0) = 22, so

T(t) = A +
(
22´ A

)
eKt.
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• We are also told T(1) = 26, which gives

26 = A +
(
22´ A

)
eK rearrange things

eK =
26´ A
22´ A

• Finally, T(2) = 28, so

28 = A +
(
22´ A

)
e2K rearrange

e2K =
28´ A
22´ A

but eK =
26´ A
22´ A

, so
(

26´ A
22´ A

)2

=
28´ A
22´ A

multiply through by (22´ A)2

(26´ A)2 = (28´ A)(22´ A)

We can expand out both sides and collect up terms to get

262loomoon
=676

´52A + A2 = 28ˆ 22loomoon
=616

´50A + A2

60 = 2A
30 = A

So the temperature outside is 30˝.

Example 2.4.14

2.4.4 §§ Optional — Population Growth

Suppose that we wish to predict the size P(t) of a population as a function of the time
t. In the most naive model of population growth, each couple produces β offspring (for
some constant β) and then dies. Thus over the course of one generation β

P(t)
2 children are

produced and P(t) parents die so that the size of the population grows from P(t) to

P(t + tg) = P(t) + β
P(t)

2looooooomooooooon
parents+offspring

´ P(t)loomoon
parents die

=
β

2
P(t)

where tg denotes the lifespan of one generation. The rate of change of the size of the
population per unit time is

P(t + tg)´ P(t)
tg

=
1
tg

[β

2
P(t)´ P(t)

]
= bP(t)

where b = β´2
2tg

is the net birthrate per member of the population per unit time. If we
approximate

P(t + tg)´ P(t)
tg

« dP
dt

(t)
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we get the differential equation

dP
dt

= bP(t) (2.4.5)

By Corollary 2.4.9, with ´k replaced by b,

P(t) = P(0) ¨ ebt (2.4.6)

This is called the Malthusian25 growth model. It is, of course, very simplistic. One of its
main characteristics is that, since P(t + T) = P(0) ¨ eb(t+T) = P(t) ¨ ebT, every time you
add T to the time, the population size is multiplied by ebT. In particular, the population
size doubles every log 2

b units of time. The Malthusian growth model can be a reasonably
good model only when the population size is very small compared to its environment26.
A more sophisticated model of population growth, that takes into account the “carrying
capacity of the environment” is considered below.

Example 2.4.15

In 1927 the population of the world was about 2 billion. In 1974 it was about 4 billion. Esti-
mate when it reached 6 billion. What will the population of the world be in 2100, assuming
the Malthusian growth model?

Solution. We follow our usual pattern for dealing with such problems.

• Let P(t) be the world’s population, in billions, t years after 1927. Note that 1974
corresponds to t = 1974´ 1927 = 47.

• We are assuming that P(t) obeys equation (2.4.5). So, by (2.4.6)

P(t) = P(0) ¨ ebt

Notice that there are 2 unknowns here — b and P(0) — so we need two pieces of
information to find them.

• We are told P(0) = 2, so

P(t) = 2 ¨ ebt

• We are also told P(47) = 4, which gives

4 = 2 ¨ e47b clean up

e47b = 2 take the log and clean up

b =
log 2

47
= 0.0147 to 3 decimal places

25 This is named after Rev. Thomas Robert Malthus. He described this model in a 1798 paper called “An
essay on the principle of population”.

26 That is, the population has plenty of food and space to grow.
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• We now know P(t) completely, so we can easily determine the predicted popula-
tion27 in 2100, i.e. at t = 2100´ 1927 = 173.

P(173) = 2e173b = 2e173ˆ0.0147 = 12.7 billion

• Finally, our crude model predicts that the population is 6 billion at the time t that
obeys

P(t) = 2ebt = 6 clean up

ebt = 3 take the log and clean up

t =
log 3

b
= 47

log 3
log 2

= 74.5

which corresponds28 to the middle of 2001.

Example 2.4.15

Logistic growth adds one more wrinkle to the simple population model. It assumes
that the population only has access to limited resources. As the size of the population
grows the amount of food available to each member decreases. This in turn causes the net
birth rate b to decrease. In the logistic growth model b = b0

(
1´ P

K
)
, where K is called the

carrying capacity of the environment, so that

P1(t) = b0

(
1´ P(t)

K

)
P(t)

This is a separable differential equation and we can solve it explicitly. We shall do
so shortly. See Example 2.4.16, below. But, before doing that, we’ll see what we can
learn about the behaviour of solutions to differential equations like this without finding
formulae for the solutions. It turns out that we can learn a lot just by watching the sign of
P1(t). For concreteness, we’ll look at solutions of the differential equation

dP
dt

(t) =
(

6000´ 3P(t)
)

P(t)

We’ll sketch the graphs of four functions P(t) that obey this equation.

• For the first function, P(0) = 0.
• For the second function, P(0) = 1000.
• For the third function, P(0) = 2000.
• For the fourth function, P(0) = 3000.

The sketches will be based on the observation that (6000´ 3P) P = 3(2000´ P) P

• is zero for P = 0, 2000,

27 The 2015 Revision of World Population, a publication of the United Nations, predicts that the world’s
population in 2100 will be about 11 billion. But “about” covers a pretty large range. They give an 80%
confidence interval running from 10 billion to 12.5 billion.

28 The world population really reached 6 billion in about 1999.
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• is strictly positive for 0 ă P ă 2000 and
• is strictly negative for P ą 2000.

Consequently

dP
dt

(t)

$
’’’&
’’’%

= 0 if P(t) = 0
ą 0 if 0 ă P(t) ă 2000
= 0 if P(t) = 2000
ă 0 if P(t) ą 2000

Thus if P(t) is some function that obeys dP
dt (t) =

(
6000´ 3P(t)

)
P(t), then as the graph of

P(t) passes through the point
(
t, P(t)

)

the graph has

$
’’’&
’’’%

slope zero, i.e. is horizontal, if P(t) = 0
positive slope, i.e. is increasing, if 0 ă P(t) ă 2000
slope zero, i.e. is horizontal, if P(t) = 2000
negative slope, i.e. is decreasing, if 0 ă P(t) ă 2000

as illustrated in the figure

t

P (t)

1000

2000

3000

As a result,

• if P(0) = 0, the graph starts out horizontally. In other words, as t starts to increase,
P(t) remains at zero, so the slope of the graph remains at zero. The population size
remains zero for all time. As a check, observe that the function P(t) = 0 obeys
dP
dt (t) =

(
6000´ 3P(t)

)
P(t) for all t.

• Similarly, if P(0) = 2000, the graph again starts out horizontally. So P(t) remains at
2000 and the slope remains at zero. The population size remains 2000 for all time.
Again, the function P(t) = 2000 obeys dP

dt (t) =
(
6000´ 3P(t)

)
P(t) for all t.

• If P(0) = 1000, the graph starts out with positive slope. So P(t) increases with t. As
P(t) increases towards 2000, the slope (6000´ 3P(t)

)
P(t), while remaining positive,

gets closer and closer to zero. As the graph approaches height 2000, it becomes more
and more horizontal. The graph cannot actually cross from below 2000 to above
2000, because to do so it would have to have strictly positive slope for some value of
P above 2000, which is not allowed.
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• If P(0) = 3000, the graph starts out with negative slope. So P(t) decreases with
t. As P(t) decreases towards 2000, the slope (6000 ´ 3P(t)

)
P(t), while remaining

negative, gets closer and closer to zero. As the graph approaches height 2000, it
becomes more and more horizontal. The graph cannot actually cross from above
2000 to below 2000, because to do so it would have to have negative slope for some
value of P below 2000, which is not allowed.

These curves are sketched in the figure below. We conclude that for any initial population
size P(0), except P(0) = 0, the population size approaches 2000 as t Ñ 8.

t

P (t)

1000

2000

3000

Now we’ll do an example in which we explicitly solve the logistic growth equation.

Example 2.4.16

In 1986, the population of the world was 5 billion and was increasing at a rate of 2% per
year. Using the logistic growth model with an assumed maximum population of 100 bil-
lion, predict the population of the world in the years 2000, 2100 and 2500.

Solution. Let y(t) be the population of the world, in billions of people, at time 1986 + t.
The logistic growth model assumes

y1 = ay(K´ y)

where K is the carrying capacity and a = b0
K .

First we’ll determine the values of the constants a and K from the given data.

• We know that, if at time zero the population is below K, then as time increases the
population increases, approaching the limit K as t tends to infinity. So in this prob-
lem K is the maximum population. That is, K = 100.

• We are also told that, at time zero, the percentage rate of change of population, 100 y1
y ,

is 2, so that, at time zero, y1
y = 0.02. But, from the differential equation, y1

y = a(K´ y).
Hence at time zero, 0.02 = a(100´ 5), so that a = 2

9500 .

We now know a and K and can solve the (separable) differential equation
dy
dt

= ay(K´ y) ùñ dy
y(K´ y)

= a dt ùñ
ż

1
K

[1
y
´ 1

y´ K

]
dy =

ż
a dt

ùñ 1
K
[log |y| ´ log |y´ K|] = at + C

ùñ log
|y|

|y´ K| = aKt + CK ùñ
ˇ̌
ˇ y
y´ K

ˇ̌
ˇ = DeaKt
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with D = eCK. We know that y remains between 0 and K, so that
ˇ̌
ˇ y

y´K

ˇ̌
ˇ = y

K´y and our
solution obeys

y
K´ y

= DeaKt

At this stage, we know the values of the constants a and K, but not the value of the constant
D. We are given that at t = 0, y = 5. Subbing in this, and the values of K and a,

5
100´ 5

= De0 ùñ D =
5

95

So the solution obeys the algebraic equation

y
100´ y

=
5

95
e2t/95

which we can solve to get y as a function of t.

y = (100´ y)
5

95
e2t/95 ùñ 95y = (500´ 5y)e2t/95

ùñ (
95 + 5e2t/95)y = 500e2t/95

ùñ y =
500e2t/95

95 + 5e2t/95 =
100e2t/95

19 + e2t/95 =
100

1 + 19e´2t/95

Finally,

• In the year 2000, t = 14 and y = 100
1+19e´28/95 « 6.6 billion.

• In the year 2100, t = 114 and y = 100
1+19e´228/95 « 36.7 billion.

• In the year 2200, t = 514 and y = 100
1+19e´1028/95 « 100 billion.

Example 2.4.16

2.4.5 §§ Optional — Mixing Problems

Example 2.4.17

At time t = 0, where t is measured in minutes, a tank with a 5–litre capacity contains 3
litres of water in which 1 kg of salt is dissolved. Fresh water enters the tank at a rate of 2
litres per minute and the fully mixed solution leaks out of the tank at the varying rate of 2t
litres per minute.

(a) Determine the volume of solution V(t) in the tank at time t.

(b) Determine the amount of salt Q(t) in solution when the amount of water in the tank
is at maximum.
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Solution. (a) The rate of change of the volume in the tank, at time t, is 2´ 2t, because
water is entering at a rate 2 and solution is leaking out at a rate 2t. Thus

dV
dt

= 2´ 2t ùñ dV = (2´ 2t)dt ùñ V =

ż
(2´ 2t)dt = 2t´ t2 + C

at least until V(t) reaches either the capacity of the tank or zero. When t = 0, V = 3 so
C = 3 and V(t) = 3 + 2t´ t2. Observe that V(t) is at a maximum when dV

dt = 2´ 2t = 0,
or t = 1.

(b) In the very short time interval from time t to time t + dt, 2t dt litres of brine leaves
the tank. That is, the fraction 2t dt

V(t) of the total salt in the tank, namely Q(t)2t dt
V(t) kilograms,

leaves. Thus salt is leaving the tank at the rate

Q(t)2t dt
V(t)

dt
=

2tQ(t)
V(t)

=
2tQ(t)

3 + 2t´ t2 kilograms per minute

so

dQ
dt

= ´ 2tQ(t)
3 + 2t´ t2 ùñ dQ

Q
= ´ 2t

3 + 2t´ t2 dt = ´ 2t
(3´ t)(1 + t)

dt =
[ 3/2

t´ 3
+

1/2
t + 1

]
dt

ùñ log Q =
3
2

log |t´ 3|+ 1
2

log |t + 1|+ C

We are interested in the time interval 0 ď t ď 1. In this time interval |t´ 3| = 3´ t and
|t + 1| = t + 1 so

log Q =
3
2

log(3´ t) +
1
2

log(t + 1) + C

At t = 0, Q is 1 so

log 1 =
3
2

log(3´ 0) +
1
2

log(0 + 1) + C ùñ C = log 1´ 3
2

log 3´ 1
2

log 1 = ´3
2

log 3

At t = 1

log Q =
3
2

log(3´ 1) +
1
2

log(1 + 1)´ 3
2

log 3 = 2 log 2´ 3
2

log 3 = log 4´ log 33/2

so Q = 4
33/2 .

Example 2.4.17

Example 2.4.18

A tank contains 1500 liters of brine with a concentration of 0.3 kg of salt per liter. Another
brine solution, this with a concentration of 0.1 kg of salt per liter is poured into the tank at
a rate of 20 li/min. At the same time, 20 li/min of the solution in the tank, which is stirred
continuously, is drained from the tank.

(a) How many kilograms of salt will remain in the tank after half an hour?
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(b) How long will it take to reduce the concentration to 0.2 kg/li?

Solution. Denote by Q(t) the amount of salt in the tank at time t. In a very short time
interval dt, the incoming solution adds 20 dt liters of a solution carrying 0.1 kg/li. So the
incoming solution adds 0.1ˆ 20 dt = 2 dt kg of salt. In the same time interval 20 dt liters
is drained from the tank. The concentration of the drained brine is Q(t)

1500 . So Q(t)
1500 20 dt kg

were removed. All together, the change in the salt content of the tank during the short
time interval is

dQ = 2 dt´ Q(t)
1500

20 dt =
(

2´ Q(t)
75

)
dt

The rate of change of salt content per unit time is

dQ
dt

= 2´ Q(t)
75

= ´ 1
75
(
Q(t)´ 150

)

The solution of this equation is

Q(t) =
 

Q(0)´ 150
(

e´t/75 + 150

by Theorem 2.4.4, with a = ´ 1
75 and b = 150. At time 0, Q(0) = 1500ˆ 0.3 = 450. So

Q(t) = 150 + 300e´t/75

(a) At t = 30
Q(30) = 150 + 300e´30/75 = 351.1 kg

(b) Q(t) = 0.2ˆ 1500 = 300 kg is achieved when

150 + 300e´t/75 = 300 ùñ 300e´t/75 = 150 ùñ e´t/75 = 0.5

ùñ ´ t
75

= log(0.5) ùñ t = ´75 log(0.5) = 51.99 min

Example 2.4.18

2.4.6 §§ Optional — Interest on Investments

Suppose that you deposit $P in a bank account at time t = 0. The account pays r% interest
per year compounded n times per year.

• The first interest payment is made at time t = 1
n . Because the balance in the account

during the time interval 0 ă t ă 1
n is $P and interest is being paid for

( 1
n
)th of a year,

that first interest payment is 1
n ˆ r

100 ˆ P. After the first interest payment, the balance
in the account is P + 1

n ˆ r
100 ˆ P =

(
1 + r

100n
)

P.
• The second interest payment is made at time t = 2

n . Because the balance in the
account during the time interval 1

n ă t ă 2
n is

(
1 + r

100n
)

P and interest is being paid

for
( 1

n
)th of a year, the second interest payment is 1

n ˆ r
100 ˆ

(
1 + r

100n
)

P. After the
second interest payment, the balance in the account is

(
1 + r

100n
)

P + 1
n ˆ r

100 ˆ
(
1 +

r
100n

)
P =

(
1 + r

100n
)2P.
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• And so on.

In general, at time t = m
n (just after the mth interest payment), the balance in the account is

B(t) =
(

1 +
r

100n

)m
P =

(
1 +

r
100n

)nt
P (2.4.7)

Three common values of n are 1 (interest is paid once a year), 12 (i.e. interest is paid
once a month) and 365 (i.e. interest is paid daily). The limit n Ñ 8 is called continuous
compounding29. Under continuous compounding, the balance at time t is

B(t) = lim
nÑ8

(
1 +

r
100n

)nt
P

You may have already seen the limit

lim
xÑ0

(1 + x)a/x = ea (2.4.8)

If so, you can evaluate B(t) by applying (2.4.8) with x = r
100n and a = rt

100 (so that a
x = nt).

As n Ñ 8, x Ñ 0 so that

B(t) = lim
nÑ8

(
1 +

r
100n

)nt
P = lim

xÑ0
(1 + x)a/xP = eaP = ert/100P (2.4.9)

If you haven’t seen (2.4.8) before, that’s OK. In the following example, we rederive (2.4.9)
using a differential equation instead of (2.4.8).

Example 2.4.19

Suppose, again, that you deposit $P in a bank account at time t = 0, and that the account
pays r% interest per year compounded n times per year, and denote by B(t) the balance
at time t. Suppose that you have just received an interest payment at time t. Then the next
interest payment will be made at time t + 1

n and will be 1
n ˆ r

100 ˆ B(t) = r
100n B(t). So,

calling 1
n = h,

B(t + h) = B(t) +
r

100
B(t)h or

B(t + h)´ B(t)
h

=
r

100
B(t)

To get continuous compounding we take the limit n Ñ 8 or, equivalently, h Ñ 0. This
gives

lim
hÑ0

B(t + h)´ B(t)
h

=
r

100
B(t) or

dB
dt

(t) =
r

100
B(t)

By Theorem 2.4.4, with a = r
100 and b = 0, (or Corollary 2.4.9 with k = ´ r

100 ),

B(t) = ert/100B(0) = ert/100P

once again.
Example 2.4.19

29 There are banks that advertise continuous compounding. You can find some by googling “interest is
compounded continuously and paid”
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Example 2.4.20

(a) A bank advertises that it compounds interest continuously and that it will double your
money in ten years. What is the annual interest rate?

(b) A bank advertises that it compounds monthly and that it will double your money in
ten years. What is the annual interest rate?

Solution. (a) Let the interest rate be r% per year. If you start with $P, then after t years,
you have Pert/100, under continuous compounding. This was (2.4.9). After 10 years you
have Per/10. This is supposed to be 2P, so

Per/10 = 2P ùñ er/10 = 2 ùñ r
10

= log 2 ùñ r = 10 log 2 = 6.93%

(b) Let the interest rate be r% per year. If you start with $P, then after t years, you have
P
(
1 + r

100ˆ12

)12t, under monthly compounding. This was (2.4.7). After 10 years you have

P
(
1 + r

100ˆ12

)120. This is supposed to be 2P, so

P
(
1 +

r
100ˆ 12

)120
= 2P ùñ (

1 +
r

1200
)120

= 2 ùñ 1 +
r

1200
= 21/120

ùñ r
1200

= 21/120 ´ 1 ùñ r = 1200
(
21/120 ´ 1

)
= 6.95%

Example 2.4.20

Example 2.4.21

A 25 year old graduate of UBC is given $50,000 which is invested at 5% per year com-
pounded continuously. The graduate also intends to deposit money continuously at the
rate of $2000 per year.

(a) Find a differential equation that A(t) obeys, assuming that the interest rate remains
5%.

(b) Determine the amount of money in the account when the graduate is 65.

(c) At age 65, the graduate will start withdrawing money continuously at the rate of W
dollars per year. If the money must last until the person is 85, what is the largest
possible value of W?

Solution. (a) Let’s consider what happens to A over a very short time interval from time
t to time t + ∆t. At time t the account balance is A(t). During the (really short) specified
time interval the balance remains very close to A(t) and so earns interest of 5

100 ˆ∆tˆA(t).
During the same time interval, the graduate also deposits an additional $2000∆t. So

A(t + ∆t) « A(t) + 0.05A(t)∆t + 2000∆t ùñ A(t + ∆t)´ A(t)
∆t

« 0.05A(t) + 2000
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In the limit ∆t Ñ 0, the approximation becomes exact and we get

dA
dt

= 0.05A + 2000

(b) The amount of money at time t obeys

dA
dt

= 0.05A(t) + 2,000 = 0.05
(

A(t) + 40,000
)

So by Theorem 2.4.4 (with a = 0.05 and b = ´40,000),

A(t) =
(

A(0) + 40,000
)
e0.05t ´ 40,000

At time 0 (when the graduate is 25), A(0) = 50,000, so the amount of money at time t is

A(t) = 90,000 e0.05t ´ 40, 000

In particular, when the graduate is 65 years old, t = 40 and

A(40) = 90,000 e0.05ˆ40 ´ 40, 000 = $625,015.05

(c) When the graduate stops depositing money and instead starts withdrawing money at
a rate W, the equation for A becomes

dA
dt

= 0.05A´W = 0.05(A´ 20W)

assuming that the interest rate remains 5%. This time, Theorem 2.4.4 (with a = 0.05 and
b = 20W) gives

A(t) =
(

A(0)´ 20W
)
e0.05t + 20W

If we now reset our clock so that t = 0 when the graduate is 65, A(0) = 625, 015.05. So the
amount of money at time t is

A(t) = 20W + e0.05t(625, 015.05´ 20W)

We want the account to be depleted when the graduate is 85. So, we want A(20) = 0. This
is the case if

20W + e0.05ˆ20(625, 015.05´ 20W) = 0 ùñ 20W + e(625, 015.05´ 20W) = 0
ùñ 20(e´ 1)W = 625, 015.05e

ùñ W =
625, 015.05e

20(e´ 1)
= $49, 437.96

Example 2.4.21
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Chapter 3

You have probably learned about Taylor polynomials1 and, in particular, that

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨+ xn

n!
+ En(x)

where En(x) is the error introduced when you approximate ex by its Taylor polynomial of
degree n. You may have even seen a formula for En(x). We are now going to ask what
happens as n goes to infinity? Does the error go to zero, giving an exact formula for ex?
We shall later see that it does and that

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨ =

8ÿ

n=0

xn

n!

At this point we haven’t defined, or developed any understanding of, this infinite sum.
How do we compute the sum of an infinite number of terms? Indeed, when does a sum
of an infinite number of terms even make sense? Clearly we need to build up foundations
to deal with these ideas. Along the way we shall also see other functions for which the
corresponding error obeys lim

nÑ8
En(x) = 0 for some values of x and not for other values of

x.
To motivate the next section, consider using the above formula with x = 1 to compute

the number e:

e = 1 + 1 +
1
2!

+
1
3!

+ ¨ ¨ ¨ =
8ÿ

n=0

1
n!

As we stated above, we don’t yet understand what to make of this infinite number of
terms, but we might try to sneak up on it by thinking about what happens as we take

1 Now would be an excellent time to quickly read over your notes on the topic.
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more and more terms.

1 term 1 = 1
2 terms 1 + 1 = 2

3 terms 1 + 1 +
1
2
= 2.5

4 terms 1 + 1 +
1
2
+

1
6
= 2.666666 . . .

5 terms 1 + 1 +
1
2
+

1
6
+

1
24

= 2.708333 . . .

6 terms 1 + 1 +
1
2
+

1
6
+

1
24

+
1

120
= 2.716666 . . .

By looking at the infinite sum in this way, we naturally obtain a sequence of numbers

t 1 , 2 , 2.5 , 2.666666 , . . . , 2.708333 , . . . , 2.716666 , . . . , ¨ ¨ ¨ u.

The key to understanding the original infinite sum is to understand the behaviour of this
sequence of numbers — in particularly, what do the numbers do as we go further and
further? Does it settle down 2 to a given limit?

3.1Ĳ Sequences

In the discussion above we used the term “sequence” without giving it a precise mathe-
matical meaning. Let us rectify this now.

A sequence is a list of infinitely3 many numbers with a specified order. It is
denoted  

a1, a2, a3, ¨ ¨ ¨ , an, ¨ ¨ ¨ ( or
 

an
(

or
 

an
(8

n=1

Definition 3.1.1.

We will often specify a sequence by writing it more explicitly, like

!
an = f (n)

)8
n=1

where f (n) is some function from the natural numbers to the real numbers.

2 You will notice a great deal of similarity between the results of the next section and “limits at infinity”
which was covered last term.

3 For the more pedantic reader, here we mean a countably infinite list of numbers. The interested (pedan-
tic or otherwise) reader should look up countable and uncountable sets.
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Example 3.1.2

Here are three sequences.

!
1,

1
2

,
1
3

, ¨ ¨ ¨ ,
1
n

, ¨ ¨ ¨
)

or
!

an =
1
n

)8
n=1

!
1, 2, 3, ¨ ¨ ¨ , n, ¨ ¨ ¨

)
or

!
an = n

)8
n=1

!
1, ´1, 1, ´1, ¨ ¨ ¨ , (´1)n´1, ¨ ¨ ¨

)
or

!
an = (´1)n´1

)8
n=1

It is not necessary that there be a simple explicit formula for the nth term of a sequence.
For example the decimal digits of π is a perfectly good sequence

 
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, ¨ ¨ ¨ (

but there is no simple formula4 for the nth digit.
Example 3.1.2

Our primary concern with sequences will be the behaviour of an as n tends to infinity and,
in particular, whether or not an “settles down” to some value as n tends to infinity.

A sequence
 

an
(8

n=1 is said to converge to the limit A if an approaches A as n
tends to infinity. If so, we write

lim
nÑ8

an = A or an Ñ A as n Ñ 8

A sequence is said to converge if it converges to some limit. Otherwise it is said
to diverge.

Definition 3.1.3.

The reader should immediately recognise the similarity with limits at infinity

lim
xÑ8

f (x) = L if f (x)Ñ L as x Ñ 8

Example 3.1.4

Three of the four sequences in Example 3.1.2 diverge:

• The sequence
 

an = n
(8

n=1 diverges because an grows without bound, rather than
approaching some finite value, as n tends to infinity.

4 There is, however, a remarkable result due to Bailey, Borwein and Plouffe that can be used to compute
the nth binary digit of π (i.e. writing π in base 2 rather than base 10) without having to work out the
preceding digits.

268



SEQUENCE AND SERIES 3.1 SEQUENCES

• The sequence
 

an = (´1)n´1(8
n=1 diverges because an oscillates between +1 and ´1

rather than approaching a single value as n tends to infinity.
• The sequence of the decimal digits of π also diverges, though the proof that this is

the case is a bit beyond us right now5.

The other sequence in Example 3.1.2 has an = 1
n . As n tends to infinity, 1

n tends to zero. So

lim
nÑ8

1
n
= 0

Example 3.1.4

Example 3.1.5
(

lim
nÑ8

n
2n+1

)

Here is a little less trivial example. To study the behaviour of n
2n+1 as n Ñ 8, it is a good

idea to write it as
n

2n + 1
=

1
2 + 1

n

As n Ñ 8, the 1
n in the denominator tends to zero, so that the denominator 2 + 1

n tends to
2 and 1

2+ 1
n

tends to 1
2 . So

lim
nÑ8

n
2n + 1

= lim
nÑ8

1
2 + 1

n
=

1
2

Example 3.1.5

Notice that in this last example, we are really using techniques that we used before to
study infinite limits like lim

xÑ8
f (x). This experience can be easily transferred to dealing

with lim
nÑ8

an limits by using the following result.

If
lim
xÑ8

f (x) = L

and if an = f (n) for all positive integers n, then

lim
nÑ8

an = L

Theorem 3.1.6.

5 If the digits of π were to converge, then π would have to be a rational number. The irrationality of π
(that it cannot be written as a fraction) was first proved by Lambert in 1761. Niven’s 1947 proof is more
accessible and we invite the interested reader to use their favourite search engine to find step–by–step
guides to that proof.
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Example 3.1.7
(

lim
nÑ8

e´n
)

Set f (x) = e´x. Then e´n = f (n) and

since lim
xÑ8

e´x = 0 we know that lim
nÑ8

e´n = 0

Example 3.1.7

The bulk of the rules for the arithmetic of limits of functions that you already know also
apply to the limits of sequences. That is, the rules you learned to work with limits such as
lim
xÑ8

f (x) also apply to limits like lim
nÑ8

an.

Let A, B and C be real numbers and let the two sequences
 

an
(8

n=1 and
 

bn
(8

n=1
converge to A and B respectively. That is, assume that

lim
nÑ8

an = A lim
nÑ8

bn = B

Then the following limits hold.

(a) lim
nÑ8

[
an + bn

]
= A + B

(The limit of the sum is the sum of the limits.)

(b) lim
nÑ8

[
an ´ bn

]
= A´ B

(The limit of the difference is the difference of the limits.)

(c) lim
nÑ8

Can = CA.

(d) lim
nÑ8

an bn = A B
(The limit of the product is the product of the limits.)

(e) If B ‰ 0 then lim
nÑ8

an

bn
=

A
B

(The limit of the quotient is the quotient of the limits provided the limit of the
denominator is not zero.)

Theorem 3.1.8 (Arithmetic of limits).

We use these rules to evaluate limits of more complicated sequences in terms of the
limits of simpler sequences — just as we did for limits of functions.

Example 3.1.9
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Combining Examples 3.1.5 and 3.1.7,

lim
nÑ8

[ n
2n + 1

+ 7e´n
]
= lim

nÑ8

n
2n + 1

+ lim
nÑ8

7e´n by Theorem 3.1.8.a

= lim
nÑ8

n
2n + 1

+ 7 lim
nÑ8

e´n by Theorem 3.1.8.c

=
1
2
+ 7 ¨ 0 by Examples 3.1.5 and 3.1.7

=
1
2

Example 3.1.9

There is also a squeeze theorem for sequences.

If an ď cn ď bn for all natural numbers n, and if

lim
nÑ8

an = lim
nÑ8

bn = L

then
lim

nÑ8
cn = L

Theorem 3.1.10 (Squeeze theorem).

Example 3.1.11

In this example we use the squeeze theorem to evaluate

lim
nÑ8

[
1 +

πn

n

]

where πn is the nth decimal digit of π. That is,

π1 = 3 π2 = 1 π3 = 4 π4 = 1 π5 = 5 π6 = 9 ¨ ¨ ¨
We do not have a simple formula for πn. But we do know that

0 ď πn ď 9 ùñ 0 ď πn

n
ď 9

n
ùñ 1 ď 1 +

πn

n
ď 1 +

9
n

and we also know that

lim
nÑ8

1 = 1 lim
nÑ8

[
1 +

9
n

]
= 1

So the squeeze theorem with an = 1, bn = 1 + πn
n , and cn = 1 + 9

n gives

lim
nÑ8

[
1 +

πn

n

]
= 1
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Example 3.1.11

Finally, recall that we can compute the limit of the composition of two functions using
continuity. In the same way, we have the following result:

If lim
nÑ8

an = L and if the function g(x) is continuous at L, then

lim
nÑ8

g(an) = g(L)

Theorem 3.1.12 (Continuous functions of limits).

Example 3.1.13
(

lim
nÑ8

sin πn
2n+1

)

Write sin πn
2n+1 = g

( n
2n+1

)
with g(x) = sin(πx). We saw, in Example 3.1.5 that

lim
nÑ8

n
2n + 1

=
1
2

Since g(x) = sin(πx) is continuous at x = 1
2 , which is the limit of n

2n+1 , we have

lim
nÑ8

sin
πn

2n + 1
= lim

nÑ8
g
( n

2n + 1

)
= g

(1
2

)
= sin

π

2
= 1

Example 3.1.13

With this introduction to sequences and some tools to determine their limits, we can
now return to the problem of understanding infinite sums.

3.2Ĳ Series

A series is a sum

a1 + a2 + a3 + ¨ ¨ ¨+ an + ¨ ¨ ¨
of infinitely many terms. In summation notation, it is written

8ÿ

n=1

an

You already have a lot of experience with series, though you might not realise it. When
you write a number using its decimal expansion you are really expressing it as a series.
Perhaps the simplest example of this is the decimal expansion of 1

3 :

1
3
= 0.3333 ¨ ¨ ¨
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Recall that the expansion written in this way actually means

0.333333 ¨ ¨ ¨ = 3
10

+
3

100
+

3
1000

+
3

10000
+ ¨ ¨ ¨ =

8ÿ

n=1

3
10n

The summation index n is of course a dummy index. You can use any symbol you like
(within reason) for the summation index.

8ÿ

n=1

3
10n =

8ÿ

i=1

3
10i =

8ÿ

j=1

3
10j =

8ÿ

`=1

3
10`

A series can be expressed using summation notation in many different ways. For example
the following expressions all represent the same series:

8ÿ

n=1

3
10n =

n=1hkkikkj
3
10

+

n=2hkkikkj
3

100
+

n=3hkkikkj
3

1000
+ ¨ ¨ ¨

8ÿ

j=2

3
10j´1 =

j=2hkkikkj
3
10

+

j=3hkkikkj
3

100
+

j=4hkkikkj
3

1000
+ ¨ ¨ ¨

8ÿ

`=0

3
10`+1 =

`=0hkkikkj
3
10

+

`=1hkkikkj
3

100
+

`=3hkkikkj
3

1000
+ ¨ ¨ ¨

3
10

+
8ÿ

n=2

3
10n =

3
10

+

n=2hkkikkj
3

100
+

n=3hkkikkj
3

1000
+ ¨ ¨ ¨

We can get from the first line to the second line by substituting n = j´ 1 — don’t forget to
also change the limits of summation (so that n = 1 becomes j´ 1 = 1 which is rewritten
as j = 2). To get from the first line to the third line, substitute n = ` + 1 everywhere,
including in the limits of summation (so that n = 1 becomes `+ 1 = 1 which is rewritten
as ` = 0).

Whenever you are in doubt as to what series a summation notation expression repre-
sents, it is a good habit to write out the first few terms, just as we did above.

Of course, at this point, it is not clear whether the sum of infinitely many terms adds up
to a finite number or not. In order to make sense of this we will recast the problem in terms
of the convergence of sequences (hence the discussion of the previous section). Before we
proceed more formally let us illustrate the basic idea with a few simple examples.

Example 3.2.1

(
8ÿ

n=1

3
10n

)

As we have just seen above the series
ř8

n=1
3

10n is

8ÿ

n=1

3
10n =

n=1hkkikkj
3

10
+

n=2hkkikkj
3

100
+

n=3hkkikkj
3

1000
+ ¨ ¨ ¨
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Notice that the nth term in that sum is

3ˆ 10´n = 0.

n´1 zeroeshkkikkj
00 ¨ ¨ ¨ 0 3

So the sum of the first 5, 10, 15 and 20 terms in that series are

5ÿ

n=1

3
10n = 0.33333

10ÿ

n=1

3
10n = 0.3333333333

15ÿ

n=1

3
10n = 0.333333333333333

20ÿ

n=1

3
10n = 0.33333333333333333333

It sure looks like that, as we add more and more terms, we get closer and closer to 0.3̇ = 1
3 .

So it is very reasonable6 to define
ř8

n=1
3

10n to be 1
3 .

Example 3.2.1

Example 3.2.2

(
8ÿ

n=1

1 and
ř8

n=1(´1)n

)

Every term in the series
ř8

n=1 1 is exactly 1. So the sum of the first N terms is exactly N.
As we add more and more terms this grows unboundedly. So it is very reasonable to say
that the series

ř8
n=1 1 diverges.

The series

8ÿ

n=1

(´1)n =

n=1hkkikkj
(´1) +

n=2hkkikkj
1 +

n=3hkkikkj
(´1) +

n=4hkkikkj
1 +

n=5hkkikkj
(´1) + ¨ ¨ ¨

So the sum of the first N terms is 0 if N is even and ´1 if N is odd. As we add more and
more terms from the series, the sum alternates between 0 and ´1 for ever and ever. So the
sum of all infinitely many terms does not make any sense and it is again reasonable to say
that the series

ř8
n=1(´1)n diverges.

Example 3.2.2

In the above examples we have tried to understand the series by examining the sum
of the first few terms and then extrapolating as we add in more and more terms. That is,
we tried to sneak up on the infinite sum by looking at the limit of (partial) sums of the
first few terms. This approach can be made into a more formal rigorous definition. More
precisely, to define what is meant by the infinite sum

ř8
n=1 an, we approximate it by the

sum of its first N terms and then take the limit as N tends to infinity.

6 Of course we are free to define the series to be whatever we want. The hard part is defining it to be
something that makes sense and doesn’t lead to contradictions. We’ll get to a more systematic definition
shortly.
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The Nth partial sum of the series
ř8

n=1 an is the sum of its first N terms

SN =
Nÿ

n=1

an.

The partial sums form a sequence
 

SN
(8

N=1. If this sequence of partial sums
converges SN Ñ S as N Ñ 8 then we say that the series

ř8
n=1 an converges to S

and we write
8ÿ

n=1

an = S

If the sequence of partial sums diverges, we say that the series diverges.

Definition 3.2.3.

Example 3.2.4 (Geometric Series)

Let a and r be any two fixed real numbers with a ‰ 0. The series

a + ar + ar2 + ¨ ¨ ¨+ arn + ¨ ¨ ¨ =
8ÿ

n=0

arn

is called the geometric series with first term a and ratio r.
Notice that we have chosen to start the summation index at n = 0. That’s fine. The

first7 term is the n = 0 term, which is ar0 = a. The second term is the n = 1 term,
which is ar1 = ar. And so on. We could have also written the series

ř8
n=1 arn´1. That’s

exactly the same series — the first term is arn´1
ˇ̌
n=1 = ar1´1 = a, the second term is

arn´1
ˇ̌
n=2 = ar2´1 = ar, and so on8. Regardless of how we write the geometric series, a is

the first term and r is the ratio between successive terms.
Geometric series have the extremely useful property that there is a very simple formula

for their partial sums. Denote the partial sum by

SN =
Nÿ

n=0

arn = a + ar + ar2 + ¨ ¨ ¨+ arN.

7 It is actually quite common in computer science to think of 0 as the first integer. In that context, the set
of natural numbers is defined to contain 0:

N = t0, 1, 2, . . . u

while the notation

Z+ = t1, 2, 3, . . . u

is used to denote the (strictly) positive integers. Remember that in this text, as is more standard in
mathematics, we define the set of natural numbers to be the set of (strictly) positive integers.

8 This reminds the authors of the paradox of Hilbert’s hotel. The hotel with an infinite number of rooms
is completely full, but can always accommodate one more guest. The interested reader should use their
favourite search engine to find more information on this.
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The secret to evaluating this sum is to see what happens when we multiply it by r:

rSN = r
(
a + ar + ar2 + ¨ ¨ ¨+ arN)

= ar + ar2 + ar3 + ¨ ¨ ¨+ arN+1

Notice that this is almost the same9 as SN. The only differences are that the first term, a, is
missing and one additional term, arN+1, has been tacked on the end. So

SN = a + ar + ar2 + ¨ ¨ ¨+ arN

rSN = ar + ar2 + ¨ ¨ ¨+ arN + arN+1

Hence taking the difference of these expressions cancels almost all the terms:

(1´ r)SN = a´ arN+1 = a(1´ rN+1)

Provided r ‰ 1 we can divide both side by 1´ r to isolate SN:

SN = a ¨ 1´ rN+1

1´ r
.

On the other hand, if r = 1, then

SN = a + a + ¨ ¨ ¨+ aloooooooomoooooooon
N+1 terms

= a(N + 1)

So in summary:

SN =

$
&
%

a 1´rN+1

1´r if r ‰ 1

a(N + 1) if r = 1
(3.2.1)

Now that we have this expression we can determine whether or not the series con-
verges. If |r| ă 1, then rN+1 tends to zero as N Ñ 8, so that SN converges to a

1´r as N Ñ 8
and

8ÿ

n=0

arn =
a

1´ r
provided |r| ă 1. (3.2.2)

On the other hand if |r| ě 1, SN diverges. To understand this divergence, consider the
following 4 cases:

• If r ą 1, then rN grows to8 as N Ñ 8.

• If r ă ´1, then the magnitude of rN grows to8, and the sign of rN oscillates between
+ and ´, as N Ñ 8.

• If r = +1, then N + 1 grows to8 as N Ñ 8.

• If r = ´1, then rN just oscillates between +1 and ´1 as N Ñ 8.

9 One can find similar properties of other special series, that allow us, with some work, to cancel many
terms in the partial sums. We will shortly see a good example of this. The interested reader should look
up “creative telescoping” to see how this idea might be used more generally, though it is somewhat
beyond this course.
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In each case the sequence of partial sums does not converge and so the series does not
converge.

Here are some sketches of the graphs of 1
1´r and SN, 0 ď N ď 5, for a = 1 and

´1 ď r ă 1.

r

y

1´1

1

2

3

4

5

6

7

y “ S0 “ 1

y “ S1 “ 1 ` r

y “ S2 “ 1 ` r ` r2

y “ S3 “ 1 ` r ` r2 ` r3

y “ S4 “ 1 ` r ` r2 ` r3 ` r4

y “ S5 “ 1 ` r ` r2 ` r3 ` r4 ` r5

y “ 1
1´r

In these sketches we see that

• when 0 ă r ă 1, and also when´1 ă r ă 0 with N odd, we have SN = 1´rN+1

1´r ă 1
1´r .

On the other hand, when ´1 ă r ă 0 with N even, we have SN = 1´rN+1

1´r ą 1
1´r .

• When 0 ă |r| ă 1, SN = 1´rN+1

1´r gets closer and closer to 1
1´r as N increases.

• When r = ´1, SN just alternates between 0, when N is odd, and 1, when N is even.

Example 3.2.4

Now that we know how to handle geometric series let’s return to Example 3.2.1.

Example 3.2.5 (Decimal Expansions)

The decimal expansion

0.3333 ¨ ¨ ¨ = 3
10

+
3

100
+

3
1000

+
3

10000
+ ¨ ¨ ¨ =

8ÿ

n=1

3
10n
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is a geometric series with the first term a = 3
10 and the ratio r = 1

10 . So, by Example 3.2.4,

0.3333 ¨ ¨ ¨ =
8ÿ

n=1

3
10n =

3/10

1´ 1/10
=

3/10

9/10
=

1
3

just as we would have expected.
We can push this idea further. Consider the repeating decimal expansion:

0.16161616 ¨ ¨ ¨ = 16
100

+
16

10000
+

16
1000000

+ ¨ ¨ ¨

This is another geometric series with the first term a = 16
100 and the ratio r = 1

100 . So, by
Example 3.2.4,

0.16161616 ¨ ¨ ¨ =
8ÿ

n=1

16
100n =

16/100

1´ 1/100
=

16/100

99/100
=

16
99

again, as expected. In this way any periodic decimal expansion converges to a ratio of two
integers — that is, to a rational number10.

Here is another more complicated example.

0.1234343434 ¨ ¨ ¨ = 12
100

+
34

10000
+

34
1000000

+ ¨ ¨ ¨

=
12

100
+

8ÿ

n=2

34
100n

=
12

100
+

34
10000

1
1´ 1/100

by Example 3.2.4 with a =
34

1002 and r =
1

100

=
12

100
+

34
10000

100
99

=
1222
9900

Example 3.2.5

Typically, it is quite difficult to write down a neat closed form expression for the partial
sums of a series. Geometric series are very notable exceptions to this. Another family of
series for which we can write down partial sums is called “telescoping series”. These
series have the desirable property that many of the terms in the sum cancel each other out
rendering the partial sums quite simple.

Example 3.2.6 (Telescoping Series)

In this example, we are going to study the series
ř8

n=1
1

n(n+1) . This is a rather artificial se-

10 We have included a (more) formal proof of this fact in the optional §3.7 at the end of this chapter.
Proving that a repeating decimal expansion gives a rational number isn’t too hard. Proving the converse
— that every rational number has a repeating decimal expansion is a little trickier, but we also do that
in the same optional section.
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ries11 that has been rigged to illustrate a phenomenon called “telescoping”. Notice that
the nth term can be rewritten as

1
n(n + 1)

=
1
n
´ 1

n + 1

and so we have

an = bn ´ bn+1 where bn =
1
n

.

Because of this we get big cancellations when we add terms together. This allows us to
get a simple formula for the partial sums of this series.

SN =
1

1 ¨ 2 +
1

2 ¨ 3 +
1

3 ¨ 4 + ¨ ¨ ¨+ 1
N ¨ (N + 1)

=
(1

1
´ 1

2

)
+
(1

2
´ 1

3

)
+
(1

3
´ 1

4

)
+ ¨ ¨ ¨+

( 1
N
´ 1

N + 1

)

The second term of each bracket exactly cancels the first term of the following bracket. So
the sum “telescopes” leaving just

SN = 1´ 1
N + 1

and we can now easily compute

8ÿ

n=1

1
n(n + 1)

= lim
NÑ8

SN = lim
NÑ8

(
1´ 1

N + 1

)
= 1

Example 3.2.6

More generally, if we can write

an = bn ´ bn+1

for some other known sequence bn, then the series telescopes and we can compute partial
sums using

Nÿ

n=1

an =
Nÿ

n=1

(bn ´ bn+1)

=
Nÿ

n=1

bn ´
Nÿ

n=1

bn+1

= b1 ´ bN+1.

11 Well. . . this sort of series does show up when you start to look at the Maclaurin polynomial of functions
like (1´ x) log(1´ x). So it is not totally artificial. At any rate, it illustrates the basic idea of telescoping
very nicely, and the idea of “creative telescoping” turns out to be extremely useful in the study of series
— though it is well beyond the scope of this course.
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and hence

8ÿ

n=1

an = b1 ´ lim
NÑ8

bN+1

provided this limit exists. Often lim
NÑ8

bN+1 = 0 and then
8ř

n=1
an = b1. But this does not

always happen. Here is an example.

Example 3.2.7 (A Divergent Telescoping Series)

In this example, we are going to study the series
8ř

n=1
log
(
1+ 1

n
)
. Let’s start by just writing

out the first few terms.

8ÿ

n=1

log
(

1 +
1
n

)
=

n=1hkkkkkkikkkkkkj

log
(

1 +
1
1

)
+

n=2hkkkkkkikkkkkkj

log
(

1 +
1
2

)
+

n=3hkkkkkkikkkkkkj

log
(

1 +
1
3

)
+

n=4hkkkkkkikkkkkkj

log
(

1 +
1
4

)
+ ¨ ¨ ¨

= log(2) + log
(3

2

)
+ log

(4
3

)
+ log

(5
4

)
+ ¨ ¨ ¨

This is pretty suggestive since

log(2) + log
(3

2

)
+ log

(4
3

)
+ log

(5
4

)
= log

(
2ˆ 3

2
ˆ 4

3
ˆ 5

4

)
= log(5)

So let’s try using this idea to compute the partial sum SN:

SN =
Nÿ

n=1

log
(

1 +
1
n

)

=

n=1hkkkkkkikkkkkkj

log
(

1 +
1
1

)
+

n=2hkkkkkkikkkkkkj

log
(

1 +
1
2

)
+

n=3hkkkkkkikkkkkkj

log
(

1 +
1
3

)
+ ¨ ¨ ¨+

n=N´1hkkkkkkkkkikkkkkkkkkj

log
(

1 +
1

N ´ 1

)
+

n=Nhkkkkkkikkkkkkj

log
(

1 +
1
N

)

= log(2) + log
(3

2

)
+ log

(4
3

)
+ ¨ ¨ ¨+ log

( N
N ´ 1

)
+ log

(N + 1
N

)

= log
(

2ˆ 3
2
ˆ 4

3
ˆ ¨ ¨ ¨ ˆ N

N ´ 1
ˆ N + 1

N

)

= log(N + 1)

Uh oh!

lim
NÑ8

SN = lim
NÑ8

log(N + 1) = +8

This telescoping series diverges! There is an important lesson here. Telescoping series can
diverge. They do not always converge to b1.

Example 3.2.7
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As was the case for limits, differentiation and antidifferentiation, we can compute more
complicated series in terms of simpler ones by understanding how series interact with
the usual operations of arithmetic. It is, perhaps, not so surprising that there are simple
rules for addition and subtraction of series and for multiplication of a series by a constant.
Unfortunately there are no simple general rules for computing products or ratios of series.

Let C, S and T be real numbers and let the two series
ř8

n=1 an and
ř8

n=1 bn con-
verge to S and T respectively. That is, assume that

8ÿ

n=1

an = S
8ÿ

n=1

bn = T

Then the following hold.

(a)
8ÿ

n=1

[
an + bn

]
= S + T and

8ÿ

n=1

[
an ´ bn

]
= S´ T

(b)
8ÿ

n=1

Can = CS.

Theorem 3.2.8 (Arithmetic of series).

Example 3.2.9

As a simple example of how we use the arithmetic of series Theorem 3.2.8, consider

8ÿ

n=1

[ 1
7n +

2
n(n + 1)

]

We recognize that we know how to compute parts of this sum. We know that

8ÿ

n=1

1
7n =

1/7

1´ 1/7
=

1
6

because it is a geometric series (Example 3.2.4) with first term a = 1
7 and ratio r = 1

7 . And
we know that

8ÿ

n=1

1
n(n + 1)

= 1

by Example 3.2.6. We can now use Theorem 3.2.8 to build the specified “complicated”
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series out of these two “simple” pieces.

8ÿ

n=1

[ 1
7n +

2
n(n + 1)

]
=

8ÿ

n=1

1
7n +

8ÿ

n=1

2
n(n + 1)

by Theorem 3.2.8.a

=
8ÿ

n=1

1
7n + 2

8ÿ

n=1

1
n(n + 1)

by Theorem 3.2.8.b

=
1
6
+ 2 ¨ 1 =

13
6

Example 3.2.9

3.3Ĳ Convergence Tests

It is very common to encounter series for which it is difficult, or even virtually impossi-
ble, to determine the sum exactly. Often you try to evaluate the sum approximately by
truncating it, i.e. having the index run only up to some finite N, rather than infinity. But
there is no point in doing so if the series diverges1213. So you like to at least know if the
series converges or diverges. Furthermore you would also like to know what error is in-
troduced when you approximate

ř8
n=1 an by the “truncated series”

řN
n=1 an. That’s called

the truncation error. There are a number of “convergence tests” to help you with this.

3.3.1 §§ The Divergence Test

Our first test is very easy to apply, but it is also rarely useful. It just allows us to quickly
reject some “trivially divergent” series. It is based on the observation that

• by definition, a series
ř8

n=1 an converges to S when the partial sums SN =
řN

n=1 an
converge to S.

12 The authors should be a little more careful making such a blanket statement. While it is true that it
is not wise to approximate a divergent series by taking N terms with N large, there are cases when
one can get a very good approximation by taking N terms with N small! For example, the Taylor
remainder theorem shows us that when the nth derivative of a function f (x) grows very quickly with
n, Taylor polynomials of degree N, with N large, can give bad approximations of f (x), while the Taylor
polynomials of degree one or two can still provide very good approximations of f (x) when x is very
small. As an example of this, one of the triumphs of quantum electrodynamics, namely the computation
of the anomalous magnetic moment of the electron, depends on precisely this. A number of important
quantities were predicted using the first few terms of divergent power series. When those quantities
were measured experimentally, the predictions turned out to be incredibly accurate.

13 The field of asymptotic analysis often makes use of the first few terms of divergent series to generate ap-
proximate solutions to problems; this, along with numerical computations, is one of the most important
techniques in applied mathematics. Indeed, there is a whole wonderful book (which, unfortunately, is
too advanced for most Calculus 2 students) devoted to playing with divergent series called, unsurpris-
ingly, “Divergent Series” by G.H. Hardy. This is not to be confused with the “Divergent” series by
V. Roth set in a post-apocalyptic dystopian Chicago. That latter series diverges quite dramatically from
mathematical topics, while the former does not have a film adaptation (yet).
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• Then, as N Ñ 8, we have SN Ñ S and, because N ´ 1 Ñ 8 too, we also have
SN´1 Ñ S.

• So aN = SN ´ SN´1 Ñ S´ S = 0.

This tells us that, if we already know that a given series
ř

an is convergent, then the nth

term of the series, an, must converge to 0 as n tends to infinity. In this form, the test is not
so useful. However the contrapositive14 of the statement is a useful test for divergence.

If the sequence
 

an
(8

n=1 fails to converge to zero as n Ñ 8, then the series
ř8

n=1 an
diverges.

Theorem 3.3.1 (Divergence Test).

Example 3.3.2

Let an = n
n+1 . Then

lim
nÑ8

an = lim
nÑ8

n
n + 1

= lim
nÑ8

1
1 + 1/n

= 1 ‰ 0

So the series
ř8

n=1
n

n+1 diverges.

Example 3.3.2

The divergence test is a “one way test”. It tells us that if limnÑ8 an is nonzero,
or fails to exist, then the series

ř8
n=1 an diverges. But it tells us absolutely nothing

when limnÑ8 an = 0. In particular, it is perfectly possible for a series
ř8

n=1 an
to diverge even though limnÑ8 an = 0. An example is

ř8
n=1

1
n . We’ll show in

Example 3.3.6, below, that it diverges.

Warning 3.3.3.

Now while convergence or divergence of series like
ř8

n=1
1
n can be determined using

some clever tricks — see the optional §3.3.9 —, it would be much better to have methods

14 We have discussed the contrapositive a few times in the CLP notes, but it doesn’t hurt to discuss it
again here (or for the reader to quickly look up the relevant footnote in Section 1.3 of the CLP-1 text).
At any rate, given a statement of the form “If A is true, then B is true” the contrapositive is “If B is not
true, then A is not true”. The two statements in quotation marks are logically equivalent — if one is
true, then so is the other. In the present context we have

If (
ř

an converges) then (an converges to 0).

The contrapositive of this statement is then

If (an does not converge to 0) then (
ř

an does not converge).
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that are more systematic and rely less on being sneaky. Over the next subsections we will
discuss several methods for testing series for convergence.

Note that while these tests will tell us whether or not a series converges, they do not
(except in rare cases) tell us what the series adds up to. For example, the test we will see
in the next subsection tells us quite immediately that the series

8ÿ

n=1

1
n3

converges. However it does not tell us its value15.

3.3.2 §§ The Integral Test

In the integral test, we think of a series
ř8

n=1 an, that we cannot evaluate explicitly, as the
area of a union of rectangles, with an representing the area of a rectangle of width one
and height an. Then we compare that area with the area represented by an integral, that
we can evaluate explicitly, much as we did in Theorem 1.12.17, the comparison test for
improper integrals. We’ll start with a simple example, to illustrate the idea. Then we’ll
move on to a formulation of the test in general.

Example 3.3.4

Visualise the terms of the harmonic series
ř8

n=1
1
n as a bar graph — each term is a rectan-

gle of height 1
n and width 1. The limit of the series is then the limiting area of this union

of rectangles. Consider the sketch on the left below.

It shows that the area of the shaded columns,
ř4

n=1
1
n , is bigger than the area under the

curve y = 1
x with 1 ď x ď 5. That is

4ÿ

n=1

1
n
ě
ż 5

1

1
x

dx

15 This series converges to Apéry’s constant 1.2020569031 . . . . The constant is named for Roger Apéry
(1916–1994) who proved that this number must be irrational. This number appears in many contexts
including the following cute fact — the reciprocal of Apéry’s constant gives the probability that three
positive integers, chosen at random, do not share a common prime factor.
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If we were to continue drawing the columns all the way out to infinity, then we would
have

8ÿ

n=1

1
n
ě
ż 8

1

1
x

dx

We are able to compute this improper integral exactly:
ż 8

1

1
x

dx = lim
RÑ8

[
log |x|

]R

1
= +8

That is the area under the curve diverges to +8 and so the area represented by the
columns must also diverge to +8.

It should be clear that the above argument can be quite easily generalised. For example
the same argument holds mutatis mutandis16 for the series

8ÿ

n=1

1
n2

Indeed we see from the sketch on the right above that

Nÿ

n=2

1
n2 ď

ż N

1

1
x2 dx

and hence
8ÿ

n=2

1
n2 ď

ż 8

1

1
x2 dx

This last improper integral is easy to evaluate:
ż 8

1

1
x2 dx = lim

RÑ8

[
´1

x

]R

1

= lim
RÑ8

(
1
1
´ 1

R

)
= 1

Thus we know that
8ÿ

n=1

1
n2 = 1 +

8ÿ

n=2

1
n2 ď 2.

and so the series must converge.
Example 3.3.4

The above arguments are formalised in the following theorem.

16 Latin for “Once the necessary changes are made”. This phrase still gets used a little, but these days
mathematicians tend to write something equivalent in English. Indeed, English is pretty much the
lingua franca for mathematical publishing. Quidquid erit.
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Let N0 be any natural number. If f (x) is a function which is defined and contin-
uous for all x ě N0 and which obeys

(i) f (x) ě 0 for all x ě N0 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ě N0.

x

y a1

1

a2

2

a3

3

a4

4

y = f(x)

Then
8ÿ

n=1

an converges ðñ
ż 8

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error

0 ď
8ÿ

n=1

an ´
Nÿ

n=1

an ď
ż 8

N
f (x) dx for all N ě N0

Theorem 3.3.5 (The Integral Test).

Proof. Let I be any fixed integer with I ą N0. Then

•
ř8

n=1 an converges if and only if
ř8

n=I an converges — removing a fixed finite num-
ber of terms from a series cannot impact whether or not it converges.

• Since an ě 0 for all n ě I ą N0, the sequence of partial sums s` =
ř`

n=I an obeys
s`+1 = s` + an+1 ě s`. That is, s` increases as ` increases.

• So
 

s`
(

must either converge to some finite number or increase to infinity. That is,
either

ř8
n=I an converges to a finite number or it is +8.

aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

Look at the figure above. The shaded area in the figure is
ř8

n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and
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• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and
so on

This shaded area is smaller than the area under the curve y = f (x) for I ´ 1 ď x ă 8. So

0 ď
8ÿ

n=I

an ď
ż 8

I´1
f (x) dx

and, if the integral is finite, the sum
ř8

n=I an is finite too. Furthermore, the desired bound
on the truncation error is just the special case of this inequality with I = N + 1:

0 ď
8ÿ

n=1

an ´
Nÿ

n=1

an =
8ÿ

n=N+1

an ď
ż 8

N
f (x) dx

aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

For the “divergence case” look at the figure above. The (new) shaded area in the figure
is again

ř8
n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and
• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and

so on

This time the shaded area is larger than the area under the curve y = f (x) for I ď x ă 8.
So

8ÿ

n=I

an ě
ż 8

I
f (x) dx

and, if the integral is infinite, the sum
ř8

n=I an is infinite too.

Now that we have the integral test, it is straightforward to determine for which values
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of p the series17

8ÿ

n=1

1
np

converges.

Example 3.3.6
(

The p test:
8ř

n=1

1
np

)

Let p ą 0. We’ll now use the integral test to determine whether or not the series
ř8

n=1
1

np

(which is sometimes called the p–series) converges.

• To do so, we need a function f (x) that obeys f (n) = an = 1
np for all n bigger than

some N0. Certainly f (x) = 1
xp obeys f (n) = 1

np for all n ě 1. So let’s pick this f and
try N0 = 1. (We can always increase N0 later if we need to.)

• This function also obeys the other two conditions of Theorem 3.3.5:

(i) f (x) ą 0 for all x ě N0 = 1 and

(ii) f (x) decreases as x increases because f 1(x) = ´p 1
xp+1 ă 0 for all x ě N0 = 1.

• So the integral test tells us that the series
ř8

n=1
1

np converges if and only if the integralş8
1

dx
xp converges.

• We have already seen, in Example 1.12.8, that the integral
ş8

1
dx
xp converges if and

only if p ą 1.

So we conclude that
ř8

n=1
1

np converges if and only if p ą 1. This is sometimes called the
p–test.

• In particular, the series
ř8

n=1
1
n , which is called the harmonic series, has p = 1 and so

diverges. As we add more and more terms of this series together, the terms we add,
namely 1

n , get smaller and smaller and tend to zero, but they tend to zero so slowly
that the full sum is still infinite.

• On the other hand, the series
ř8

n=1
1

n1.000001 has p = 1.000001 ą 1 and so converges.
This time as we add more and more terms of this series together, the terms we add,
namely 1

n1.000001 , tend to zero (just) fast enough that the full sum is finite. Mind you,
for this example, the convergence takes place very slowly — you have to take a huge

17 This series, viewed as a function of p, is called the Riemann zeta function, ζ(p), or the Euler-Riemann
zeta function. It is extremely important because of its connections to prime numbers (among many
other things). Indeed Euler proved that

ζ(p) =
8ÿ

n=1

1
np =

ź

P prime

(
1´ P´p)´1

Riemann showed the connections between the zeros of this function (over complex numbers p) and
the distribution of prime numbers. Arguably the most famous unsolved problem in mathematics, the
Riemann hypothesis, concerns the locations of zeros of this function.
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number of terms to get a decent approximation to the full sum. If we approximateř8
n=1

1
n1.000001 by the truncated series

řN
n=1

1
n1.000001 , we make an error of at most

ż 8

N

dx
x1.000001 = lim

RÑ8

ż R

N

dx
x1.000001 = lim

RÑ8
´ 1

0.000001

[ 1
R0.000001 ´

1
N0.000001

]
=

106

N0.000001

This does tend to zero as N Ñ 8, but really slowly.

Example 3.3.6

We now know that the dividing line between convergence and divergence of
ř8

n=1
1

np

occurs at p = 1. We can dig a little deeper and ask ourselves how much more quickly than
1
n the nth term needs to shrink in order for the series to converge. We know that for large
x, the function log x is smaller than xa for any positive a — you can convince yourself of
this with a quick application of L’Hôpital’s rule. So it is not unreasonable to ask whether
the series

8ÿ

n=2

1
n log n

converges. Notice that we sum from n = 2 because when n = 1, n log n = 0. And we
don’t need to stop there18. We can analyse the convergence of this sum with any power of
log n.

Example 3.3.7
(
8ř

n=2

1
n(log n)p

)

Let p ą 0. We’ll now use the integral test to determine whether or not the series
8ř

n=2

1
n(log n)p

converges.

• As in the last example, we start by choosing a function that obeys f (n) = an =
1

n(log n)p for all n bigger than some N0. Certainly f (x) = 1
x(log x)p obeys f (n) =

1
n(log n)p for all n ě 2. So let’s use that f and try N0 = 2.

• Now let’s check the other two conditions of Theorem 3.3.5:

(i) Both x and log x are positive for all x ą 1, so f (x) ą 0 for all x ě N0 = 2.

(ii) As x increases both x and log x increase and so x(log x)p increases and f (x)
decreases.

• So the integral test tells us that the series
8ř

n=2

1
n(log n)p converges if and only if the

integral
ş8

2
dx

x(log x)p converges.

18 We could go even further and see what happens if we include powers of log(log(n)) and other more
exotic slow growing functions.
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• To test the convergence of the integral, we make the substitution u = log x, du = dx
x .

ż R

2

dx
x(log x)p =

ż log R

log 2

du
up

We already know that the integral
ş8

1
du
up , and hence the integral

şR
2

dx
x(log x)p , converges

if and only if p ą 1.

So we conclude that
8ř

n=2

1
n(log n)p converges if and only if p ą 1.

Example 3.3.7

3.3.3 §§ The Comparison Test

Our next convergence test is the comparison test. It is much like the comparison test
for improper integrals (see Theorem 1.12.17) and is true for much the same reasons. The
rough idea is quite simple. A sum of larger terms must be bigger than a sum of smaller
terms. So if we know the big sum converges, then the small sum must converge too. On
the other hand, if we know the small sum diverges, then the big sum must also diverge.
Formalising this idea gives the following theorem.

Let N0 be a natural number and let K ą 0.

(a) If |an| ď Kcn for all n ě N0 and
8ř

n=0
cn converges, then

8ř
n=0

an converges.

(b) If an ě Kdn ě 0 for all n ě N0 and
8ř

n=0
dn diverges, then

8ř
n=0

an diverges.

Theorem 3.3.8 (The Comparison Test).

“Proof”. We will not prove this theorem here. We’ll just observe that it is very reasonable.
That’s why there are quotation marks around “Proof”. For an actual proof see the optional
section 3.3.10.

(a) If
8ř

n=0
cn converges to a finite number and if the terms in

8ř
n=0

an are smaller than the

terms in
8ř

n=0
cn, then it is no surprise that

8ř
n=0

an converges too.

(b) If
8ř

n=0
dn diverges (i.e. adds up to8) and if the terms in

8ř
n=0

an are larger than the terms

in
8ř

n=0
dn, then of course

8ř
n=0

an adds up to8, and so diverges, too.
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The comparison test for series is also used in much the same way as is the comparison
test for improper integrals. Of course, one needs a good series to compare against, and
often the series

ř
n´p (from Example 3.3.6), for some p ą 0, turns out to be just what is

needed.

Example 3.3.9
(ř8

n=1
1

n2+2n+3

)

We could determine whether or not the series
ř8

n=1
1

n2+2n+3 converges by applying the
integral test. But it is not worth the effort19. Whether or not any series converges is de-
termined by the behaviour of the summand20 for very large n. So the first step in tackling
such a problem is to develop some intuition about the behaviour of an when n is very
large.

• Step 1: Develop intuition. In this case, when n is very large21 n2 " 2n " 3 so that
1

n2+2n+3 « 1
n2 . We already know, from Example 3.3.6, that

ř8
n=1

1
np converges if and

only if p ą 1. So
ř8

n=1
1

n2 , which has p = 2, converges, and we would expect thatř8
n=1

1
n2+2n+3 converges too.

• Step 2: Verify intuition. We can use the comparison test to confirm that this is indeed
the case. For any n ě 1, n2 + 2n + 3 ą n2, so that 1

n2+2n+3 ď 1
n2 . So the compari-

son test, Theorem 3.3.8, with an = 1
n2+2n+3 and cn = 1

n2 , tells us that
ř8

n=1
1

n2+2n+3
converges.

Example 3.3.9

Of course the previous example was “rigged” to give an easy application of the com-
parison test. It is often relatively easy, using arguments like those in Example 3.3.9, to find
a “simple” series

ř8
n=1 bn with bn almost the same as an when n is large. However it is

19 Go back and quickly scan Theorem 3.3.5; to apply it we need to show that 1
n2+2n+3 is positive and

decreasing (it is), and then we need to integrate
ş 1

x2+2x+3 dx. To do that we reread the notes on partial
fractions, then rewrite x2 + 2x + 3 = (x + 1)2 + 2 and so

ż 8

1

1
x2 + 2x + 3

dx =

ż 8

1

1
(x + 1)2 + 2

dx ¨ ¨ ¨

and then arctangent appears, etc etc. Urgh. Okay — let’s go back to the text now and see how to avoid
this.

20 To understand this consider any series
ř8

n=1 an. We can always cut such a series into two parts — pick
some huge number like 106. Then

8ÿ

n=1

an =
106ÿ

n=1

an +
8ÿ

n=106+1

an

The first sum, though it could be humongous, is finite. So the left hand side,
ř8

n=1 an, is a well–defined
finite number if and only if

ř8
n=106+1 an, is a well–defined finite number. The convergence or divergence

of the series is determined by the second sum, which only contains an for “large” n.
21 The symbol “"” means “much larger than”. Similarly, the symbol “!” means “much less than”. Good

shorthand symbols can be quite expressive.
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pretty rare that an ď bn for all n. It is much more common that an ď Kbn for some constant
K. This is enough to allow application of the comparison test. Here is an example.

Example 3.3.10
(ř8

n=1
n+cos n
n3´1/3

)

As in the previous example, the first step is to develop some intuition about the behaviour
of an when n is very large.

• Step 1: Develop intuition. When n is very large,

˝ n " | cos n| so that the numerator n + cos n « n and

˝ n3 " 1/3 so that the denominator n3 ´ 1/3 « n3.

So when n is very large

an =
n + cos n
n3 ´ 1/3

« n
n3 =

1
n2

We already know from Example 3.3.6, with p = 2, that
ř8

n=1
1

n2 converges, so we
would expect that

ř8
n=1

n+cos n
n3´1/3

converges too.

• Step 2: Verify intuition. We can use the comparison test to confirm that this is indeed
the case. To do so we need to find a constant K such that |an| = |n+cos n|

n3´1/3 = n+cos n
n3´1/3 is

smaller than K
n2 for all n. A good way22 to do that is to factor the dominant term (in

this case n) out of the numerator and also factor the dominant term (in this case n3)
out of the denominator.

an =
n + cos n
n3 ´ 1/3

=
n
n3

1 + cos n
n

1´ 1
3n3

=
1
n2

1 + cos n
n

1´ 1
3n3

So now we need to find a constant K such that 1+(cos n)/n
1´1/3n3 is smaller than K for all n ě 1.

˝ First consider the numerator 1 + (cos n) 1
n . For all n ě 1

*
1
n ď 1 and

* | cos n| ď 1

So the numerator 1 + (cos n) 1
n is always smaller than 1 + (1)1

1 = 2.

˝ Next consider the denominator 1´ 1/3n3.

* When n ě 1, 1
3n3 lies between 1

3 and 0 so that

* 1´ 1
3n3 is between 2

3 and 1 and consequently

*
1

1´1/3n3 is between 3
2 and 1.

˝ As the numerator 1 + (cos n) 1
n is always smaller than 2 and 1

1´1/3n3 is always
smaller than 3

2 , the fraction

1 + cos n
n

1´ 1
3n3

ď 2
(3

2

)
= 3

22 This is very similar to how we computed limits at infinity way way back near the beginning of CLP-1.
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We now know that
|an| = 1

n2
1 + 2/n

1´ 1/3n3
ď 3

n2

and, since we know
ř8

n=1 n´2 converges, the comparison test tells us that
ř8

n=1
n+cos n
n3´1/3

converges.

Example 3.3.10

The last example was actually a relatively simple application of the comparison theo-
rem — finding a suitable constant K can be really tedious23. Fortunately, there is a variant
of the comparison test that completely eliminates the need to explicitly find K.

The idea behind this isn’t too complicated. We have already seen that the convergence
or divergence of a series depends not on its first few terms, but just on what happens
when n is really large. Consequently, if we can work out how the series terms behave for
really big n then we can work out if the series converges. So instead of comparing the
terms of our series for all n, just compare them when n is big.

Let
ř8

n=1 an and
ř8

n=1 bn be two series with bn ą 0 for all n. Assume that

lim
nÑ8

an

bn
= L

exists.

(a) If
ř8

n=1 bn converges, then
ř8

n=1 an converges too.

(b) If L ‰ 0 and
ř8

n=1 bn diverges, then
ř8

n=1 an diverges too.

In particular, if L ‰ 0, then
ř8

n=1 an converges if and only if
ř8

n=1 bn converges.

Theorem 3.3.11 (Limit Comparison Theorem).

Proof. (a) Because we are told that limnÑ8
an
bn

= L, we know that,

• when n is large, an
bn

is very close to L, so that
ˇ̌
ˇ an

bn

ˇ̌
ˇ is very close to |L|.

• In particular, there is some natural number N0 so that
ˇ̌
ˇ an

bn

ˇ̌
ˇ ď |L|+ 1, for all n ě N0,

and hence

• |an| ď Kbn with K = |L|+ 1, for all n ě N0.

• The comparison Theorem 3.3.8 now implies that
ř8

n=1 an converges.

(b) Let’s suppose that L ą 0. (If L ă 0, just replace an with ´an.) Because we are told that
limnÑ8

an
bn

= L, we know that,

23 Really, really tedious. And you thought some of those partial fractions computations were bad . . .
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• when n is large, an
bn

is very close to L.

• In particular, there is some natural number N so that an
bn
ě L

2 , and hence

• an ě Kbn with K = L
2 ą 0, for all n ě N.

• The comparison Theorem 3.3.8 now implies that
ř8

n=1 an diverges.

The next two examples illustrate how much of an improvement the above theorem is
over the straight comparison test (though of course, we needed the comparison test to
develop the limit comparison test).

Example 3.3.12
(ř8

n=1

?
n+1

n2´2n+3

)

Set an =
?

n+1
n2´2n+3 . We first try to develop some intuition about the behaviour of an for large

n and then we confirm that our intuition was correct.

• Step 1: Develop intuition. When n " 1, the numerator
?

n + 1 « ?n, and the denom-
inator n2 ´ 2n + 3 « n2 so that an «

?
n

n2 = 1
n3/2 and it looks like our series should

converge by Example 3.3.6 with p = 3
2 .

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n3/2 and compute the

limit

lim
nÑ8

an

bn
= lim

nÑ8

?
n+1

n2´2n+3
1

n3/2

= lim
nÑ8

n3/2?n + 1
n2 ´ 2n + 3

Again it is a good idea to factor the dominant term out of the numerator and the
dominant term out of the denominator.

lim
nÑ8

an

bn
= lim

nÑ8

n2?1 + 1/n

n2
(
1´ 2/n + 3/n2

) = lim
nÑ8

?
1 + 1/n

1´ 2/n + 3/n2
= 1

We already know that the series
ř8

n=1 bn =
ř8

n=1
1

n3/2 converges by Example 3.3.6
with p = 3

2 . So our series converges by the limit comparison test, Theorem 3.3.11.

Example 3.3.12

Example 3.3.13
(ř8

n=1

?
n+1

n2´2n+3 , again
)

We can also try to deal with the series of Example 3.3.12, using the comparison test directly.
But that requires us to find K so that

?
n + 1

n2 ´ 2n + 3
ď K

n3/2

We might do this by examining the numerator and denominator separately:
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• The numerator isn’t too bad since for all n ě 1:

n + 1 ď 2n and so?
n + 1 ď

?
2n

• The denominator is quite a bit more tricky, since we need a lower bound, rather than
an upper bound, and we cannot just write |n2 ´ 2n + 3| ě n2, which is false. Instead
we have to make a more careful argument. In particular, we’d like to find N0 and K1

so that n2 ´ 2n + 3 ě K1n2, i.e. 1
n2´2n+3 ď 1

K1n2 for all n ě N0. For n ě 4, we have
2n = 1

24n ď 1
2 n ¨ n = 1

2 n2. So for n ě 4,

n2 ´ 2n + 3 ě n2 ´ 1
2

n2 + 3 ě 1
2

n2

Putting the numerator and denominator back together we have
?

n + 1
n2 ´ 2n + 3

ď
?

2n
n2/2

= 2
?

2
1

n3/2 for all n ě 4

and the comparison test then tells us that our series converges. It is pretty clear that the
approach of Example 3.3.12 was much more straightforward.

Example 3.3.13

3.3.4 §§ The Alternating Series Test

When the signs of successive terms in a series alternate between + and´, like for example
in 1´ 1

2 +
1
3 ´ 1

4 + ¨ ¨ ¨ , the series is called an alternating series. More generally, the series

A1 ´ A2 + A3 ´ A4 + ¨ ¨ ¨ =
8ÿ

n=1

(´1)n´1An

is alternating if every An ě 0. Often (but not always) the terms in alternating series get
successively smaller. That is, then A1 ě A2 ě A3 ě ¨ ¨ ¨ . In this case:

• The first partial sum is S1 = A1.

• The second partial sum, S2 = A1 ´ A2, is smaller than S1 by A2.

• The third partial sum, S3 = S2 + A3, is bigger than S2 by A3, but because A3 ď A2,
S3 remains smaller than S1. See the figure below.

• The fourth partial sum, S4 = S3´ A4, is smaller than S3 by A4, but because A4 ď A3,
S4 remains bigger than S2. Again, see the figure below.

• And so on.

So the successive partial sums oscillate, but with ever decreasing amplitude. If, in ad-
dition, An tends to 0 as n tends to 8, the amplitude of oscillation tends to zero and the
sequence S1, S2, S3, ¨ ¨ ¨ converges to some limit S. This is illustrated in the figure
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1

S1 = A1

2

S2

3

S3

4

S4

5

S5

6

S6

7

S7

8

S8

−A2

+A3

−A4

N

Here is a convergence test for alternating series that exploits this structure, and that is
really easy to apply.

Let
 

An
(8

n=1 be a sequence of real numbers that obeys

(i) An ě 0 for all n ě 1 and
(ii) An+1 ď An for all n ě 1 (i.e. the sequence is monotone decreasing) and

(iii) limnÑ8 An = 0.

Then

A1 ´ A2 + A3 ´ A4 + ¨ ¨ ¨ =
8ÿ

n=1

(´1)n´1An = S

converges and, for each natural number N, S ´ SN is between 0 and (the first
dropped term) (´1)N AN+1. Here SN is, as previously, the Nth partial sum

Nř
n=1

(´1)n´1An.

Theorem 3.3.14 (Alternating Series Test).

“Proof”. We shall only give part of the proof here. For the rest of the proof see the optional
section 3.3.10. We shall fix any natural number N and concentrate on the last statement,
which gives a bound on the truncation error (which is the error introduced when you
approximate the full series by the partial sum SN)

EN = S´ SN =
8ÿ

n=N+1

(´1)n´1An = (´1)N
[

AN+1 ´ AN+2 + AN+3 ´ AN+4 + ¨ ¨ ¨
]

This is of course another series. We’re going to study the partial sums

SN,` =
ÿ̀

n=N+1

(´1)n´1An = (´1)N
`´Nÿ

m=1

(´1)m´1AN+m

for that series.
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• If `1 ą N + 1, with `1 ´ N even,

(´1)NSN,`1 =

ě0hkkkkkkkkkikkkkkkkkkj
(AN+1 ´ AN+2) +

ě0hkkkkkkkkkikkkkkkkkkj
(AN+3 ´ AN+4) + ¨ ¨ ¨+

ě0hkkkkkkkikkkkkkkj
(A`1´1 ´ A`1) ě 0 and

(´1)NSN,`1+1 =

ě0hkkkkkikkkkkj
(´1)NSN,`1 +

ě0hkkikkj
A`1+1 ě 0

This tells us that (´1)NSN,` ě 0 for all ` ą N + 1, both even and odd.

• Similarly, if `1 ą N + 1, with `1 ´ N odd,

(´1)NSN,`1 = AN+1 ´ (

ě0hkkkkkkkikkkkkkkj
AN+2 ´ AN+3)´ (

ě0hkkkkkkkikkkkkkkj
AN+4 ´ AN+5)´ ¨ ¨ ¨ ´

ě0hkkkkkkkikkkkkkkj
(A`1´1 ´ A`1) ď AN+1

(´1)NSN,`1+1 =

ďAN+1hkkkkkikkkkkj
(´1)NSN,`1 ´

ě0hkkikkj
A`1+1 ď AN+1

This tells us that (´1)NSN,` ď AN+1 for all for all ` ą N + 1, both even and odd.

So we now know that SN,` lies between its first term, (´1)N AN+1, and 0 for all ` ą N + 1.
While we are not going to prove it here (see the optional section 3.3.10), this implies that,
since AN+1 Ñ 0 as N Ñ 8, the series converges and that

S´ SN = lim
`Ñ8

SN,`

lies between (´1)N AN+1 and 0.

Example 3.3.15

We have already seen, in Example 3.3.6, that the harmonic series
ř8

n=1
1
n diverges. On the

other hand, the series
ř8

n=1(´1)n´1 1
n converges by the alternating series test with An = 1

n .
Note that

(i) An = 1
n ě 0 for all n ě 1, so that

ř8
n=1(´1)n´1 1

n really is an alternating series, and
(ii) An = 1

n decreases as n increases, and
(iii) lim

nÑ8
An = lim

nÑ8
1
n = 0.

so that all of the hypotheses of the alternating series test, i.e. of Theorem 3.3.14, are satis-
fied. We shall see, in Example 3.5.20, that

8ÿ

n=1

(´1)n´1

n
= log 2.
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Example 3.3.15

Example 3.3.16 (e)

You may already know that ex =
ř8

n=0
xn

n! . In any event, we shall prove this in Exam-
ple 3.6.3, below. In particular

1
e
= e´1 =

8ÿ

n=0

(´1)n

n!
= 1´ 1

1!
+

1
2!
´ 1

3!
+

1
4!
´ 1

5!
+ ¨ ¨ ¨

is an alternating series and satisfies all of the conditions of the alternating series test, The-
orem 3.3.14a:

(i) The terms in the series alternate in sign.
(ii) The magnitude of the nth term in the series decreases monotonically as n increases.

(iii) The nth term in the series converges to zero as n Ñ 8.

So the alternating series test guarantees that, if we approximate, for example,
1
e
« 1

2!
´ 1

3!
+

1
4!
´ 1

5!
+

1
6!
´ 1

7!
+

1
8!
´ 1

9!
then the error in this approximation lies between 0 and the next term in the series, which
is 1

10! . That is

1
2!
´ 1

3!
+

1
4!
´ 1

5!
+

1
6!
´ 1

7!
+

1
8!
´ 1

9!
ď 1

e
ď 1

2!
´ 1

3!
+

1
4!
´ 1

5!
+

1
6!
´ 1

7!
+

1
8!
´ 1

9!
+

1
10!

so that
1

1
2! ´ 1

3! +
1
4! ´ 1

5! +
1
6! ´ 1

7! +
1
8! ´ 1

9! +
1

10!

ď e ď 1
1
2! ´ 1

3! +
1
4! ´ 1

5! +
1
6! ´ 1

7! +
1
8! ´ 1

9!

which, to seven decimal places says

2.7182816 ď e ď2.7182837

(To seven decimal places e = 2.7182818.)
The alternating series test tells us that, for any natural number N, the error that we

make when we approximate 1
e by the partial sum SN =

řN
n=0

(´1)n

n! has magnitude no
larger than 1

(N+1)! . This tends to zero spectacularly quickly as N increases, simply because

(N + 1)! increases spectacularly quickly as N increases24. For example 20! « 2.4ˆ 1027.
Example 3.3.16

Example 3.3.17

We will shortly see, in Example 3.5.20, that if ´1 ă x ď 1, then

log(1 + x) = x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨ =

8ÿ

n=1

(´1)n´1 xn

n

24 The interested reader may wish to check out “Stirling’s approximation”, which says that n! «
?

2πn
( n

e
)n.
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Suppose that we have to compute log 11
10 to within an accuracy of 10´12. Since 11

10 = 1+ 1
10 ,

we can get log 11
10 by evaluating log(1 + x) at x = 1

10 , so that

log
11
10

= log
(

1 +
1

10

)
=

1
10
´ 1

2ˆ 102 +
1

3ˆ 103 ´
1

4ˆ 104 + ¨ ¨ ¨ =
8ÿ

n=1

(´1)n´1 1
nˆ 10n

By the alternating series test, this series converges. Also by the alternating series test,
approximating log 11

10 by throwing away all but the first N terms

log
11
10
« 1

10
´ 1

2ˆ 102 +
1

3ˆ 103 ´
1

4ˆ 104 + ¨ ¨ ¨+(´1)N´1 1
N ˆ 10N =

Nÿ

n=1

(´1)n´1 1
nˆ 10n

introduces an error whose magnitude is no more than the magnitude of the first term that
we threw away.

error ď 1
(N + 1)ˆ 10N+1

To achieve an error that is no more than 10´12, we have to choose N so that

1
(N + 1)ˆ 10N+1 ď 10´12

The best way to do so is simply to guess — we are not going to be able to manipulate the
inequality 1

(N+1)ˆ10N+1 ď 1
1012 into the form N ď ¨ ¨ ¨ , and even if we could, it would not be

worth the effort. We need to choose N so that the denominator (N + 1)ˆ 10N+1 is at least
1012. That is easy, because the denominator contains the factor 10N+1 which is at least 1012

whenever N + 1 ě 12, i.e. whenever N ě 11. So we will achieve an error of less than
10´12 if we choose N = 11.

1
(N + 1)ˆ 10N+1

ˇ̌
ˇ̌
N=11

=
1

12ˆ 1012 ă
1

1012

This is not the smallest possible choice of N, but in practice that just doesn’t matter — your
computer is not going to care whether or not you ask it to compute a few extra terms. If
you really need the smallest N that obeys 1

(N+1)ˆ10N+1 ď 1
1012 , you can next just try N = 10,

then N = 9, and so on.

1
(N + 1)ˆ 10N+1

ˇ̌
ˇ̌
N=11

=
1

12ˆ 1012 ă
1

1012

1
(N + 1)ˆ 10N+1

ˇ̌
ˇ̌
N=10

=
1

11ˆ 1011 ă
1

10ˆ 1011 =
1

1012

1
(N + 1)ˆ 10N+1

ˇ̌
ˇ̌
N=9

=
1

10ˆ 1010 =
1

1011 ą
1

1012

So in this problem, the smallest acceptable N = 10.
Example 3.3.17
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3.3.5 §§ The Ratio Test

The idea behind the ratio test comes from a reexamination of the geometric series. Recall
that the geometric series

8ÿ

n=0

an =
8ÿ

n=0

arn

converges when |r| ă 1 and diverges otherwise. So the convergence of this series is com-
pletely determined by the number r. This number is just the ratio of successive terms —
that is r = an+1/an.

In general the ratio of successive terms of a series, an+1
an

, is not constant, but depends on
n. However, as we have noted above, the convergence of a series

ř
an is determined by

the behaviour of its terms when n is large. In this way, the behaviour of this ratio when
n is small tells us nothing about the convergence of the series, but the limit of the ratio as
n Ñ 8 does. This is the basis of the ratio test.

Let N be any positive integer and assume that an ‰ 0 for all n ě N.

(a) If lim
nÑ8

ˇ̌
ˇ an+1

an

ˇ̌
ˇ = L ă 1, then

8ř
n=1

an converges.

(b) If lim
nÑ8

ˇ̌
ˇ an+1

an

ˇ̌
ˇ = L ą 1, or lim

nÑ8

ˇ̌
ˇ an+1

an

ˇ̌
ˇ = +8, then

8ř
n=1

an diverges.

Theorem 3.3.18 (Ratio Test).

Beware that the ratio test provides absolutely no conclusion about the conver-

gence or divergence of the series
8ř

n=1
an if lim

nÑ8

ˇ̌
ˇ an+1

an

ˇ̌
ˇ = 1. See Example 3.3.22,

below.

Warning 3.3.19.

Proof. (a) Pick any number R obeying L ă R ă 1. We are assuming that
ˇ̌
ˇ an+1

an

ˇ̌
ˇ approaches

L as n Ñ 8. In particular there must be some natural number M so that
ˇ̌
ˇ an+1

an

ˇ̌
ˇ ď R for all

n ě M. So |an+1| ď R|an| for all n ě M. In particular

|aM+1| ď R |aM|
|aM+2| ď R |aM+1| ď R2 |aM|
|aM+3| ď R |aM+2| ď R3 |aM|

...

|aM+`| ď R` |aM|
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for all ` ě 0. The series
ř8

`=0 R` |aM| is a geometric series with ratio R smaller than one in
magnitude and so converges. Consequently, by the comparison test with an replaced by

A` = an+` and cn replaced by C` = R` |aM|, the series
8ř
`=1

aM+` =
8ř

n=M+1
an converges. So

the series
8ř

n=1
an converges too.

(b) We are assuming that
ˇ̌
ˇ an+1

an

ˇ̌
ˇ approaches L ą 1 as n Ñ 8. In particular there must be

some natural number M ą N so that
ˇ̌
ˇ an+1

an

ˇ̌
ˇ ě 1 for all n ě M. So |an+1| ě |an| for all

n ě M. That is, |an| increases as n increases as long as n ě M. So |an| ě |aM| for all n ě M
and an cannot converge to zero as n Ñ 8. So the series diverges by the divergence test.

Example 3.3.20
(ř8

n=0 anxn´1)

Fix any two nonzero real numbers a and x. We have already seen in Example 3.2.4 — we
have just renamed r to x — that the geometric series

ř8
n=0 axn converges when |x| ă 1

and diverges when |x| ě 1. We are now going to consider a new series, constructed by
differentiating25 each term in the geometric series

ř8
n=0 axn. This new series is

8ÿ

n=0

an with an = a n xn´1

Let’s apply the ratio test.

ˇ̌
ˇan+1

an

ˇ̌
ˇ =

ˇ̌
ˇa (n + 1) xn

a n xn´1

ˇ̌
ˇ = n + 1

n
|x| =

(
1 +

1
n

)
|x| Ñ L = |x| as n Ñ 8

The ratio test now tells us that the series
ř8

n=0 a n xn´1 converges if |x| ă 1 and diverges if
|x| ą 1. It says nothing about the cases x = ˘1. But in both of those cases an = a n (˘1)n

does not converge to zero as n Ñ 8 and the series diverges by the divergence test.
Example 3.3.20

Notice that in the above example, we had to apply another convergence test in addition
to the ratio test. This will be commonplace when we reach power series and Taylor series
— the ratio test will tell us something like

The series converges for |x| ă R and diverges for |x| ą R.

Of course, we will still have to to determine what happens when x = +R,´R. To deter-
mine convergence or divergence in those cases we will need to use one of the other tests

25 We shall see later, in Theorem 3.5.13, that the function
ř8

n=0 anxn´1 is indeed the derivative of the
function

ř8
n=0 axn. Of course, such a statement only makes sense where these series converge — how

can you differentiate a divergent series? (This is not an allusion to a popular series of dystopian novels.)
Actually, there is quite a bit of interesting and useful mathematics involving divergent series, but it is
well beyond the scope of this course.
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we have seen.

Example 3.3.21
(ř8

n=0
a

n+1 Xn+1)

Once again, fix any two nonzero real numbers a and X. We again start with the geometric
series

ř8
n=0 axn but this time we construct a new series by integrating26 each term, axn,

from x = 0 to x = X giving a
n+1 Xn+1. The resulting new series is

8ÿ

n=0

an with an =
a

n + 1
Xn+1

To apply the ratio test we need to compute

ˇ̌
ˇan+1

an

ˇ̌
ˇ =

ˇ̌
ˇ̌

a
n+2 Xn+2

a
n+1 Xn+1

ˇ̌
ˇ̌ = n + 1

n + 2
|X| = 1 + 1

n

1 + 2
n
|X| Ñ L = |X| as n Ñ 8

The ratio test now tells us that the series
ř8

n=0
a

n+1 Xn+1 converges if |X| ă 1 and diverges
if |X| ą 1. It says nothing about the cases X = ˘1.

If X = 1, the series reduces to
8ÿ

n=0

a
n + 1

Xn+1
ˇ̌
ˇ̌
X=1

=
8ÿ

n=0

a
n + 1

= a
8ÿ

m=1

1
m

with m = n + 1

which is just a times the harmonic series, which we know diverges, by Example 3.3.6.
If X = ´1, the series reduces to

8ÿ

n=0

a
n + 1

Xn+1
ˇ̌
ˇ̌
X=´1

=
8ÿ

n=0

(´1)n+1 a
n + 1

which converges by the alternating series test. See Example 3.3.15.
In conclusion, the series

ř8
n=0

a
n+1 Xn+1 converges if and only if ´1 ď X ă 1.

Example 3.3.21

The ratio test is often quite easy to apply, but one must always be careful when the
limit of the ratio is 1. The next example illustrates this.

Example 3.3.22 (L = 1)

In this example, we are going to see three different series that all have limnÑ8

ˇ̌
ˇ an+1

an

ˇ̌
ˇ = 1.

One is going to diverge and the other two are going to converge.

• The first series is the harmonic series
8ÿ

n=1

an with an =
1
n

26 We shall also see later, in Theorem 3.5.13, that the function
ř8

n=0
a

n+1 xn+1 is indeed an antiderivative of
the function

ř8
n=0 axn.
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We have already seen, in Example 3.3.6, that this series diverges. It has

ˇ̌
ˇan+1

an

ˇ̌
ˇ =

ˇ̌
ˇ̌

1
n+1

1
n

ˇ̌
ˇ̌ = n

n + 1
=

1
1 + 1

n
Ñ L = 1 as n Ñ 8

• The second series is the alternating harmonic series

8ÿ

n=1

an with an = (´1)n´1 1
n

We have already seen, in Example 3.3.15, that this series converges. But it also has

ˇ̌
ˇan+1

an

ˇ̌
ˇ =

ˇ̌
ˇ̌(´1)n 1

n+1

(´1)n´1 1
n

ˇ̌
ˇ̌ = n

n + 1
=

1
1 + 1

n
Ñ L = 1 as n Ñ 8

• The third series is
8ÿ

n=1

an with an =
1
n2

We have already seen, in Example 3.3.6 with p = 2, that this series converges. But it
also has

ˇ̌
ˇan+1

an

ˇ̌
ˇ =

ˇ̌
ˇ̌

1
(n+1)2

1
n2

ˇ̌
ˇ̌ = n2

(n + 1)2 =
1

(1 + 1
n )

2
Ñ L = 1 as n Ñ 8

Example 3.3.22

Let’s do a somewhat artificial example that forces us to combine a few of the techniques
we have seen.

Example 3.3.23
(ř8

n=1
(´3)n?n+1

2n+3 xn
)

Again, the convergence of this series will depend on x.

• Let us start with the ratio test — so we compute
ˇ̌
ˇ̌an+1

an

ˇ̌
ˇ̌ =

ˇ̌
ˇ̌(´3)n+1?n + 2(2n + 3)xn+1

(´3)n
?

n + 1(2n + 5)xn

ˇ̌
ˇ̌

= | ´ 3| ¨
?

n + 2?
n + 1

¨ 2n + 3
2n + 5

¨ |x|

So in the limit as n Ñ 8we are left with

lim
nÑ8

ˇ̌
ˇ̌an+1

an

ˇ̌
ˇ̌ = 3|x|

• The ratio test then tells us that if 3|x| ą 1 the series diverges, while when 3|x| ă 1
the series converges.
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• This leaves us with the cases x = +1
3 and ´1

3 .

• Setting x = 1
3 gives the series

8ÿ

n=1

(´1)n?n + 1
2n + 3

The fact that the terms alternate here suggests that we use the alternating series test.
That will show that this series converges provided

?
n+1

2n+3 decreases as n increases. So
we define the function

f (t) =
?

t + 1
2t + 3

(which is constructed by replacing the n in
?

n+1
2n+3 with t) and verify that f (t) is a

decreasing function of t. To prove that, it suffices to show its derivative is negative
when t ě 1:

f 1(t) =
(2t + 3) ¨ 1

2 ¨ (t + 1)´1/2 ´ 2
?

t + 1
(2t + 3)2

=
(2t + 3)´ 4(t + 1)
2
?

t + 1(2t + 3)2

=
´2t´ 1

2
?

t + 1(2t + 3)2

When t ě 1 this is negative and so f (t) is a decreasing function. Thus we can apply
the alternating series test to show that the series converges when x = 1

3 .

• When x = ´1
3 the series becomes

8ÿ

n=1

?
n + 1

2n + 3
.

Notice that when n is large, the summand is approximately
?

n
2n which suggests that

the series will diverge by comparison with
ř

n´1/2. To formalise this, we can use
the limit comparison theorem:

lim
nÑ8

?
n + 1

2n + 3
1

n´1/2 = lim
nÑ8

?
n ¨ ?1 + 1/n
n(2 + 3/n)

¨ n1/2

= lim
nÑ8

n ¨ ?1 + 1/n
n(2 + 3/n)

=
1
2

So since this ratio has a finite limit and the series
ř

n´1/2 diverges, we know that
our series also diverges.

So in summary the series converges when ´1
3 ă x ď 1

3 and diverges otherwise.

Example 3.3.23
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3.3.6 §§ Convergence Test List

We now have half a dozen convergence tests:

• Divergence Test

– works well when the nth term in the series fails to converge to zero as n tends to
infinity

• Alternating Series Test

– works well when successive terms in the series alternate in sign

– don’t forget to check that successive terms decrease in magnitude and tend to
zero as n tends to infinity

• Integral Test

– works well when, if you substitute x for n in the nth term you get a function,
f (x), that you can integrate

– don’t forget to check that f (x) ě 0 and that f (x) decreases as x increases

• Ratio Test

– works well when an+1
an

simplifies enough that you can easily compute lim
nÑ8

ˇ̌ an+1
an

ˇ̌
=

L

– this often happens when an contains powers, like 7n, or factorials, like n!

– don’t forget that L = 1 tells you nothing about the convergence/divergence of
the series

• Comparison Test and Limit Comparison Test

– works well when, for very large n, the nth term an is approximately the same as
a simpler term bn (see Example 3.3.10) and it is easy to determine whether or
not

ř8
n=1 bn converges

– don’t forget to check that bn ě 0

– usually the Limit Comparison Test is easier to apply than the Comparison Test

3.3.7 §§ Optional — The Leaning Tower of Books

Imagine that you are about to stack a bunch of identical books on a table. But you don’t
want to just stack them exactly vertically. You want to built a “leaning tower of books”
that overhangs the edge of the table as much as possible.
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How big an overhang can you get? The answer to that question, which we’ll now derive,
uses a series!

• Let’s start by just putting book #1 on the table. It’s the red book labelled “B1” in the
figure below.

x
0 x1

L

B1

Use a horizontal x–axis with x = 0 corresponding to the right hand edge of the table.
Imagine that we have placed book #1 so that its right hand edge overhangs the end
of the table by a distance x1.

˝ In order for the book to not topple off of the table, we need its centre of mass to
lie above the table. That is, we need the x–coordinate of the centre mass of B1,
which we shall denote X̄(B1), to obey

X̄(B1) ď 0

Assuming that our books have uniform density and are of length L, X̄(B1) will
be exactly half way between the right hand end of the book, which is at x = x1,
and the left hand end of the book, which is at x = x1 ´ L. So

X̄(B1) =
1
2

x1 +
1
2
(x1 ´ L) = x1 ´ L

2

Thus book #1 does not topple off of the table provided

x1 ď L
2

• Now let’s put books #1 and #2 on the table, with the right hand edge of book #1 at
x = x1 and the right hand edge of book #2 at x = x2, as in the figure below.

x

B1

0 x1 x2

B2
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˝ In order for book #2 to not topple off of book #1, we need the centre of mass of
book #2 to lie above book #1. That is, we need the x–coordinate of the centre
mass of B2, which is X̄(B2) = x2 ´ L

2 , to obey

X̄(B2) ď x1 ðñ x2 ´ L
2
ď x1 ðñ x2 ď x1 +

L
2

˝ Assuming that book #2 does not topple off of book #1, we still need to arrange
that the pair of books does not topple off of the table. Think of the pair of books
as the combined red object in the figure

x
0 x1 x2

B1

B2

In order for the combined red object to not topple off of the table, we need the
centre of mass of the combined red object to lie above the table. That is, we
need the x–coordinate of the centre mass of the combined red object, which we
shall denote X̄(B1 Y B2), to obey

X̄(B1 Y B2) ď 0

The centre of mass of the combined red object is the weighted average27 of the
centres of mass of B1 and B2. As B1 and B2 have the same weight,

X̄(B1 Y B2) =
1
2

X̄(B1) +
1
2

X̄(B2) =
1
2

(
x1 ´ L

2

)
+

1
2

(
x2 ´ L

2

)

=
1
2
(x1 + x2)´ L

2

and the combined red object does not topple off of the table if

X̄(B1 Y B2) =
1
2
(x1 + x2)´ L

2
ď 0 ðñ x1 + x2 ď L

In conclusion, our two–book tower survives if

x2 ď x1 +
L
2

and x1 + x2 ď L

In particular we may choose x1 and x2 to satisfy x2 = x1 +
L
2 and x1 + x2 = L. Then,

substituting x2 = x1 +
L
2 into x1 + x2 = L gives

x1 +
(

x1 +
L
2

)
= L ðñ 2x1 =

L
2
ðñ x1 =

L
2

(1
2

)
, x2 =

L
2

(
1 +

1
2

)

27 It might be a good idea to review the beginning of §2.3 at this point.
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• Before considering the general “n–book tower”, let’s now put books #1, #2 and #3 on
the table, with the right hand edge of book #1 at x = x1, the right hand edge of book
#2 at x = x2, and the right hand edge of book #3 at x = x3, as in the figure below.

x

B1

B2

0 x1 x2 x3

B3

˝ In order for book #3 to not topple off of book #2, we need the centre of mass of
book #3 to lie above book #2. That is, we need the x–coordinate of the centre
mass of B3, which is X̄(B3) = x3 ´ L

2 , to obey

X̄(B3) ď x2 ðñ x3 ´ L
2
ď x2 ðñ x3 ď x2 +

L
2

˝ Assuming that book #3 does not topple off of book #2, we still need to arrange
that the pair of books, book #2 plus book #3 (the red object in the figure below),
does not topple off of book #1.

x

B1

0 x1 x2 x3

B2

B3

In order for this combined red object to not topple off of book #1, we need the
x–coordinate of its centre mass, which we denote X̄(B2 Y B3), to obey

X̄(B2 Y B3) ď x1

The centre of mass of the combined red object is the weighted average of the
centre of masses of B2 and B3. As B2 and B3 have the same weight,

X̄(B2 Y B3) =
1
2

X̄(B2) +
1
2

X̄(B3) =
1
2

(
x2 ´ L

2

)
+

1
2

(
x3 ´ L

2

)

=
1
2
(x2 + x3)´ L

2
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and the combined red object does not topple off of book #1 if

1
2
(x2 + x3)´ L

2
ď x1 ðñ x2 + x3 ď 2x1 + L

˝ Assuming that book #3 does not topple off of book #2, and also that the combined
book #2 plus book #3 does not topple off of book #1, we still need to arrange
that the whole tower of books, book #1 plus book #2 plus book #3 (the red object
in the figure below), does not topple off of the table.

x
0 x1 x2 x3

B1

B2

B3

In order for this combined red object to not topple off of the table, we need the
x–coordinate of its centre mass, which we denote X̄(B1 Y B2 Y B3), to obey

X̄(B1 Y B2 Y B3) ď 0

The centre of mass of the combined red object is the weighted average of the
centre of masses of B1 and B2 and B3. As they all have the same weight,

X̄(B1 Y B2 Y B3) =
1
3

X̄(B1) +
1
3

X̄(B2) +
1
3

X̄(B3)

=
1
3

(
x1 ´ L

2

)
+

1
3

(
x2 ´ L

2

)
+

1
3

(
x3 ´ L

2

)

=
1
3
(x1 + x2 + x3)´ L

2

and the combined red object does not topple off of the table if

1
3
(x1 + x2 + x3)´ L

2
ď 0 ðñ x1 + x2 + x3 ď 3L

2

In conclusion, our three–book tower survives if

x3 ď x2 +
L
2

and x2 + x3 ď 2x1 + L and x1 + x2 + x3 ď 3L
2

In particular, we may choose x1, x2 and x3 to satisfy

x1 + x2 + x3 =
3L
2

and

x2 + x3 = 2x1 + L and

x3 =
L
2
+ x2
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Substituting the second equation into the first gives

3x1 + L =
3L
2
ùñ x1 =

L
2

(1
3

)

Next substituting the third equation into the second, and then using the formula
above for x1, gives

2x2 +
L
2
= 2x1 + L =

L
3
+ L ùñ x2 =

L
2

(1
2
+

1
3

)

and finally

x3 =
L
2
+ x2 =

L
2

(
1 +

1
2
+

1
3

)

• We are finally ready for the general “n–book tower”. Stack n books on the table,
with book B1 on the bottom and book Bn at the top, and with the right hand edge of
book #j at x = xj. The same centre of mass considerations as above show that the
tower survives if

X̄(Bn) ď xn´1 xn ´ L
2
ď xn´1

X̄(Bn´1 Y Bn) ď xn´2
1
2
(xn´1 + xn)´ L

2
ď xn´2

...
...

X̄(B3 Y ¨ ¨ ¨ Y Bn) ď x2
1

n´ 2
(x3 + ¨ ¨ ¨+ xn)´ L

2
ď x2

X̄(B2 Y B3 Y ¨ ¨ ¨ Y Bn) ď x1
1

n´ 1
(x2 + x3 + ¨ ¨ ¨+ xn)´ L

2
ď x1

X̄(B1 Y B2 Y B3 Y ¨ ¨ ¨ Y Bn) ď 0
1
n
(x1 + x2 + x3 + ¨ ¨ ¨+ xn)´ L

2
ď 0

In particular, we may choose the xj’s to obey

1
n
(x1 + x2 + x3 + ¨ ¨ ¨+ xn) =

L
2

1
n´ 1

(x2 + x3 + ¨ ¨ ¨+ xn) =
L
2
+ x1

1
n´ 2

(x3 + ¨ ¨ ¨+ xn) =
L
2
+ x2

...
...

1
2
(xn´1 + xn) =

L
2
+ xn´2

xn =
L
2
+ xn´1
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Substituting x2 + x3 + ¨ ¨ ¨+ xn = (n´ 1)x1 +
L
2 (n´ 1) from the second equation into

the first equation gives

1
n

! nx1hkkkkkkkikkkkkkkj
x1 + (n´ 1)x1 +

L
2
(n´ 1)

)
=

L
2
ùñ x1 +

L
2

(
1´ 1

n

)
=

L
2

(1
2

)

ùñ x1 =
L
2

( 1
n

)

Substituting x3 + ¨ ¨ ¨+ xn = (n ´ 2)x2 +
L
2 (n ´ 2) from the third equation into the

second equation gives

1
n´ 1

! (n´1)x2hkkkkkkkikkkkkkkj
x2 + (n´ 2)x2 +

L
2
(

(n´1)´1hkkikkj
n´ 2 )

)
=

L
2
+ x1 =

L
2

(
1 +

1
n

)

ùñ x2 +
L
2

(
1´ 1

n´ 1

)
=

L
2

(
1 +

1
n

)

ùñ x2 =
L
2

( 1
n´ 1

+
1
n

)

Just keep going. We end up with

x1 =
L
2

( 1
n

)

x2 =
L
2

( 1
n´ 1

+
1
n

)

x3 =
L
2

( 1
n´ 2

+
1

n´ 1
+

1
n

)

...

xn´2 =
L
2

(1
3
+ ¨ ¨ ¨+ 1

n

)

xn´1 =
L
2

(1
2
+

1
3
+ ¨ ¨ ¨+ 1

n

)

xn =
L
2

(
1 +

1
2
+

1
3
+ ¨ ¨ ¨+ 1

n

)

Our overhang is xn = L
2

(
1 + 1

2 +
1
3 + ¨ ¨ ¨+ 1

n
)
. This is L

2 times the nth partial sum of
the harmonic series

ř8
m=1

1
m . As we saw in Example 3.3.6 (the p test), the harmonic

series diverges. So, as n goes to infinity 1 + 1
2 +

1
3 + ¨ ¨ ¨+ 1

n also goes to infinity. We
may make the overhang as large28 as we like!

3.3.8 §§ Optional — The Root Test

There is another test that is very similar in spirit to the ratio test. It also comes from a
reexamination of the geometric series

8ÿ

n=0

an =
8ÿ

n=0

arn

28 At least if our table is strong enough.
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The ratio test was based on the observation that r, which largely determines whether or
not the series converges, could be found by computing the ratio r = an+1/an. The root
test is based on the observation that |r| can also be determined by looking that the nth root
of the nth term with n very large:

lim
nÑ8

n
bˇ̌

arn
ˇ̌
= |r| lim

nÑ8
n
bˇ̌

a
ˇ̌
= |r| if a ‰ 0

Of course, in general, the nth term is not exactly arn. However, if for very large n, the
nth term is approximately proportional to rn, with |r| given by the above limit, we would
expect the series to converge when |r| ă 1 and diverge when |r| ą 1. That is indeed the
case.

Assume that
L = lim

nÑ8
n
bˇ̌

an
ˇ̌

exists or is +8.

(a) If L ă 1, then
8ř

n=1
an converges.

(b) If L ą 1, or L = +8, then
8ř

n=1
an diverges.

Theorem 3.3.24 (Root Test).

Beware that the root test provides absolutely no conclusion about the conver-

gence or divergence of the series
8ř

n=1
an if lim

nÑ8
n
bˇ̌

an
ˇ̌
= 1.

Warning 3.3.25.

Proof. (a) Pick any number R obeying L ă R ă 1. We are assuming that n
a|an| approaches

L as n Ñ 8. In particular there must be some natural number M so that n
a|an| ď R for all

n ě M. So |an| ď Rn for all n ě M and the series
8ř

n=1
an converges by comparison to the

geometric series
8ř

n=1
Rn

(b) We are assuming that n
a|an| approaches L ą 1 (or grows unboundedly) as n Ñ 8. In

particular there must be some natural number M so that n
a|an| ě 1 for all n ě M. So

|an| ě 1 for all n ě M and the series diverges by the divergence test.

Example 3.3.26
(ř8

n=1
(´3)n?n+1

2n+3 xn
)

We have already used the ratio test, in Example 3.3.23, to show that this series converges
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when |x| ă 1
3 and diverges when |x| ą 1

3 . We’ll now use the root test to draw the same
conclusions.

• Write an = (´3)n?n+1
2n+3 xn.

• We compute

n
a
|an| = n

dˇ̌
ˇ̌(´3)n

?
n + 1

2n + 3
xn
ˇ̌
ˇ̌

= 3|x|(n + 1
)1/2n(2n + 3)´1/n

• We’ll now show that the limit of
(
n + 1

)1/2n as n Ñ 8 is exactly 1. To do, so we first
compute the limit of the logarithm.

lim
nÑ8

log
(
n + 1

)1/2n
= lim

nÑ8

log
(
n + 1

)

2n
now apply Theorem 3.1.6

= lim
tÑ8

log
(
t + 1

)

2t

= lim
tÑ8

1
t+1
2

by l’Hôpital

= 0

So

lim
nÑ8

(
n + 1

)1/2n
= lim

nÑ8
exp

 
log
(
n + 1

)1/2n(
= e0 = 1

An essentially identical computation also gives that limnÑ8
(
2n + 3)´1/n = e0 = 1.

• So

lim
nÑ8

n
a
|an| = 3|x|

and the root test also tells us that if 3|x| ą 1 the series diverges, while when 3|x| ă 1 the
series converges.

Example 3.3.26

We have done the last example once, in Example 3.3.23, using the ratio test and once, in
Example 3.3.26, using the root test. It was clearly much easier to use the ratio test. Here is
an example that is most easily handled by the root test

Example 3.3.27
(ř8

n=1
( n

n+1

)n2
)

Write an =
( n

n+1

)n2
. Then

n
a
|an| = n

d
( n

n + 1

)n2

=
( n

n + 1

)n
=
(

1 +
1
n

)´n
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Now we take the limit,

lim
nÑ8

(
1 +

1
n

)´n
= lim

XÑ8

(
1 +

1
X

)´X
by Theorem 3.1.6

= lim
xÑ0

(
1 + x

)´1/x where x =
1
X

= e´1

by Example 3.7.20 in the CLP-1 text with a = ´1. As the limit is strictly smaller than 1, the

series
ř8

n=1
( n

n+1

)n2
converges.

To draw the same conclusion using the ratio test, one would have to show that the
limit of

an+1

an
=
(n + 1

n + 2

)(n+1)2(n + 1
n

)n2

as n Ñ 8 is strictly smaller than 1. It’s clearly better to stick with the root test.
Example 3.3.27

3.3.9 §§ Optional — Harmonic and Basel Series

§§§ The Harmonic Series

The series

8ÿ

n=1

1
n

that appeared in Warning 3.3.3, is called the Harmonic series29, and its partial sums

HN =
Nÿ

n=1

1
n

are called the Harmonic numbers. Though these numbers have been studied at least as
far back as Pythagoras, the divergence of the series was first proved in around 1350 by
Nicholas Oresme (1320-5 – 1382), though the proof was lost for many years and redis-
covered by Mengoli (1626–1686) and the Bernoulli brothers (Johann 1667–1748 and Jacob
1655–1705).

Oresme’s proof is beautiful and all the more remarkable that it was produced more
than 300 years before calculus was developed by Newton and Leibnitz. It starts by group-

29 The interested reader should use their favourite search engine to read more on the link between this
series and musical harmonics. You can also find interesting links between the Harmonic series and the
so-called “jeep problem” and also the problem of stacking a tower of dominoes to create an overhang
that does not topple over.
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ing the terms of the harmonic series carefully:

8ÿ

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ ¨ ¨ ¨

= 1 +
1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+

(
1
9
+

1
10

+ ¨ ¨ ¨+ 1
15

+
1

16

)
+ ¨ ¨ ¨

ą 1 +
1
2
+

(
1
4
+

1
4

)
+

(
1
8
+

1
8
+

1
8
+

1
8

)
+

(
1

16
+

1
16

+ ¨ ¨ ¨+ 1
16

+
1

16

)
+ ¨ ¨ ¨

= 1 +
1
2
+

(
2
4

)
+

(
4
8

)
+

(
8

16

)
+ ¨ ¨ ¨

So one can see that this is 1 + 1
2 +

1
2 +

1
2 +

1
2 + ¨ ¨ ¨ and so must diverge30.

There are many variations on Oresme’s proof — for example, using groups of two or
three. A rather different proof relies on the inequality

ex ą 1 + x for x ą 0

which follows immediately from the Taylor series for ex given in Theorem 3.6.5. From this
we can bound the exponential of the Harmonic numbers:

eHn = e1+ 1
2+

1
3+

1
4+¨¨¨+

1
n

= e1 ¨ e1/2 ¨ e1/3 ¨ e1/4 ¨ ¨ ¨ e1/n

ą (1 + 1) ¨ (1 + 1/2) ¨ (1 + 1/3) ¨ (1 + 1/4) ¨ ¨ ¨ (1 + 1/n)

=
2
1
¨ 3

2
¨ 4

3
¨ 5

4
¨ ¨ ¨ n + 1

n
= n + 1

Since eHn grows unboundedly with n, the harmonic series diverges.

§§§ The Basel Problem

The problem of determining the exact value of the sum of the series

8ÿ

n=1

1
n2

is called the Basel problem. The problem is named after the home town of Leonhard Euler,
who solved it. One can use telescoping series to show that this series must converge.
Notice that

1
n2 ă

1
n(n´ 1)

=
1

n´ 1
´ 1

n

30 The grouping argument can be generalised further and the interested reader should look up Cauchy’s
condensation test.
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Hence we can bound the partial sum:

Sk =
kÿ

n=1

1
n2 ă 1 +

kÿ

n=2

1
n(n´ 1)

avoid dividing by 0

= 1 +
kÿ

n=2

(
1

n´ 1
´ 1

n

)
which telescopes to

= 1 + 1´ 1
k

Thus, as k increases, the partial sum Sk increases (the series is a sum of positive terms),
but is always smaller than 2. So the sequence of partial sums converges.

Mengoli posed the problem of evaluating the series exactly in 1644 and it was solved
— not entirely rigorously — by Euler in 1734. A rigorous proof had to wait another 7
years. Euler used some extremely cunning observations and manipulations of the sine
function to show that

8ÿ

n=1

1
n2 =

π2

6
.

He used the Maclaurin series

sin x = 1´ x3

6
+

x5

24
´ ¨ ¨ ¨

and a product formula for sine

sin x = x ¨
(

1´ x
π

)
¨
(

1 +
x
π

)
¨
(

1´ x
2π

)
¨
(

1 +
x

2π

)
¨
(

1´ x
3π

)
¨
(

1 +
x

3π

)
¨ ¨ ¨

= x ¨
(

1´ x2

π

)
¨
(

1´ x2

4π

)
¨
(

1´ x2

9π

)
¨ ¨ ¨

(3.3.1)

Extracting the coefficient of x3 from both expansions gives the desired result. The proof
of the product formula is well beyond the scope of this course. But notice that at least the
values of x which make the left hand side of (3.3.1) zero, namely x = nπ with n integer,
are exactly the same as the values of x which make the right hand side of (3.3.1) zero31.

This approach can also be used to compute
ř8

n=1 n´2p for p = 1, 2, 3, . . . and show
that they are rational multiples32 of π2p. The corresponding series of odd powers are
significantly nastier and getting closed form expressions for them remains a famous open
problem.

3.3.10 §§ Optional — Some Proofs

In this optional section we provide proofs of two convergence tests. We shall repeatedly
use the fact that any sequence a1, a2, a3, ¨ ¨ ¨ , of real numbers which is increasing (i.e.

31 Knowing that the left and right hand sides of (3.3.1) are zero for the same values of x is far from the
end of the story. Two functions f (x) and g(x) having the same zeros, need not be equal. It is certainly
possible that f (x) = g(x) ˚ A(x) where A(x) is a function that is nowhere zero. The interested reader
should look up the Weierstrass factorisation theorem

32 Search–engine your way to “Riemann zeta function”.
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an+1 ě an for all n) and bounded (i.e. there is a constant M such that an ď M for all n)
converges. We shall not prove this fact33.

We start with the comparison test, and then move on to the alternating series test.

Let N0 be a natural number and let K ą 0.

(a) If |an| ď Kcn for all n ě N0 and
8ř

n=0
cn converges, then

8ř
n=0

an converges.

(b) If an ě Kdn ě 0 for all n ě N0 and
8ř

n=0
dn diverges, then

8ř
n=0

an diverges.

Theorem 3.3.28 (The Comparison Test).

Proof. (a) By hypothesis
ř8

n=0 cn converges. So it suffices to prove that
ř8

n=0[Kcn ´ an]
converges, because then, by our Arithmetic of series Theorem 3.2.8,

8ÿ

n=0

an =
8ÿ

n=0

Kcn ´
8ÿ

n=0

[Kcn ´ an]

will converge too. But for all n ě N0, Kcn ´ an ě 0 so that, for all N ě N0, the partial sums

SN =
Nÿ

n=0

[Kcn ´ an]

increase with N, but never gets bigger than the finite number
N0ř

n=0
[Kcn ´ an] + K

8ř
n=N0+1

cn. So

the partial sums SN converge as N Ñ 8.

(b) For all N ą N0, the partial sum

SN =
Nÿ

n=0

an ě
N0ÿ

n=0

an + K
Nÿ

n=N0+1

dn

By hypothesis,
řN

n=N0+1 dn, and hence SN, grows without bound as N Ñ 8. So SN Ñ 8
as N Ñ 8.

33 It is one way to state a property of the real number system called “completeness”. The interested reader
should use their favourite search engine to look up “completeness of the real numbers”.
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Let
 

an
(8

n=1 be a sequence of real numbers that obeys

(i) an ě 0 for all n ě 1 and
(ii) an+1 ď an for all n ě 1 (i.e. the sequence is monotone decreasing) and

(iii) limnÑ8 an = 0.

Then

a1 ´ a2 + a3 ´ a4 + ¨ ¨ ¨ =
8ÿ

n=1

(´1)n´1an = S

converges and, for each natural number N, S ´ SN is between 0 and (the first
dropped term) (´1)NaN+1. Here SN is, as previously, the Nth partial sum

Nř
n=1

(´1)n´1an.

Theorem 3.3.28 (Alternating Series Test).

Proof. Let 2n be an even natural number. Then the 2nth partial sum obeys

S2n =

ě0hkkkikkkj
(a1 ´ a2) +

ě0hkkkikkkj
(a3 ´ a4) + ¨ ¨ ¨+

ě0hkkkkkkikkkkkkj
(a2n´1 ´ a2n)

ď
ě0hkkkikkkj

(a1 ´ a2) +

ě0hkkkikkkj
(a3 ´ a4) + ¨ ¨ ¨+

ě0hkkkkkkikkkkkkj
(a2n´1 ´ a2n) +

ě0hkkkkkkkkikkkkkkkkj
(a2n+1 ´ a2n+2) = S2(n+1)

and

S2n = a1 ´ (

ě0hkkikkj
a2 ´ a3)´ (

ě0hkkikkj
a4 ´ a5)´ ¨ ¨ ¨ ´

ě0hkkkkkkkkikkkkkkkkj
(a2n´2 ´ a2n´1)´

ě0hkkikkj
a2n

ď a1

So the sequence S2, S4, S6, ¨ ¨ ¨ of even partial sums is a bounded, increasing sequence and
hence converges to some real number S. Since S2n+1 = S2n + a2n+1 and a2n+1 converges
zero as n Ñ 8, the odd partial sums S2n+1 also converge to S. That S´ SN is between 0
and (the first dropped term) (´1)NaN+1 was already proved in §3.3.4.

3.4Ĳ Absolute and Conditional Convergence

We have now seen examples of series that converge and of series that diverge. But we
haven’t really discussed how robust the convergence of series is — that is, can we tweak
the coefficients in some way while leaving the convergence unchanged. A good example
of this is the series

8ÿ

n=1

(
1
3

)n
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This is a simple geometric series and we know it converges. We have also seen, as exam-
ples 3.3.20 and 3.3.21 showed us, that we can multiply or divide the nth term by n and it
will still converge. We can even multiply the nth term by (´1)n (making it an alternating
series), and it will still converge. Pretty robust.

On the other hand, we have explored the Harmonic series and its relatives quite a lot
and we know it is much more delicate. While

8ÿ

n=1

1
n

diverges, we also know the following two series converge:

8ÿ

n=1

1
n1.00000001

8ÿ

n=1

(´1)n 1
n

.

This suggests that the divergence of the Harmonic series is much more delicate. In this
section, we discuss one way to characterise this sort of delicate convergence — especially
in the presence of changes of sign.

3.4.1 §§ Definitions

(a) A series
8ř

n=1
an is said to converge absolutely if the series

8ř
n=1

|an| converges.

(b) If
8ř

n=1
an converges but

8ř
n=1

|an| diverges we say that
8ř

n=1
an is conditionally

convergent.

Definition 3.4.1 (Absolute and conditional convergence).

If you consider these definitions for a moment, it should be clear that absolute con-
vergence is a stronger condition than just simple convergence. All the terms in

ř
n |an|

are forced to be positive (by the absolute value signs), so that
ř

n |an| must be bigger thanř
n an— making it easier for

ř
n |an| to diverge. This is formalised by the following the-

orem, which is an immediate consequence of the comparison test, Theorem 3.3.8.a, with
cn = |an|.

If the series
8ř

n=1
|an| converges then the series

8ř
n=1

an also converges. That is, abso-

lute convergence implies convergence.

Theorem 3.4.2 (Absolute convergence implies convergence).
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Recall that some of our convergence tests (for example, the integral test) may only be
applied to series with positive terms. Theorem 3.4.2 opens up the possibility of applying
“positive only” convergence tests to series whose terms are not all positive, by checking
for “absolute convergence” rather than for plain “convergence”.

Example 3.4.3
(ř8

n=1(´1)n´1 1
n

)

The alternating harmonic series
8ř

n=1
(´1)n´1 1

n of Example 3.3.15 converges (by the alternat-

ing series test). But the harmonic series
8ř

n=1

1
n of Example 3.3.6 diverges (by the integral

test). So the alternating harmonic series
8ř

n=1
(´1)n´1 1

n converges conditionally.

Example 3.4.3

Example 3.4.4
(ř8

n=1(´1)n´1 1
n2

)

Because the series
ř8

n=1
ˇ̌
(´1)n´1 1

n2

ˇ̌
=

8ř
n=1

1
n2 of Example 3.3.6 converges (by the integral

test), the series
8ř

n=1
(´1)n´1 1

n2 converges absolutely, and hence converges.

Example 3.4.4

Example 3.4.5 (random signs)

Imagine flipping a coin infinitely many times. Set σn = +1 if the nth flip comes up heads
and σn = ´1 if the nth flip comes up tails. The series

ř8
n=1(´1)σn 1

n2 is not in general an

alternating series. But we know that the series
ř8

n=1
ˇ̌
(´1)σn 1

n2

ˇ̌
=

8ř
n=1

1
n2 converges. So

ř8
n=1(´1)σn 1

n2 converges absolutely, and hence converges.

Example 3.4.5

3.4.2 §§ Optional — The Delicacy of Conditionally Convergent Series

Conditionally convergent series have to be treated with great care. For example, switching
the order of the terms in a finite sum does not change its value.

1 + 2 + 3 + 4 + 5 + 6 = 6 + 3 + 5 + 2 + 4 + 1

The same is true for absolutely convergent series. But it is not true for conditionally con-
vergent series. In fact by reordering any conditionally convergent series, you can make it
add up to any number you like, including +8 and ´8. This very strange result is known
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as Riemann’s rearrangement theorem, named after Bernhard Riemann (1826–1866). The
following example illustrates the phenomenon.

Example 3.4.6

The alternating Harmonic series

8ÿ

n=1

(´1)n´1 1
n

is a very good example of conditional convergence. We can show, quite explicitly, how
we can rearrange the terms to make it add up to two different numbers. Later, in Exam-
ple 3.5.20, we’ll show that this series is equal to log 2. However, by rearranging the terms
we can make it sum to 1

2 log 2. The usual order is

1
1
´ 1

2
+

1
3
´ 1

4
+

1
5
´ 1

6
+ ¨ ¨ ¨

For the moment think of the terms being paired as follows:
(

1
1
´ 1

2

)
+

(
1
3
´ 1

4

)
+

(
1
5
´ 1

6

)
+ ¨ ¨ ¨

so the denominators go odd-even odd-even. Now rearrange the terms so the denomina-
tors are odd-even-even odd-even-even:

(
1´ 1

2
´ 1

4

)
+

(
1
3
´ 1

6
´ 1

8

)
+

(
1
5
´ 1

10
´ 1

12

)
+ ¨ ¨ ¨

Now notice that the first term in each triple is exactly twice the second term. If we now
combine those terms we get


 1´ 1

2loomoon
=1/2

´1
4


+




1
3
´ 1

6loomoon
=1/6

´1
8


+




1
5
´ 1

10loomoon
=1/10

´ 1
12


+ ¨ ¨ ¨

=

(
1
2
´ 1

4

)
+

(
1
6
´ 1

8

)
+

(
1

10
´ 1

12

)
+ ¨ ¨ ¨

We can now extract a factor of 1
2 from each term, so

=
1
2

(
1
1
´ 1

2

)
+

1
2

(
1
3
´ 1

4

)
+

1
2

(
1
5
´ 1

6

)
+ ¨ ¨ ¨

=
1
2

[(
1
1
´ 1

2

)
+

(
1
3
´ 1

4

)
+

(
1
5
´ 1

6

)
+ ¨ ¨ ¨

]

So by rearranging the terms, the sum of the series is now exactly half the original sum!
Example 3.4.6
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In fact, we can go even further, and show how we can rearrange the terms of the
alternating harmonic series to add up to any given number34. For the purposes of the
example we have chosen 1.234, but it could really be any number. The example below can
actually be formalised to give a proof of the rearrangement theorem.

Example 3.4.7

We’ll show how to reorder the conditionally convergent series
8ř

n=1
(´1)n´1 1

n so that it

adds up to exactly 1.234 (but the reader should keep in mind that any fixed number will
work).

• First create two lists of numbers — the first list consisting of the positive terms of the
series, in order, and the second consisting of the negative numbers of the series, in
order.

1,
1
3

,
1
5

,
1
7

, ¨ ¨ ¨ and ´1
2

, ´1
4

, ´1
6

, ¨ ¨ ¨

• Notice that that if we add together the numbers in the second list,we get

´1
2

[
1 +

1
2
+

1
3
+ ¨ ¨ ¨

]

which is just ´1
2 times the harmonic series. So the numbers in the second list add up

to ´8.

Also, if we add together the numbers in the first list, we get

1 +
1
3
+

1
5
+

1
7
¨ ¨ ¨ which is greater than

1
2
+

1
4
+

1
6
+

1
8
+ ¨ ¨ ¨

That is, the sum of the first set of numbers must be bigger than the sum of the second
set of numbers (which is just ´1 times the second list). So the numbers in the first
list add up to +8.

• Now we build up our reordered series. Start by moving just enough numbers from
the beginning of the first list into the reordered series to get a sum bigger than 1.234.

1 +
1
3
= 1.3333

We know that we can do this, because the sum of the terms in the first list diverges
to +8.

• Next move just enough numbers from the beginning of the second list into the re-
ordered series to get a number less than 1.234.

1 +
1
3
´ 1

2
= 0.8333

Again, we know that we can do this because the sum of the numbers in the second
list diverges to ´8.

34 This is reminiscent of the accounting trick of pushing all the company’s debts off to next year so that
this year’s accounts look really good and you can collect your bonus.
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• Next move just enough numbers from the beginning of the remaining part of the
first list into the reordered series to get a number bigger than 1.234.

1 +
1
3
´ 1

2
+

1
5
+

1
7
+

1
9
= 1.2873

Again, this is possible because the sum of the numbers in the first list diverges. Even
though we have already used the first few numbers, the sum of the rest of the list
will still diverge.

• Next move just enough numbers from the beginning of the remaining part of the
second list into the reordered series to get a number less than 1.234.

1 +
1
3
´ 1

2
+

1
5
+

1
7
+

1
9
´ 1

4
= 1.0373

• At this point the idea is clear, just keep going like this. At the end of each step,
the difference between the sum and 1.234 is smaller than the magnitude of the first
unused number in the lists. Since the numbers in both lists tend to zero as you go
farther and farther up the list, this procedure will generate a series whose sum is
exactly 1.234. Since in each step we remove at least one number from a list and we
alternate between the two lists, the reordered series will contain all of the terms from
8ř

n=1
(´1)n´1 1

n , with each term appearing exactly once.

Example 3.4.7

3.5Ĳ Power Series

Let’s return to the simple geometric series

8ÿ

n=0

xn

where x is some real number. As we have seen (back in Example 3.2.4), for |x| ă 1 this
series converges to a limit, that varies with x, while for |x| ě 1 the series diverges. Conse-
quently we can consider this series to be a function of x

f (x) =
8ÿ

n=0

xn on the domain |x| ă 1.

Furthermore (also from Example 3.2.4) we know what the function is.

f (x) =
8ÿ

n=0

xn =
1

1´ x
.
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Hence we can consider the series
ř8

n=0 xn as a new way of representing the function 1
1´x

when |x| ă 1. This series is an example of a power series.

Of course, representing a function as simple as 1
1´x by a series doesn’t seem like it is

going to make life easier. However the idea of representing a function by a series turns
out to be extremely helpful. Power series turn out to be very robust mathematical ob-
jects and interact very nicely with not only standard arithmetic operations, but also with
differentiation and integration (see Theorem 3.5.13). This means, for example, that

d
dx

"
1

1´ x

*
=

d
dx

8ÿ

n=0

xn provided |x| ă 1

=
8ÿ

n=0

d
dx

xn just differentiate term by term

=
8ÿ

n=0

nxn´1

and in a very similar way

ż
1

1´ x
dx =

ż 8ÿ

n=0

xndx provided |x| ă 1

=
8ÿ

n=0

ż
xndx just integrate term by term

= C +
8ÿ

n=0

1
n + 1

xn+1

We are hiding some mathematics under the word “just” in the above, but you can see that
once we have a power series representation of a function, differentiation and integration
become very straightforward.

So we should set as our goal for this section, the development of machinery to define
and understand power series. This will allow us to answer questions35 like

Is ex =
8ÿ

n=0

xn

n!
?

Our starting point (now that we have equipped ourselves with basic ideas about series),
is the definition of power series.

35 Recall that n! = 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n is called “n factorial”. By convention 0! = 1.
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3.5.1 §§ Radius and Interval of Convergence

A series of the form

A0 + A1(x´ c) + A2(x´ c)2 + A3(x´ c)3 + ¨ ¨ ¨ =
8ÿ

n=0

An(x´ c)n

is called a power series in (x ´ c) or a power series centered on c. The numbers An
are called the coefficients of the power series.
One often considers power series centered on c = 0 and then the series reduces
to

A0 + A1x + A2x2 + A3x3 + ¨ ¨ ¨ =
8ÿ

n=0

Anxn

Definition 3.5.1.

For example
ř8

n=0
xn

n! is the power series with c = 0 and An = 1
n! . Typically, as in

that case, the coefficients An are given fixed numbers, but the “x” is to be thought of as a
variable. Thus each power series is really a whole family of series — a different series for
each value of x.

One possible value of x is x = c and then the series reduces36 to

8ÿ

n=0

An(x´ c)n
ˇ̌
ˇ
x=c

=
8ÿ

n=0

An(c´ c)n

= A0loomoon
n=0

+ 0loomoon
n=1

+ 0loomoon
n=2

+ 0loomoon
n=3

+ ¨ ¨ ¨

and so simply converges to A0.
We now know that a power series converges when x = c. We can now use our

convergence tests to determine for what other values of x the series converges. Per-
haps most straightforward is the ratio test. The nth term in the series

ř8
n=0 An(x ´ c)n

is an = An(x´ c)n. To apply the ratio test we need to compute the limit

lim
nÑ8

ˇ̌
ˇ̌an+1

an

ˇ̌
ˇ̌ = lim

nÑ8

ˇ̌
ˇ̌An+1(x´ c)n+1

An(x´ c)n

ˇ̌
ˇ̌

= lim
nÑ8

ˇ̌
ˇ̌An+1

An

ˇ̌
ˇ̌ ¨ |x´ c|

= |x´ c| ¨ lim
nÑ8

ˇ̌
ˇ̌An+1

An

ˇ̌
ˇ̌ .

When we do so there are several possible outcomes.

36 By convention, when the term (x´ c)0 appears in a power series, it has value 1 for all values of x, even
x = c.
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• If the limit of ratios exists and is non-zero

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = A ‰ 0,

then the ratio test says that the series
ř8

n=0 An(x´ c)n

– converges when A ¨ |x´ c| ă 1, i.e. when |x´ c| ă 1/A, and

– diverges when A ¨ |x´ c| ą 1, i.e. when |x´ c| ą 1/A.

Because of this, when the limit exists, the quantity

R =
1
A

=

[
lim

nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ
]´1

Equation 3.5.2.

is called the radius of convergence of the series37.

• If the limit of ratios exists and is zero

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = 0

then limnÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ|x ´ c| = 0 for every x and the ratio test tells us that the series

ř8
n=0 An(x ´ c)n converges for every number x. In this case we say that the series

has an infinite radius of convergence.

• If the limit of ratios diverges to +8

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = +8

then limnÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ|x´ c| = +8 for every x ‰ c. The ratio test then tells us that the

series
ř8

n=0 An(x ´ c)n diverges for every number x ‰ c. As we have seen above,
when x = c, the series reduces to A0 + 0+ 0+ 0+ 0+ ¨ ¨ ¨ , which of course converges.
In this case we say that the series has radius of convergence zero.

• If
ˇ̌
ˇAn+1

An

ˇ̌
ˇ does not approach a limit as n Ñ 8, then we learn nothing from the ratio

test and we must use other tools to understand the convergence of the series.

All of these possibilities do happen. We give an example of each below. But first, the
concept of “radius of convergence” is important enough to warrant a formal definition.

37 The use of the word “radius” might seem a little odd here, since we are really describing the interval
in the real line where the series converges. However, when one starts to consider power series over
complex numbers, the radius of convergence does describe a circle inside the complex plane and so
“radius” is a more natural descriptor.
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(a) Let 0 ă R ă 8. If
ř8

n=0 An(x ´ c)n converges for |x ´ c| ă R, and diverges
for |x´ c| ą R, then we say that the series has radius of convergence R.

(b) If
ř8

n=0 An(x´ c)n converges for every number x, we say that the series has
an infinite radius of convergence.

(c) If
ř8

n=0 An(x´ c)n diverges for every x ‰ c, we say that the series has radius
of convergence zero.

Definition 3.5.3.

Example 3.5.4 (Finite nonzero radius of convergence)

We already know that, if a ‰ 0, the geometric series
8ř

n=0
axn converges when |x| ă 1 and

diverges when |x| ě 1. So, in the terminology of Definition 3.5.3, the geometric series has
radius of convergence R = 1. As a consistency check, we can also compute R using (3.5.2).

The series
8ř

n=0
axn has An = a. So

R =

[
lim

nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ
]´1

=
[

lim
nÑ8

1
]´1

= 1

as expected.

Example 3.5.4

Example 3.5.5 (Radius of convergence = +8)

The series
8ř

n=0

xn

n! has An = 1
n! . So

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = lim

nÑ8

1/(n+1)!

1/n!
= lim

nÑ8

n!
(n + 1)!

= lim
nÑ8

1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n
1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ nˆ (n + 1)

= lim
nÑ8

1
n + 1

= 0

and
8ř

n=0

xn

n! has radius of convergence8. It converges for every x.

Example 3.5.5
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Example 3.5.6 (Radius of convergence = 0)

The series
8ř

n=0
n!xn has An = n!. So

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = lim

nÑ8

(n + 1)!
n!

= lim
nÑ8

1ˆ 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ nˆ (n + 1)
1ˆ 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ n

= lim
nÑ8

(n + 1)

= +8

and
8ř

n=0
n!xn has radius of convergence zero38. It converges only for x = 0, where it takes

the value 0! = 1.
Example 3.5.6

Example 3.5.7

Comparing the series

1 + 2x + x2 + 2x3 + x4 + 2x5 + ¨ ¨ ¨
to

8ÿ

n=1

Anxn =A0+A1x+A2x2+A3x3+A4x4+A5x5+ ¨ ¨ ¨

we see that

A0 = 1 A1 = 2 A2 = 1 A3 = 2 A4 = 1 A5 = 2 ¨ ¨ ¨
so that

A1

A0
= 2

A2

A1
=

1
2

A3

A2
= 2

A4

A3
=

1
2

A5

A4
= 2 ¨ ¨ ¨

and An+1
An

does not converge as n Ñ 8. Since the limit of the ratios does not exist, we
cannot tell anything from the ratio test. Nonetheless, we can still figure out for which x’s
our power series converges.

• Because every coefficient An is either 1 or 2, the nth term in our series obeys
ˇ̌
Anxn ˇ̌ ď 2|x|n

and so is smaller than the nth term in the geometric series
ř8

n=0 2|x|n. This geometric
series converges if |x| ă 1. So, by the comparison test, our series converges for
|x| ă 1 too.

38 Because of this, it might seem that such a series is fairly pointless. However there are all sorts of
mathematical games that can be played with them without worrying about their convergence. Such
“formal” power series can still impart useful information and the interested reader is invited to look up
“generating functions” with their preferred search engine.
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• Since every An is at least one, the nth term in our series obeys
ˇ̌
Anxn ˇ̌ ě |x|n

If |x| ě 1, this an = Anxn cannot converge to zero as n Ñ 8, and our series diverges
by the divergence test.

In conclusion, our series converges if and only if |x| ă 1, and so has radius of conver-
gence 1.

Example 3.5.7

Example 3.5.8

Lets construct a series from the digits of π. Now to avoid dividing by zero, let us set

An = 1 + the nth digit of π

Since π = 3.141591 . . .

A0 = 4 A1 = 2 A2 = 5 A3 = 2 A4 = 6 A5 = 10 A6 = 2 ¨ ¨ ¨

Consequently every An is an integer between 1 and 10 and gives us the series

8ÿ

n=0

Anxn = 4 + 2x + 5x2 + 2x3 + 6x4 + 10x5 + ¨ ¨ ¨

The number π is irrational39 and consequently the ratio An+1
An

cannot have a limit as n Ñ 8.
If you do not understand why this is the case then don’t worry too much about it40. As
in the last example, the limit of the ratios does not exist and we cannot tell anything from
the ratio test. But we can still figure out for which x’s it converges.

• Because every coefficient An is no bigger (in magnitude) than 10, the nth term in our
series obeys ˇ̌

Anxn ˇ̌ ď 10|x|n

and so is smaller than the nth term in the geometric series
ř8

n=0 10|x|n. This geomet-
ric series converges if |x| ă 1. So, by the comparison test, our series converges for
|x| ă 1 too.

39 We give a proof of this in the optional §3.7 at the end of this chapter.
40 This is a little beyond the scope of the course. Roughly speaking, think about what would happen if

the limit of the ratios did exist. If the limit were smaller than 1, then it would tell you that the terms of
our series must be getting smaller and smaller and smaller — which is impossible because they are all
integers between 1 and 10. Similarly if the limit existed and were bigger than 1 then the terms of the
series would have to get bigger and bigger and bigger — also impossible. Hence if the ratio exists then
it must be equal to 1 — but in that case because the terms are integers, they would have to be all equal
when n became big enough. But that means that the expansion of π would be eventually periodic —
something that only rational numbers do (a proof is given in the optional §3.7 at the end of this chapter).
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• Since every An is at least one, the nth term in our series obeys
ˇ̌
Anxn ˇ̌ ě |x|n

If |x| ě 1, this an = Anxn cannot converge to zero as n Ñ 8, and our series diverges
by the divergence test.

In conclusion, our series converges if and only if |x| ă 1, and so has radius of conver-
gence 1.

Example 3.5.8

Though we won’t prove it, it is true that every power series has a radius of conver-

gence, whether or not the limit lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ exists.

Let
8ř

n=0
An(x´ c)n be a power series. Then one of the following alternatives must

hold.

(a) The power series converges for every number x. In this case we say that the
radius of convergence is8.

(b) There is a number 0 ă R ă 8 such that the series converges for |x ´ c| ă R
and diverges for |x´ c| ą R. Then R is called the radius of convergence.

(c) The series converges for x = c and diverges for all x ‰ c. In this case, we say
that the radius of convergence is 0.

Theorem 3.5.9.

Consider the power series

8ÿ

n=0

An(x´ c)n.

The set of real x-values for which it converges is called the interval of conver-
gence of the series.

Definition 3.5.10.

Suppose that the power series
8ř

n=0
An(x´ c)n has radius of convergence R. Then from

Theorem 3.5.9, we have that

• if R = 8, then its interval of convergence is ´8 ă x ă 8, which is also denoted
(´8,8), and
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• if R = 0, then its interval of convergence is just the point x = c, and

• if 0 ă R ă 8, then we know that the series converges for any x which obeys

|x´ c| ă R or equivalently ´ R ă x´ c ă R
or equivalently c´ R ă x ă c + R

But we do not (yet) know whether or not the series converges at the two end points
of that interval. We do know, however, that its interval of convergence must be one
of

˝ c´ R ă x ă c + R, which is also denoted (c´ R , c + R), or

˝ c´ R ď x ă c + R, which is also denoted [c´ R , c + R), or

˝ c´ R ă x ď c + R, which is also denoted (c´ R , c + R], or

˝ c´ R ď x ď c + R, which is also denoted [c´ R , c + R].

To reiterate — while the radius convergence, R with 0 ă R ă 8, tells us that the series
converges for |x´ c| ă R and diverges for |x´ c| ą R, it does not (by itself) tell us whether
or not the series converges when |x´ c| = R, i.e. when x = c˘ R. The following example
shows that all four possibilities can occur.

Example 3.5.11

Let p be any real number41 and consider the series
ř8

n=1
xn

np . This series has An = 1
np . Since

lim
nÑ8

ˇ̌
ˇAn+1

An

ˇ̌
ˇ = lim

nÑ8

np

(n + 1)p = lim
nÑ8

1
(1 + 1/n)p = 1

the series has radius of convergence 1. So it certainly converges for |x| ă 1 and diverges
for |x| ą 1. That just leaves x = ˘1.

• When x = 1, the series reduces to
ř8

n=1
1

np . We know, from Example 3.3.6, that this
series converges if and only if p ą 1.

• When x = ´1, the series reduces to
ř8

n=1
(´1)n

np . By the alternating series test, Theo-
rem 3.3.14, this series converges whenever p ą 0 (so that 1

np tends to zero as n tends
to infinity). When p ď 0 (so that 1

np does not tend to zero as n tends to infinity), it
diverges by the divergence test, Theorem 3.3.1.

So

• The power series
ř8

n=1 xn (i.e. p = 0) has interval of convergence ´1 ă x ă 1.

• The power series
ř8

n=1
xn

n (i.e. p = 1) has interval of convergence ´1 ď x ă 1.

• The power series
ř8

n=1
(´1)n

n xn (i.e. p = 1) has interval of convergence ´1 ă x ď 1.

• The power series
ř8

n=1
xn

n2 (i.e. p = 2) has interval of convergence ´1 ď x ď 1.

41 We avoid problems with 0p by starting the series from n = 1.
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Example 3.5.11

Example 3.5.12

We are told that a certain power series with centre c = 3, converges at x = 4 and diverges
at x = 1. What else can we say about the convergence or divergence of the series for other
values of x?

We are told that the series is centred at 3, so its terms are all powers of (x´ 3) and it is
of the form

ÿ

ně0

An(x´ 3)n.

A good way to summarise the convergence data we are given is with a figure like the one
below. Green dots mark the values of x where the series is known to converge. (Recall
that every power series converges at its centre.) The red dot marks the value of x where
the series is known to diverge. The bull’s eye marks the centre.

1 3 4

Can we say more about the convergence and/or divergence of the series for other values
of x? Yes!

Let us think about the radius of convergence, R, of the series. We know that it must
exist and the information we have been given allows us to bound R. Recall that

• the series converges at x provided that |x´ 3| ă R and

• the series diverges at x if |x´ 3| ą R.

We have been told that

• the series converges when x = 4, which tells us that

˝ x = 4 cannot obey |x´ 3| ą R so

˝ x = 4 must obey |x´ 3| ď R, i.e. |4´ 3| ď R, i.e. R ě 1

• the series diverges when x = 1 so we also know that

˝ x = 1 cannot obey |x´ 3| ă R so

˝ x = 1 must obey |x´ 3| ě R, i.e. |1´ 3| ě R, i.e. R ď 2

We still don’t know R exactly. But we do know that 1 ď R ď 2. Consequently,

• since 1 is the smallest that R could be, the series certainly converges at x if |x´ 3| ă 1,
i.e. if 2 ă x ă 4 and

• since 2 is the largest that R could be, the series certainly diverges at x if |x´ 3| ą 2,
i.e. if x ą 5 or if x ă 1.
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The following figure provides a resume of all of this convergence data — there is conver-
gence at green x’s and divergence at red x’s.

1 3 4 52

Notice that from the data given we cannot say anything about the convergence or diver-
gence of the series on the intervals (1, 2] and (4, 5].

One lesson that we can derive from this example is that,

• if a series has centre c and converges at a,

• then it also converges at all points between c and a, as well as at all points of distance
strictly less than |a´ c| from c on the other side of c from a.

Example 3.5.12

3.5.2 §§ Working With Power Series

Just as we have done previously with limits, differentiation and integration, we can con-
struct power series representations of more complicated functions by using those of sim-
pler functions. Here is a theorem that helps us to do so.
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Assume that the functions f (x) and g(x) are given by the power series

f (x) =
8ÿ

n=0

An(x´ c)n g(x) =
8ÿ

n=0

Bn(x´ c)n

for all x obeying |x ´ c| ă R. In particular, we are assuming that both power
series have radius of convergence at least R. Also let K be a constant. Then

f (x) + g(x) =
8ÿ

n=0

[An + Bn] (x´ c)n

K f (x) =
8ÿ

n=0

K An (x´ c)n

(x´ c)N f (x) =
8ÿ

n=0

An (x´ c)n+N for any integer N ě 1

=
8ÿ

k=N

Ak´N (x´ c)k where k = n + N

f 1(x) =
8ÿ

n=0

An n (x´ c)n´1 =
8ÿ

n=1

An n (x´ c)n´1

ż x

c
f (t) dt =

8ÿ

n=0

An
(x´ c)n+1

n + 1
ż

f (x) dx =

[ 8ÿ

n=0

An
(x´ c)n+1

n + 1

]
+ C with C an arbitrary constant

for all x obeying |x´ c| ă R.
In particular the radius of convergence of each of the six power series on the right

hand sides is at least R. In fact, if R is the radius of convergence of
8ř

n=0
An(x´ c)n,

then R is also the radius of convergence of all of the above right hand sides, with

the possible exceptions of
8ř

n=0
[An + Bn] (x´ c)n and

8ř
n=0

KAn (x´ c)n when K = 0.

Theorem 3.5.13 (Operations on Power Series).

Example 3.5.14

The last statement of Theorem 3.5.13 might seem a little odd, but consider the following
two power series centred at 0:

8ÿ

n=0

2nxn and
8ÿ

n=0

(1´ 2n)xn.
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The ratio test tells us that they both have radius of convergence R = 1
2 . However their

sum is

8ÿ

n=0

2nxn +
8ÿ

n=0

(1´ 2n)xn =
8ÿ

n=0

xn

which has the larger radius of convergence 1.
A more extreme example of the same phenomenon is supplied by the two series

8ÿ

n=0

2nxn and
8ÿ

n=0

(´2n)xn.

They are both geometric series with radius of convergence R = 1
2 . But their sum is

8ÿ

n=0

2nxn +
8ÿ

n=0

(´2n)xn =
8ÿ

n=0

(0)xn

which has radius of convergence +8.
Example 3.5.14

We’ll now use this theorem to build power series representations for a bunch of func-
tions out of the one simple power series representation that we know — the geometric
series

1
1´ x

=
8ÿ

n=0

xn for all |x| ă 1

Example 3.5.15
(

1
1´x2

)

Find a power series representation for 1
1´x2 .

Solution. The secret to finding power series representations for a good many functions
is to manipulate them into a form in which 1

1´y appears and use the geometric series

representation 1
1´y =

ř8
n=0 yn. We have deliberately renamed the variable to y here — it

does not have to be x. We can use that strategy to find a power series expansion for 1
1´x2

— we just have to recognize that 1
1´x2 is the same as 1

1´y if we set y to x2.

1
1´ x2 =

1
1´ y

ˇ̌
ˇ̌
y=x2

=

[ 8ÿ

n=0

yn
]

y=x2
if |y| ă 1, i.e. |x| ă 1

=
8ÿ

n=0

(
x2)n

=
8ÿ

n=0

x2n

= 1 + x2 + x4 + x6 + ¨ ¨ ¨
This is a perfectly good power series. There is nothing wrong with the power of x being 2n.
(This just means that the coefficients of all odd powers of x are zero.) In fact, you should
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try to always write power series in forms that are as easy to understand as possible. The
geometric series that we used at the end of the first line converges for

|y| ă 1 ðñ ˇ̌
x2ˇ̌ ă 1 ðñ |x| ă 1

So our power series has radius of convergence 1 and interval of convergence ´1 ă x ă 1.

Example 3.5.15

Example 3.5.16
(

x
2+x2

)

Find a power series representation for x
2+x2 .

Solution. This example is just a more algebraically involved variant of the last one. Again,
the strategy is to manipulate x

2+x2 into a form in which 1
1´y appears.

x
2 + x2 =

x
2

1
1 + x2/2

=
x
2

1
1´ (´x2/2

) set ´x2

2
= y

=
x
2

1
1´ y

ˇ̌
ˇ̌
y=´ x2

2

=
x
2

[ 8ÿ

n=0

yn
]

y=´ x2
2

if |y| ă 1

=
x
2

8ÿ

n=0

(
´ x2

2

)n

=
x
2

8ÿ

n=0

(´1)n

2n x2n =
8ÿ

n=0

(´1)n

2n+1 x2n+1 by Theorem 3.5.13, twice

=
x
2
´ x3

4
+

x5

8
´ x7

16
+ ¨ ¨ ¨

The geometric series that we used in the second line converges when

|y| ă 1 ðñ ˇ̌´x2/2
ˇ̌ ă 1 ðñ |x|2 ă 2 ðñ |x| ă

?
2

So the given power series has radius of convergence
?

2 and interval of convergence
´?2 ă x ă ?2.

Example 3.5.16

Example 3.5.17 (Nonzero centre)

Find a power series representation for 1
5´x with centre 3.

Solution. The new wrinkle in this example is the requirement that the centre be 3. That
the centre is to be 3 means that we need a power series in powers of x´ c, with c = 3. So
we are looking for a power series of the form

ř8
n=0 An(x´ 3)n. The easy way to find such

a series is to force an x´ 3 to appear by adding and subtracting a 3.

1
5´ x

=
1

5´ (x´ 3)´ 3
=

1
2´ (x´ 3)
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Now we continue, as in the last example, by manipulating 1
2´(x´3) into a form in which

1
1´y appears.

1
5´ x

=
1

2´ (x´ 3)
=

1
2

1
1´ x´3

2
set

x´ 3
2

= y

=
1
2

1
1´ y

ˇ̌
ˇ̌
y= x´3

2

=
1
2

[ 8ÿ

n=0

yn
]

y= x´3
2

if |y| ă 1

=
1
2

8ÿ

n=0

(x´ 3
2

)n
=

8ÿ

n=0

(x´ 3)n

2n+1

=
1
2
+

x´ 3
4

+
(x´ 3)2

8
+

(x´ 3)3

16
+ ¨ ¨ ¨

The geometric series that we used in the second line converges when

|y| ă 1 ðñ
ˇ̌
ˇx´ 3

2

ˇ̌
ˇ ă 1 ðñ |x´ 3| ă 2 ðñ ´2 ă x´ 3 ă 2 ðñ 1 ă x ă 5

So the power series has radius of convergence 2 and interval of convergence 1 ă x ă 5.
Example 3.5.17

In the previous two examples, to construct a new series from an existing series, we
replaced x by a simple function. The following theorem gives us some more (but certainly
not all) commonly used substitutions.

Assume that the function f (x) is given by the power series

f (x) =
8ÿ

n=0

Anxn

for all x in the interval I. Also let K and k be real constants. Then

f
(
Kxk) =

8ÿ

n=0

AnKn xkn

whenever Kxk is in I. In particular, if
ř8

n=0 Anxn has radius of convergence R, K
is nonzero and k is a natural number, then

ř8
n=0 AnKn xkn has radius of conver-

gence k
a

R/|K|.

Theorem 3.5.18 (Substituting in a Power Series).

Example 3.5.19
(

1
(1´x)2

)

Find a power series representation for 1
(1´x)2 .
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Solution. Once again the trick is to express 1
(1´x)2 in terms of 1

1´x . Notice that

1
(1´ x)2 =

d
dx

"
1

1´ x

*

=
d
dx

#
8ÿ

n=0

xn

+

=
8ÿ

n=1

nxn´1 by Theorem 3.5.13

Note that the n = 0 term has disappeared because, for n = 0,

d
dx

xn =
d
dx

x0 =
d
dx

1 = 0

Also note that the radius of convergence of this series is one. We can see this via Theo-
rem 3.5.13. That theorem tells us that the radius of convergence of a power series is not
changed by differentiation — and since

ř8
n=0 xn has radius of convergence one, so too

does its derivative.

Without much more work we can determine the interval of convergence by testing at
x = ˘1. When x = ˘1 the terms of the series do not go to zero as n Ñ 8 and so, by the
divergence test, the series does not converge there. Hence the interval of convergence for
the series is ´1 ă x ă 1.

Example 3.5.19

Notice that, in this last example, we differentiated a known series to get to our answer. As
per Theorem 3.5.13, the radius of convergence didn’t change. In addition, in this par-
ticular example, the interval of convergence didn’t change. This is not always the case.
Differentiation of some series causes the interval of convergence to shrink. In particular
the differentiated series may no longer be convergent at the end points of the interval42.
Similarly, when we integrate a power series the radius of convergence is unchanged, but
the interval of convergence may expand to include one or both ends, as illustrated by the
next example.

Example 3.5.20 (log(1 + x))

Find a power series representation for log(1 + x).

42 Consider the power series
ř8

n=1
xn

n . We know that its interval of convergence is ´1 ď x ă 1. (Indeed
see the next example.) When we differentiate the series we get the geometric series

ř8
n=0 xn which has

interval of convergence ´1 ă x ă 1.
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Solution. Recall that d
dx log(1 + x) = 1

1+x so that log(1 + t) is an antiderivative of 1
1+t and

log(1 + x) =

ż x

0

dt
1 + t

=

ż x

0

[ 8ÿ

n=0

(´t)n
]

dt

=
8ÿ

n=0

ż x

0
(´t)n dt by Theorem 3.5.13

=
8ÿ

n=0

(´1)n xn+1

n + 1

= x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨

Theorem 3.5.13 guarantees that the radius of convergence is exactly one (the radius of
convergence of the geometric series

ř8
n=0(´t)n) and that

log(1 + x) =
8ÿ

n=0

(´1)n xn+1

n + 1
for all ´ 1 ă x ă 1

When x = ´1 our series reduces to
ř8

n=0
´1

n+1 , which is (minus) the harmonic series and
so diverges. That’s no surprise — log(1 + (´1)) = log 0 = ´8. When x = 1, the series
converges by the alternating series test. It is possible to prove, by continuity, though we
won’t do so here, that the sum is log 2. So the interval of convergence is ´1 ă x ď 1.

Example 3.5.20

Example 3.5.21 (arctan x)

Find a power series representation for arctan x.

Solution. Recall that d
dx arctan x = 1

1+x2 so that arctan t is an antiderivative of 1
1+t2 and

arctan x =

ż x

0

dt
1 + t2 =

ż x

0

[ 8ÿ

n=0

(´t2)
n
]

dt =
8ÿ

n=0

ż x

0
(´1)nt2n dt

=
8ÿ

n=0

(´1)n x2n+1

2n + 1

= x´ x3

3
+

x5

5
´ ¨ ¨ ¨

Theorem 3.5.13 guarantees that the radius of convergence is exactly one (the radius of
convergence of the geometric series

ř8
n=0(´t2)n) and that

arctan x =
8ÿ

n=0

(´1)n x2n+1

2n + 1
for all ´1 ă x ă 1

When x = ˘1, the series converges by the alternating series test. So the interval of con-
vergence is ´1 ď x ď 1. It is possible to prove, though once again we won’t do so here,
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that when x = ˘1, the series
ř8

n=0(´1)n x2n+1

2n+1 converges to the value of the left hand side,
arctan x, at x = ˘1. That is, to arctan(˘1) = ˘π

4 .

Example 3.5.21

The operations on power series dealt with in Theorem 3.5.13 are fairly easy to apply.
Unfortunately taking the product, ratio or composition of two power series is more in-
volved and is beyond the scope of this course43. Unfortunately Theorem 3.5.13 alone will
not get us power series representations of many of our standard functions (like ex and
sin x). Fortunately we can find such representations by extending Taylor polynomials44 to
Taylor series.

3.6Ĳ Taylor Series

3.6.1 §§ Extending Taylor Polynomials

Recall45 that Taylor polynomials provide a hierarchy of approximations to a given func-
tion f (x) near a given point a. Typically, the quality of these approximations improves as
we move up the hierarchy.

• The crudest approximation is the constant approximation f (x) « f (a).

• Then comes the linear, or tangent line, approximation f (x) « f (a) + f 1(a) (x´ a).

• Then comes the quadratic approximation

f (x) « f (a) + f 1(a) (x´ a) +
1
2

f 2(a) (x´ a)2

• In general, the Taylor polynomial of degree n, for the function f (x), about the ex-
pansion point a, is the polynomial, Tn(x), determined by the requirements that
f (k)(a) = T(k)

n (a) for all 0 ď k ď n. That is, f and Tn have the same derivatives
at a, up to order n. Explicitly,

f (x) « Tn(x) = f (a) + f 1(a) (x´ a) +
1
2

f 2(a) (x´ a)2 + ¨ ¨ ¨+ 1
n!

f (n)(a) (x´ a)n

=
nÿ

k=0

1
k!

f (k)(a) (x´ a)k

These are, of course, approximations — often very good approximations near x = a — but
still just approximations. One might hope that if we let the degree, n, of the approximation
go to infinity then the error in the approximation might go to zero. If that is the case then

43 As always, a quick visit to your favourite search engine will direct the interested reader to more infor-
mation.

44 Now is a good time to review your notes from last term, though we’ll give you a whirlwind review
over the next page or two.

45 Please review your notes from last term if this material is feeling a little unfamiliar.
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the “infinite” Taylor polynomial would be an exact representation of the function. Let’s
see how this might work.

Fix a real number a and suppose that all derivatives of the function f (x) exist. Then,
we saw in (3.4.33) of the CLP-1 text that, for any natural number n,

f (x) = Tn(x) + En(x)

Equation 3.6.1.

where Tn(x) is the Taylor polynomial of degree n for the function f (x) expanded about
a, and En(x) = f (x)´ Tn(x) is the error in the approximation f (x) « Tn(x). The Taylor
polynomial46 is given by the formula

Tn(x) = f (a) + f 1(a) (x´ a) + ¨ ¨ ¨+ 1
n! f (n)(a) (x´ a)n

Equation 3.6.1-a

while the error satisfies47

En(x) = 1
(n+1)! f (n+1)(c) (x´ a)n+1

Equation 3.6.1-b

for some c strictly between a and x. Note that we typically do not know the value of c in
the formula for the error. Instead we use the bounds on c to find bounds on f (n+1)(c) and
so bound the error48.

In order for our Taylor polynomial to be an exact representation of the function f (x)
we need the error En(x) to be zero. This will not happen when n is finite unless f (x) is a
polynomial. However it can happen in the limit as n Ñ 8, and in that case we can write
f (x) as the limit

f (x) = lim
nÑ8

Tn(x) = lim
nÑ8

nÿ

k=0

1
k! f (k)(a) (x´ a)k

This is really a limit of partial sums, and so we can write

f (x) =
8ÿ

k=0

1
k! f (k)(a) (x´ a)k

which is a power series representation of the function. Let us formalise this in a definition.

46 Did you take a quick look at your notes?
47 This is probably the most commonly used formula for the error. But there is another fairly commonly

used formula. It, and some less commonly used formulae, are given in the next (optional) subsection
“More about the Taylor Remainder”.

48 The discussion here is only supposed to jog your memory. If it is feeling insufficiently jogged, then
please look at your notes from last term.
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The Taylor series for the function f (x) expanded around a is the power series

8ÿ

n=0

1
n! f (n)(a) (x´ a)n

When a = 0 it is also called the Maclaurin series of f (x). If limnÑ8 En(x) = 0,
then

f (x) =
8ÿ

n=0

1
n! f (n)(a) (x´ a)n

Definition 3.6.2 (Taylor series).

Demonstrating that, for a given function, limnÑ8 En(x) = 0 can be difficult. but for many
of the standard functions you are used to dealing with, it turns out to be pretty easy. Let’s
compute a few Taylor series and see how we do it.

Example 3.6.3 (Exponential Series)

Find the Maclaurin series for f (x) = ex.

Solution. Just as was the case for computing Taylor polynomials, we need to compute the
derivatives of the function at the particular choice of a. Since we are asked for a Maclaurin
series, a = 0. So now we just need to find f (k)(0) for all integers k ě 0.

We know that d
dx ex = ex and so

ex = f (x) = f 1(x) = f 2(x) = ¨ ¨ ¨ = f (k)(x) = ¨ ¨ ¨ which gives

1 = f (0) = f 1(0) = f 2(0) = ¨ ¨ ¨ = f (k)(0) = ¨ ¨ ¨ .

Equations (3.6.1) and (3.6.1-a) then give us

ex = f (x) = 1 + x +
x2

2!
+ ¨ ¨ ¨+ xn

n!
+ En(x)

We shall see, in the optional Example 3.6.6 below, that, for any fixed x, lim
nÑ8

En(x) = 0.
Consequently, for all x,

ex = lim
nÑ8

[
1 + x +

1
2

x2 +
1
3!

x3 + ¨ ¨ ¨+ 1
n!

xn
]
=

8ÿ

n=0

1
n!

xn

Example 3.6.3

We have now seen power series representations for the functions

1
1´ x

1
(1´ x)2 log(1 + x) arctan(x) ex.
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We do not think that you, the reader, will be terribly surprised to see that we develop
series for sine and cosine next.

Example 3.6.4 (Sine and Cosine Series)

The trigonometric functions sin x and cos x also have widely used Maclaurin series ex-
pansions (i.e. Taylor series expansions about a = 0). To find them, we first compute all
derivatives at general x.

f (x) = sin x f 1(x) = cos x f 2(x) = ´ sin x f (3)(x) = ´ cos x f (4)(x) = sin x ¨ ¨ ¨
g(x) = cos x g1(x) = ´ sin x g2(x) = ´ cos x g(3)(x) = sin x g(4)(x) = cos x ¨ ¨ ¨

Now set x = a = 0.

f (x) = sin x f (0) = 0 f 1(0) = 1 f 2(0) = 0 f (3)(0) = ´1 f (4)(0) = 0 ¨ ¨ ¨
g(x) = cos x g(0) = 1 g1(0) = 0 g2(0) = ´1 g(3)(0) = 0 g(4)(0) = 1 ¨ ¨ ¨

For sin x, all even numbered derivatives (at x = 0) are zero, while the odd numbered
derivatives alternate between 1 and´1. Very similarly, for cos x, all odd numbered deriva-
tives (at x = 0) are zero, while the even numbered derivatives alternate between 1 and´1.
So, the Taylor polynomials that best approximate sin x and cos x near x = a = 0 are

sin x « x´ 1
3! x

3 + 1
5! x

5 ´ ¨ ¨ ¨
cos x « 1´ 1

2! x
2 + 1

4! x
4 ´ ¨ ¨ ¨

We shall see, in the optional Example 3.6.8 below, that, for both sin x and cos x, we have
lim

nÑ8
En(x) = 0 so that

f (x) = lim
nÑ8

[
f (0) + f 1(0) x + ¨ ¨ ¨+ 1

n! f (n)(0) xn
]

g(x) = lim
nÑ8

[
g(0) + g1(0) x + ¨ ¨ ¨+ 1

n! g
(n)(0) xn

]

Reviewing the patterns we found in the derivatives, we conclude that, for all x,

sin x = x´ 1
3! x

3 + 1
5! x

5 ´ ¨ ¨ ¨ =
8ÿ

n=0

(´1)n 1
(2n+1)! x

2n+1

cos x = 1´ 1
2! x

2 + 1
4! x

4 ´ ¨ ¨ ¨ =
8ÿ

n=0

(´1)n 1
(2n)! x

2n

and, in particular, both of the series on the right hand sides converge for all x.
We could also test for convergence of the series using the ratio test. Computing the

ratios of successive terms in these two series gives us
ˇ̌
ˇ̌An+1

An

ˇ̌
ˇ̌ = |x|2n+3/(2n + 3)!

|x|2n+1/(2n + 1)!
=

|x|2
(2n + 3)(2n + 2)ˇ̌

ˇ̌An+1

An

ˇ̌
ˇ̌ = |x|2n+2/(2n + 2)!

|x|2n/(2n)!
=

|x|2
(2n + 2)(2n + 1)
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for sine and cosine respectively. Hence as n Ñ 8 these ratios go to zero and consequently
both series are convergent for all x. (This is very similar to what was observed in Exam-
ple 3.5.5.)

Example 3.6.4

We have developed power series representations for a number of important func-
tions49 . Here is a theorem that summarizes them.

ex =
8ÿ

n=0

xn

n!
= 1 + x +

1
2!

x2 +
1
3!

x3 + ¨ ¨ ¨ for all ´8 ă x ă 8

sin(x) =
8ÿ

n=0

(´1)n 1
(2n + 1)!

x2n+1 = x´ 1
3!

x3 +
1
5!

x5 ´ ¨ ¨ ¨ for all ´8 ă x ă 8

cos(x) =
8ÿ

n=0

(´1)n 1
(2n)!

x2n = 1´ 1
2!

x2 +
1
4!

x4 ´ ¨ ¨ ¨ for all ´8 ă x ă 8

1
1´ x

=
8ÿ

n=0

xn = 1 + x + x2 + x3 + ¨ ¨ ¨ for all ´1 ă x ă 1

log(1 + x) =
8ÿ

n=0

(´1)n xn+1

n + 1
= x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨ for all ´1 ă x ď 1

arctan x =
8ÿ

n=0

(´1)n x2n+1

2n + 1
= x´ x3

3
+

x5

5
´ ¨ ¨ ¨ for all ´1 ď x ď 1

Theorem 3.6.5.

Notice that the series for sine and cosine sum to something that looks very similar to

49 The reader might ask whether or not we will give the series for other trigonometric functions or their
inverses. While the tangent function has a perfectly well defined series, its coefficients are not as simple
as those of the series we have seen — they form a sequence of numbers known (perhaps unsurprisingly)
as the “tangent numbers”. They, and the related Bernoulli numbers, have many interesting properties,
links to which the interested reader can find with their favourite search engine. The Maclaurin series
for inverse sine is

arcsin(x) =
8ÿ

n=0

4´n

2n + 1
(2n)!
(n!)2 x2n+1

which is quite tidy, but proving it is beyond the scope of the course.
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the series for ex:

sin(x) + cos(x) =
(

x´ 1
3!

x3 +
1
5!

x5 ´ ¨ ¨ ¨
)
+

(
1´ 1

2!
x2 +

1
4!

x4 ´ ¨ ¨ ¨
)

= 1 + x´ 1
2!

x2 ´ 1
3!

x3 +
1
4!

x4 +
1
5!

x5 ´ ¨ ¨ ¨

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ¨ ¨ ¨

So both series have coefficients with the same absolute value (namely 1
n! ), but there are

differences in sign50. This is not a coincidence and we direct the interested reader to the
optional Section 3.6.3 where will show how these series are linked through

?´1.

Example 3.6.6
(

Optional — Why
ř8

n=0
1
n! x

n is ex.
)

We have already seen, in Example 3.6.3, that

ex = 1 + x +
x2

2!
+ ¨ ¨ ¨+ xn

n!
+ En(x)

By (3.6.1-b)

En(x) =
1

(n + 1)!
ecxn+1

for some (unknown) c between 0 and x. Fix any real number x. We’ll now show that En(x)
converges to zero as n Ñ 8.

To do this we need get bound the size of ec, and to do this, consider what happens if x
is positive or negative.

• If x ă 0 then x ď c ď 0 and hence ex ď ec ď e0 = 1.

• On the other hand, if x ě 0 then 0 ď c ď x and so 1 = e0 ď ec ď ex.

In either case we have that 0 ď ec ď 1 + ex. Because of this the error term

|En(x)| =
ˇ̌
ˇ ec

(n + 1)!
xn+1

ˇ̌
ˇ ď [ex + 1]

|x|n+1

(n + 1)!

We claim that this upper bound, and hence the error En(x), quickly shrinks to zero as
n Ñ 8.

Call the upper bound (except for the factor ex + 1, which is independent of n) en(x) =
|x|n+1

(n+1)! . To show that this shrinks to zero as n Ñ 8, let’s write it as follows.

en(x) =
|x|n+1

(n + 1)!
=

n + 1 factorshkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj
|x|
1
¨ |x|

2
¨ |x|

3
¨ ¨ ¨ |x|

n
¨ |x|
|n + 1|

50 Warning: antique sign–sine pun. No doubt the reader first saw it many years syne.
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Now let k be an integer bigger than |x|. We can split the product

en(x) =

k factorshkkkkkkkkkkkkkikkkkkkkkkkkkkj( |x|
1
¨ |x|

2
¨ |x|

3
¨ ¨ ¨ |x|

k

)
¨
( |x|

k + 1
¨ ¨ ¨ |x|
|n + 1|

)

ď
( |x|

1
¨ |x|

2
¨ |x|

3
¨ ¨ ¨ |x|

k

)

looooooooooooomooooooooooooon
=Q(x)

¨
( |x|

k + 1

)n+1´k

= Q(x) ¨
( |x|

k + 1

)n+1´k

Since k does not depend not n (though it does depend on x), the function Q(x) does not
change as we increase n. Additionally, we know that |x| ă k + 1 and so |x|

k+1 ă 1. Hence as
we let n Ñ 8 the above bound must go to zero.

Alternatively, compare en(x) and en+1(x).

en+1(x)
en(x)

=

|x|n+2

(n+2)!

|x|n+1

(n+1)!

=
|x|

n + 2

When n is bigger than, for example 2|x|, we have en+1(x)
en(x) ă 1

2 . That is, increasing the index
on en(x) by one decreases the size of en(x) by a factor of at least two. As a result en(x)
must tend to zero as n Ñ 8.

Consequently, for all x, lim
nÑ8

En(x) = 0, as claimed, and we really have

ex = lim
nÑ8

[
1 + x +

1
2

x2 +
1
3!

x3 + ¨ ¨ ¨+ 1
n!

xn
]
=

8ÿ

n=0

1
n!

xn

Example 3.6.6

There is another way to prove that the series
ř8

n=0
xn

n! converges to the function ex.
Rather than looking at how the error term En(x) behaves as n Ñ 8, we can show that
the series satisfies the same simple differential equation51 and the same initial condition
as the function.

Example 3.6.7
(

Optional — Another approach to showing that
ř8

n=0
1
n! x

n is ex.
)

We already know from Example 3.5.5, that the series
ř8

n=0
1
n! x

n converges to some func-
tion f (x) for all values of x . All that remains to do is to show that f (x) is really ex. We will
do this by showing that f (x) and ex satisfy the same differential equation with the same

51 Recall, you studied that differential equation in the section on separable differential equations (The-
orem 2.4.4 in Section 2.4) as well as wayyyy back in the section on exponential growth and decay in
differential calculus.
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initial conditions52. We know that y = ex satisfies

dy
dx

= y and y(0) = 1

and by Theorem 2.4.4 (with a = 1, b = 0 and y(0) = 1), this is the only solution. So it
suffices to show that f (x) =

ř8
n=0

xn

n! satisfies

d f
dx

= f (x) and f (0) = 1.

• By Theorem 3.5.13,

d f
dx

=
d
dx

#
8ÿ

n=0

1
n!

xn

+
=

8ÿ

n=1

n
n!

xn´1 =
8ÿ

n=1

1
(n´ 1)!

xn´1

=

n=1hkkikkj
1 +

n=2hkkikkj
x +

n=3hkkikkj
x2

2!
+

n=4hkkikkj
x3

3!
+ ¨ ¨ ¨

= f (x)

• When we substitute x = 0 into the series we get (see the discussion after Defini-
tion 3.5.1)

f (0) = 1 +
0
1!

+
0
2!

+ ¨ ¨ ¨ = 1.

Hence f (x) solves the same initial value problem and we must have f (x) = ex.
Example 3.6.7

We can show that the error terms in Maclaurin polynomials for sine and cosine go to
zero as n Ñ 8 using very much the same approach as in Example 3.6.6.

Example 3.6.8
(

Optional — Why
ř8

n=0
(´1)n

(2n+1)! x
2n+1 = sin x and

ř8
n=0

(´1)n

(2n)! x2n = cos x
)

Let f (x) be either sin x or cos x. We know that every derivative of f (x) will be one
of ˘ sin(x) or ˘ cos(x). Consequently, when we compute the error term using equa-
tion (3.6.1-b) we always have

ˇ̌
f (n+1)(c)

ˇ̌ ď 1 and hence

|En(x)| ď |x|n+1

(n + 1)!
.

52 Recall that when we solve of a separable differential equation our general solution will have an arbitrary
constant in it. That constant cannot be determined from the differential equation alone and we need
some extra data to find it. This extra information is often information about the system at its beginning
(for example when position or time is zero) — hence “initial conditions”. Of course the reader is already
familiar with this because it was covered back in Section 2.4.
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In Example 3.6.3, we showed that |x|n+1

(n+1)! Ñ 0 as n Ñ 8 — so all the hard work is already
done. Since the error term shrinks to zero for both f (x) = sin x and f (x) = cos x, and

f (x) = lim
nÑ8

[
f (0) + f 1(0) x + ¨ ¨ ¨+ 1

n! f (n)(0) xn
]

as required.
Example 3.6.8

§§ Optional — More about the Taylor Remainder

In this section, we fix a real number a and a natural number n, suppose that all derivatives
of the function f (x) exist, and we study the error

En(a, x) = f (x)´ Tn(a, x)

where Tn(a, x) = f (a) + f 1(a) (x´ a) + ¨ ¨ ¨+ 1
n! f (n)(a) (x´ a)n

made when we approximate f (x) by the Taylor polynomial Tn(a, x) of degree n for the
function f (x), expanded about a. We have already seen, in (3.6.1-b), one formula, prob-
ably the most commonly used formula, for En(a, x). In the next theorem, we repeat that
formula and give a second, commonly used, formula. After an example, we give a second
theorem that contains some less commonly used formulae.

The Taylor remainder En(a, x) is given by

(a) (integral form)

En(a, x) =
ż x

a

1
n!

f (n+1)(t) (x´ t)n dt

(b) (Lagrange form)

En(a, x) =
1

(n + 1)!
f (n+1)(c) (x´ a)n+1

for some c strictly between a and x.

Theorem 3.6.9 (Commonly used formulae for the Taylor remainder).

Notice that the integral form of the error is explicit - we could, in principle, compute it
exactly. (Of course if we could do that, we probably wouldn’t need to use a Taylor expan-
sion to approximate f .) This contrasts with the Lagrange form which is an ‘existential’
statement - it tells us that ‘c’ exists, but not how to compute it.

Proof. (a) We will give two proofs. The first is shorter and simpler, but uses some trickery.
The second is longer, but is more straightforward. It uses a technique called mathe-
matical induction.
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Proof 1: We are going to use a little trickery to get a simple proof. We simply view
x as being fixed and study the dependence of En(a, x) on a. To emphasise that that is
what we are doing, we define

S(t) = f (x)´ f (t)´ f 1(t) (x´ t)´ 1
2 f 2(t) (x´ t)2 ´ ¨ ¨ ¨ ´ 1

n! f (n)(t) (x´ t)n (˚)
and observe that En(a, x) = S(a).

By the fundamental theorem of calculus (Theorem 1.3.1), the function S(t) is deter-
mined by its derivative, S1(t), and its value at a single point. Finding a value of S(t)
for one value of t is easy. Substitute t = x into (˚) to yield S(x) = 0. To find S1(t),
apply d

dt to both sides of (˚). Recalling that x is just a constant parameter,

S1(t) = 0´ f 1(t)´ [ f 2(t)(x´ t)´ f 1(t)
]´ [1

2 f (3)(t)(x´ t)2 ´ f 2(t)(x´ t)
]

´ ¨ ¨ ¨ ´ [ 1
n! f (n+1)(t) (x´ t)n ´ 1

(n´1)! f (n)(t) (x´ t)n´1]

= ´ 1
n! f (n+1)(t) (x´ t)n

So, by the fundamental theorem of calculus, S(x) = S(a) +
şx

a S1(t)dt and

En(a, x) = ´[S(x)´ S(a)
]
= ´

ż x

a
S1(t)dt

=

ż x

a

1
n!

f (n+1)(t) (x´ t)n dt

Proof 2: The proof that we have just given was short, but also very tricky — almost
noone could create that proof without big hints. Here is another much less tricky, but
also commonly used, proof.

• First consider the case n = 0. When n = 0,

E0(a, x) = f (x)´ T0(a, x) = f (x)´ f (a)

The fundamental theorem of calculus gives

f (x)´ f (a) =
ż x

a
f 1(t)dt

so that

E0(a, x) =
ż x

a
f 1(t)dt

That is exactly the n = 0 case of part (a).

• Next fix any integer n ě 0 and suppose that we already know that

En(a, x) =
ż x

a

1
n!

f (n+1)(t) (x´ t)n dt

Apply integration by parts (Theorem 1.7.2) to this integral with

u(t) = f (n+1)(t) dv =
1
n!
(x´ t)n dt, v(t) = ´ 1

(n + 1)!
(x´ t)n+1
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Since v(x) = 0, integration by parts gives

En(a, x) = u(x)v(x)´ u(a)v(a)´
ż x

a
v(t)u1(t)dt

=
1

(n + 1)!
f (n+1)(a) (x´ a)n+1 +

ż x

a

1
(n + 1)!

f (n+2)(t) (x´ t)n+1 dt

(˚˚)
Now, we defined

En(a, x) = f (x)´ f (a)´ f 1(a) (x´ a)´ 1
2 f 2(a) (x´ a)2 ´ ¨ ¨ ¨ ´ 1

n! f (n)(a) (x´ a)n

so
En+1(a, x) = En(a, x)´ 1

(n+1)! f (n+1)(a) (x´ a)n+1

This formula expresses En+1(a, x) in terms of En(a, x). That’s called a reduction
formula. Combining the reduction formula with (˚˚) gives

En+1(a, x) =
ż x

a

1
(n + 1)!

f (n+2)(t) (x´ t)n+1 dt

• Let’s pause to summarise what we have learned in the last two bullets. Use the
notation P(n) to stand for the statement “En(a, x) =

şx
a

1
n! f (n+1)(t) (x´ t)n dt”. To

prove part (a) of the theorem, we need to prove that the statement P(n) is true for
all integers n ě 0. In the first bullet, we showed that the statement P(0) is true. In
the second bullet, we showed that if, for some integer n ě 0, the statement P(n)
is true, then the statement P(n + 1) is also true. Consequently,

– P(0) is true by the first bullet and then
– P(1) is true by the second bullet with n = 0 and then
– P(2) is true by the second bullet with n = 1 and then
– P(3) is true by the second bullet with n = 2
– and so on, for ever and ever.

That tells us that P(n) is true for all integers n ě 0, which is exactly part (a) of the
theorem. This proof technique is called mathematical induction53.

(b) We have already seen one proof in the optional Section 3.4.9 of the CLP-1 text. We will
see two more proofs here.

Proof 1: We apply the generalised mean value theorem, which is Theorem 3.4.38 in
the CLP-1 text. It says that

F(b)´ F(a)
G(b)´ G(a)

=
F1(c)
G1(c)

(GMVT)

53 While the use of the ideas of induction goes back over 2000 years, the first recorded rigorous use of
induction appeared in the work of Levi ben Gershon (1288–1344, better known as Gersonides). The first
explicit formulation of mathematical induction was given by the French mathematician Blaise Pascal in
1665.
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for some c strictly54 between a and b. We apply (GVMT) with b = x, F(t) = S(t) and
G(t) = (x´ t)n+1. This gives

En(a, x) = ´[S(x)´ S(a)
]
= ´ S1(c)

G1(c)
[
G(x)´ G(a)

]

= ´´
1
n! f (n+1)(c) (x´ c)n

´(n + 1)(x´ c)n

[
0´ (x´ a)n+1]

=
1

(n + 1)!
f (n+1)(c)(x´ a)n+1

Don’t forget, when computing G1(c), that G is a function of t with x just a fixed pa-
rameter.

Proof 2: We apply Theorem 2.2.10 (the mean value theorem for weighted integrals).
If a ă x, we use the weight function w(t) = 1

n! (x´ t)n, which is strictly positive for all
a ă t ă x. By part (a) this gives

En(a, x) =
ż x

a

1
n!

f (n+1)(t) (x´ t)n dt

= f (n+1)(c)
ż x

a

1
n!
(x´ t)n dt for some a ă c ă x

= f (n+1)(c)
[
´ 1

n!
(x´ t)n+1

n + 1

]x

a

=
1

(n + 1)!
f (n+1)(c) (x´ a)n+1

If x ă a, we instead use the weight function w(t) = 1
n! (t´ x)n, which is strictly positive

for all x ă t ă a. This gives

En(a, x) =
ż x

a

1
n!

f (n+1)(t) (x´ t)n dt = ´(´1)n
ż a

x

1
n!

f (n+1)(t) (t´ x)n dt

= (´1)n+1 f (n+1)(c)
ż a

x

1
n!
(t´ x)n dt for some x ă c ă a

= (´1)n+1 f (n+1)(c)
[

1
n!

(t´ x)n+1

n + 1

]a

x

=
1

(n + 1)!
f (n+1)(c) (´1)n+1(a´ x)n+1

=
1

(n + 1)!
f (n+1)(c) (x´ a)n+1

Theorem 3.6.9 has provided us with two formulae for the Taylor remainder En(a, x).
The formula of part (b), En(a, x) = 1

(n+1)! f (n+1)(c) (x ´ a)n+1, is probably the easiest to

54 In Theorem 3.4.38 in the CLP-1 text, we assumed, for simplicity, that a ă b. To get (GVMT) when b ă a
simply exchange a and b in Theorem 3.4.38.

351



SEQUENCE AND SERIES 3.6 TAYLOR SERIES

use, and the most commonly used, formula for En(a, x). The formula of part (a), En(a, x) =şx
a

1
n! f (n+1)(t) (x´ t)n dt, while a bit harder to apply, gives a bit better bound than that of

part (b) (in the proof of Theorem 3.6.9 we showed that part (b) follows from part (a)). Here
is an example in which we use both parts.

Example 3.6.10

In Theorem 3.6.5 we stated that

log(1 + x) =
8ÿ

n=0

(´1)n xn+1

n + 1
= x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨ for all ´1 ă x ď 1 (S1)

But, so far, we have not justified this statement. We do so now, using (both parts of)
Theorem 3.6.9. We start by setting f (x) = log(1 + x) and finding the Taylor polynomials
Tn(0, x), and the corresponding errors En(0, x), for f (x).

f (x) = log(1 + x) f (0) = log 1 = 0

f 1(x) =
1

1 + x
f 1(0) = 1

f 2(x) =
´1

(1 + x)2 f 2(0) = ´1

f3(x) =
2

(1 + x)3 f3(0) = 2

f (4)(x) =
´2ˆ 3
(1 + x)4 f (4)(0) = ´3!

f (5)(x) =
2ˆ 3ˆ 4
(1 + x)5 f (5)(0) = 4!

...
...

f (n)(x) =
(´1)n+1(n´ 1)!

(1 + x)n f (n)(0) = (´1)n+1(n´ 1)!

So the Taylor polynomial of degree n for the function f (x) = log(1 + x), expanded about
a = 0, is

Tn(0, x) = f (0) + f 1(0) x + ¨ ¨ ¨+ 1
n! f (n)(0) xn

= x´ 1
2

x2 +
1
3

x3 ´ 1
4

x4 +
1
5

x5 + ¨ ¨ ¨+ (´1)n+1

n
xn

Theorem 3.6.9 gives us two formulae for the error En(0, x) = f (x)´ Tn(0, x) made when
we approximate f (x) by Tn(0, x). Part (a) of the theorem gives

En(0, x) =
ż x

0

1
n!

f (n+1)(t) (x´ t)n dt = (´1)n
ż x

0

(x´ t)n

(1 + t)n+1 dt (Ea)

and part (b) gives

En(0, x) =
1

(n + 1)!
f (n+1)(c) xn+1 = (´1)n 1

n + 1
xn+1

(1 + c)n+1 (Eb)
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for some (unknown) c between 0 and x. The statement (S1), that we wish to prove, is
equivalent to the statement

lim
nÑ8

En(0, x) = 0 for all ´1 ă x ď 1 (S2)

and we will now show that (S2) is true.

The case x = 0: This case is trivial, since, when x = 0, En(0, x) = 0 for all n.

The case 0 ă x ď 1: This case is relatively easy to deal with using (Eb). When 0 ă x ď 1,
the c of (Eb) must be positive, so that

|En(0, x)| = 1
n + 1

xn+1

(1 + c)n+1 ď
1

n + 1
1n+1

(1 + 0)n+1 =
1

n + 1

converges to zero as n Ñ 8.

The case ´1 ă x ă 0: When ´1 ă x ă 0 is close to ´1, (Eb) is not sufficient to show that
(S2) is true. To see this, let’s consider the example x = ´0.8. All we know about the
c of (Eb) is that it has to be between 0 and ´0.8. For example, (Eb) certainly allows c
to be ´0.6 and then

ˇ̌
ˇ̌(´1)n 1

n + 1
xn+1

(1 + c)n+1

ˇ̌
ˇ̌

x=´0.8
c=´0.6

=
1

n + 1
0.8n+1

(1´ 0.6)n+1 =
1

n + 1
2n+1

goes to +8 as n Ñ 8.

Note that, while this does tell us that (Eb) is not sufficient to prove (S2), when x is
close to ´1, it does not also tell us that lim

nÑ8
|En(0,´0.8)| = +8 (which would imply

that (S2) is false) — c could equally well be ´0.2 and then
ˇ̌
ˇ̌(´1)n 1

n + 1
xn+1

(1 + c)n+1

ˇ̌
ˇ̌

x=´0.8
c=´0.2

=
1

n + 1
0.8n+1

(1´ 0.2)n+1 =
1

n + 1

goes to 0 as n Ñ 8.

We’ll now use (Ea) (which has the advantage of not containing any unknown free
parameter c) to verify (S2) when ´1 ă x ă 0. Rewrite the right hand side of (Ea)

(´1)n
ż x

0

(x´ t)n

(1 + t)n+1 dt = ´
ż 0

x

(t´ x)n

(1 + t)n+1 dt

= ´
ż ´x

0

sn

(1 + x + s)n+1 ds s = t´ x, ds = dt

The exact evaluation of this integral is very messy and not very illuminating. In-
stead, we bound it. Note that, for 1 + x ą 0,

d
ds

(
s

1 + x + s

)
=

d
ds

(
1 + x + s´ (1 + x)

1 + x + s

)
=

d
ds

(
1´ 1 + x

1 + x + s

)

=
1 + x

(1 + x + s)2 ą 0
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so that s
1+x+s increases as s increases. Consequently, the biggest value that s

1+x+s
takes on the domain of integration 0 ď s ď ´x = |x| is

s
1 + x + s

ˇ̌
ˇ̌
s=´x

= ´x = |x|

and the integrand

0 ď sn

[1 + x + s]n+1 =

(
s

1 + x + s

)n 1
1 + x + s

ď |x|n
1 + x + s

Consequently,

|En(0, x)| =
ˇ̌
ˇ̌(´1)n

ż x

0

(x´ t)n

(1 + t)n+1 dt
ˇ̌
ˇ̌ =

ż ´x

0

sn

[1 + x + s]n+1 ds

ď |x|n
ż ´x

0

1
1 + x + s

ds = |x|n
[

log(1 + x + s)
]s=´x

s=0

= |x|n[´ log(1 + x)]

converges to zero as n Ñ 8 fore each fixed ´1 ă x ă 0.

So we have verified (S2), as desired.
Example 3.6.10

As we said above, Theorem 3.6.9 gave the two most commonly used formulae for the
Taylor remainder. Here are some less commonly used, but occasionally useful, formulae.

(a) If G(t) is differentiable55 and G1(c) is nonzero for all c strictly between a and
x, then the Taylor remainder

En(a, x) =
1
n!

f (n+1)(c)
G(x)´ G(a)

G1(c)
(x´ c)n

for some c strictly between a and x.

(b) (Cauchy form)

En(a, x) =
1
n!

f (n+1)(c) (x´ c)n(x´ a)

for some c strictly between a and x.

Theorem 3.6.11 (More formulae for the Taylor remainder).

55 Note that the function G need not be related to f . It just has to be differentiable with a nonzero deriva-
tive.
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Proof. As in the proof of Theorem 3.6.9, we define

S(t) = f (x)´ f (t)´ f 1(t) (x´ t)´ 1
2 f 2(t) (x´ t)2 ´ ¨ ¨ ¨ ´ 1

n! f (n)(t) (x´ t)n

and observe that En(a, x) = S(a) and S(x) = 0 and S1(t) = ´ 1
n! f (n+1)(t) (x´ t)n.

(a) Recall that the generalised mean-value theorem, which is Theorem 3.4.38 in the CLP-1
text, says that

F(b)´ F(a)
G(b)´ G(a)

=
F1(c)
G1(c)

(GMVT)

for some c strictly between a and b. We apply this theorem with b = x and F(t) = S(t).
This gives

En(a, x) = ´[S(x)´ S(a)
]
= ´ S1(c)

G1(c)
[
G(x)´ G(a)

]

= ´´
1
n! f (n+1)(c) (x´ c)n

G1(c)
[
G(x)´ G(a)

]

=
1
n!

f (n+1)(c)
G(x)´ G(a)

G1(c)
(x´ c)n

(b) Apply part (a) with G(x) = x. This gives

En(a, x) =
1
n!

f (n+1)(c)
x´ a

1
(x´ c)n

=
1
n!

f (n+1)(c) (x´ c)n(x´ a)

for some c strictly between a and b.

Example 3.6.12 (Example 3.6.10, continued)

In Example 3.6.10 we verified that

log(1 + x) =
8ÿ

n=0

(´1)n xn+1

n + 1
= x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨ (S1)

for all ´1 ă x ď 1. There we used the Lagrange form,

En(a, x) =
1

(n + 1)!
f (n+1)(c) (x´ a)n+1

for the Taylor remainder to verify (S1) when 0 ď x ď 1, but we also saw that it is not
possible to use the Lagrange form to verify (S1) when x is close to ´1. We instead used
the integral form

En(a, x) =
ż x

a

1
n!

f (n+1)(t) (x´ t)n dt
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We will now use the Cauchy form (part (b) of Theorem 3.6.11)

En(a, x) =
1
n!

f (n+1)(c) (x´ c)n(x´ a)

to verify
lim

nÑ8
En(0, x) = 0 (S2)

when ´1 ă x ă 0. We have already noted that (S2) is equivalent to (S1).
Write f (x) = log(1 + x). We saw in Example 3.6.10 that

f (n+1)(x) =
(´1)nn!

(1 + x)n+1

So, in this example, the Cauchy form is

En(0, x) = (´1)n (x´ c)nx
(1 + c)n+1

for some x ă c ă 0. When ´1 ă x ă c ă 0,

• c and x are negative and 1 + x, 1 + c and c´ x are (strictly) positive so that

c(1 + x) ă 0 ùñ c ă ´cx ùñ c´ x ă ´x´ xc = |x|(1 + c)

ùñ
ˇ̌
ˇ̌x´ c
1 + c

ˇ̌
ˇ̌ = c´ x

1 + c
ă |x|

so that
ˇ̌ x´c

1+c

ˇ̌n ă |x|n and

• the distance from ´1 to c, namely c´ (´1) = 1 + c is greater than the distance from
´1 to x, namely x´ (´1) = 1 + x, so that 1

1+c ă 1
1+x .

So, for ´1 ă x ă c ă 0,

|En(0, x)| =
ˇ̌
ˇ̌x´ c
1 + c

ˇ̌
ˇ̌
n |x|

1 + c
ă |x|

n+1

1 + c
ă |x|

n+1

1 + x

goes to zero as n Ñ 8.
Example 3.6.12

3.6.2 §§ Computing with Taylor Series

Taylor series have a great many applications. (Hence their place in this course.) One of
the most immediate of these is that they give us an alternate way of computing many
functions. For example, the first definition we see for the sine and cosine functions is
in terms of triangles. Those definitions, however, do not lend themselves to computing
sine and cosine except at very special angles. Armed with power series representations,
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however, we can compute them to very high precision at any angle. To illustrate this,
consider the computation of π — a problem that dates back to the Babylonians.

Example 3.6.13 (Computing the number π)

There are numerous methods for computing π to any desired degree of accuracy56. Many
of them use the Maclaurin expansion

arctan x =
8ÿ

n=0

(´1)n x2n+1

2n + 1

of Theorem 3.6.5. Since arctan(1) = π
4 , the series gives us a very pretty formula for π:

π

4
= arctan 1 =

8ÿ

n=0

(´1)n

2n + 1

π = 4
(

1´ 1
3
+

1
5
´ 1

7
+ ¨ ¨ ¨

)

Unfortunately, this series is not very useful for computing π because it converges so
slowly. If we approximate the series by its Nth partial sum, then the alternating series
test (Theorem 3.3.14) tells us that the error is bounded by the first term we drop. To guar-
antee that we have 2 decimal digits of π correct, we need to sum about the first 200 terms!

A much better way to compute π using this series is to take advantage of the fact that
tan π

6 = 1?
3
:

π = 6 arctan
( 1?

3

)
= 6

8ÿ

n=0

(´1)n 1
2n + 1

1

(
?

3)2n+1

= 2
?

3
8ÿ

n=0

(´1)n 1
2n + 1

1
3n

= 2
?

3
(

1´ 1
3ˆ 3

+
1

5ˆ 9
´ 1

7ˆ 27
+

1
9ˆ 81

´ 1
11ˆ 243

+ ¨ ¨ ¨
)

Again, this is an alternating series and so (via Theorem 3.3.14) the error we introduce by
truncating it is bounded by the first term dropped. For example, if we keep ten terms,
stopping at n = 9, we get π = 3.141591 (to 6 decimal places) with an error between zero
and

2
?

3
21ˆ 310 ă 3ˆ 10´6

In 1699, the English astronomer/mathematician Abraham Sharp (1653–1742) used 150
terms of this series to compute 72 digits of π — by hand!

This is just one of very many ways to compute π. Another one, which still uses the
Maclaurin expansion of arctan x, but is much more efficient, is

π = 16 arctan
1
5
´ 4 arctan

1
239

56 The computation of π has a very, very long history and your favourite search engine will turn up many
sites that explore the topic. For a more comprehensive history one can turn to books such as “A history
of Pi” by Petr Beckmann and “The joy of π” by David Blatner.
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This formula was used by John Machin in 1706 to compute π to 100 decimal digits —
again, by hand.

Example 3.6.13

Power series also give us access to new functions which might not be easily expressed
in terms of the functions we have been introduced to so far. The following is a good
example of this.

Example 3.6.14 (Error function)

The error function

erf(x) =
2?
π

ż x

0
e´t2

dt

is used in computing “bell curve” probabilities. The indefinite integral of the integrand
e´t2

cannot be expressed in terms of standard functions. But we can still evaluate the
integral to within any desired degree of accuracy by using the Taylor expansion of the
exponential. Start with the Maclaurin series for ex:

ex =
8ÿ

n=0

1
n!

xn

and then substitute x = ´t2 into this:

e´t2
=

8ÿ

n=0

(´1)n

n!
t2n

We can then apply Theorem 3.5.13 to integrate term-by-term:

erf(x) =
2?
π

ż x

0

[
8ÿ

n=0

(´t2)
n

n!

]
dt

=
2?
π

8ÿ

n=0

(´1)n x2n+1

(2n + 1)n!

For example, for the bell curve, the probability of being within one standard deviation of
the mean57, is

erf
(

1/
?

2
)
=

2?
π

8ÿ

n=0

(´1)n (1/
?

2)2n+1

(2n + 1)n!
=

2?
2π

8ÿ

n=0

(´1)n 1
(2n + 1)2nn!

=

c
2
π

(
1´ 1

3ˆ 2
+

1
5ˆ 22 ˆ 2

´ 1
7ˆ 23 ˆ 3!

+
1

9ˆ 24 ˆ 4!
´ ¨ ¨ ¨

)

This is yet another alternating series. If we keep five terms, stopping at n = 4, we get
0.68271 (to 5 decimal places) with, by Theorem 3.3.14 again, an error between zero and

57 If you don’t know what this means (forgive the pun) don’t worry, because it is not part of the course.
Standard deviation is a way of quantifying variation within a population.
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the first dropped term, which is minus
c

2
π

1
11ˆ 25 ˆ 5!

ă 2ˆ 10´5

Example 3.6.14

Example 3.6.15

Evaluate
8ÿ

n=1

(´1)n´1

n3n and
8ÿ

n=1

1
n3n

Solution. There are not very many series that can be easily evaluated exactly. But occa-
sionally one encounters a series that can be evaluated simply by realizing that it is exactly
one of the series in Theorem 3.6.5, just with a specific value of x. The left hand given series
is

8ÿ

n=1

(´1)n´1

n
1
3n =

1
3
´ 1

2
1
32 +

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

The series in Theorem 3.6.5 that this most closely resembles is

log(1 + x) = x´ x2

2
+

x3

3
´ x4

4
´ ¨ ¨ ¨

Indeed
8ÿ

n=1

(´1)n´1

n
1
3n =

1
3
´ 1

2
1
32 +

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

=

[
x´ x2

2
+

x3

3
´ x4

4
´ ¨ ¨ ¨

]

x= 1
3

=
[

log(1 + x)
]

x= 1
3

= log
4
3

The right hand series above differs from the left hand series above only that the signs of
the left hand series alternate while those of the right hand series do not. We can flip every
second sign in a power series just by using a negative x.

[
log(1 + x)

]
x=´ 1

3

=

[
x´ x2

2
+

x3

3
´ x4

4
´ ¨ ¨ ¨

]

x=´ 1
3

= ´1
3
´ 1

2
1
32 ´

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

which is exactly minus the desired right hand series. So
8ÿ

n=1

1
n3n = ´

[
log(1 + x)

]
x=´ 1

3

= ´ log
2
3
= log

3
2
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Example 3.6.15

Example 3.6.16

Let f (x) = sin(2x3). Find f (15)(0), the fifteenth derivative of f at x = 0.

Solution. This is a bit of a trick question. We could of course use the product and chain
rules to directly apply fifteen derivatives and then set x = 0, but that would be extremely
tedious58. There is a much more efficient approach that exploits two pieces of knowledge
that we have.

• From equation (3.6.1-a), we see that the coefficient of (x´ a)n in the Taylor series of
f (x) with expansion point a is exactly 1

n! f (n)(a). So f (n)(a) is exactly n! times the
coefficient of (x´ a)n in the Taylor series of f (x) with expansion point a.

• We know, or at least can easily find, the Taylor series for sin(2x3).

Let’s apply that strategy.

• First, we know that, for all y,

sin y = y´ 1
3!

y3 +
1
5!

y5 ´ ¨ ¨ ¨

• Just substituting y = 2x3, we have

sin(2x3) = 2x3 ´ 1
3!
(2x3)

3
+

1
5!
(2x3)

5 ´ ¨ ¨ ¨

= 2x3 ´ 8
3!

x9 +
25

5!
x15 ´ ¨ ¨ ¨

• So the coefficient of x15 in the Taylor series of f (x) = sin(2x3) with expansion point
a = 0 is 25

5!

and we have

f (15)(0) = 15!ˆ 25

5!
= 348,713,164,800

Example 3.6.16

Example 3.6.17 (Optional — Computing the number e)

Back in Example 3.6.6, we saw that

ex = 1 + x + x2

2! + ¨ ¨ ¨+ xn

n! +
1

(n+1)! e
cxn+1

58 We could get a computer algebra system to do it for us without much difficulty — but we wouldn’t
learn much in the process. The point of this example is to illustrate that one can do more than just
represent a function with Taylor series. More on this in the next section.
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for some (unknown) c between 0 and x. This can be used to approximate the number e,
with any desired degree of accuracy. Setting x = 1 in this equation gives

e = 1 + 1 + 1
2! + ¨ ¨ ¨+ 1

n! +
1

(n+1)! e
c

for some c between 0 and 1. Even though we don’t know c exactly, we can bound that
term quite readily. We do know that ec in an increasing function59 of c, and so 1 = e0 ď
ec ď e1 = e. Thus we know that

1
(n + 1)!

ď e´
(

1 + 1 + 1
2! + ¨ ¨ ¨+ 1

n!

)
ď e

(n + 1)!

So we have a lower bound on the error, but our upper bound involves the e — precisely
the quantity we are trying to get a handle on.

But all is not lost. Let’s look a little more closely at the right-hand inequality when
n = 1:

e´ (1 + 1) ď e
2

move the e’s to one side
e
2
ď 2 and clean it up

e ď 4.

Now this is a pretty crude bound60 but it isn’t hard to improve. Try this again with n = 2:

e´ (1 + 1 +
1
2
) ď e

6
move e’s to one side

5e
6
ď 5

2
e ď 3.

Better. Now we can rewrite our bound:

1
(n + 1)!

ď e´
(

1 + 1 + 1
2! + ¨ ¨ ¨+ 1

n!

)
ď e

(n + 1)!
ď 3

(n + 1)!

If we set n = 4 in this we get

1
120

=
1
5!
ď e´

(
1 + 1 +

1
2
+

1
6
+

1
24

)
ď 3

120

So the error is between 1
120 and 3

120 = 1
40 — this approximation isn’t guaranteed to give us

the first 2 decimal places. If we ramp n up to 9 however, we get

1
10!

ď e´
(

1 + 1 +
1
2
+ ¨ ¨ ¨+ 1

9!

)
ď 3

10!

59 Check the derivative!
60 The authors hope that by now we all “know” that e is between 2 and 3, but maybe we don’t know how

to prove it.
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Since 10! = 3628800, the upper bound on the error is 3
3628800 ă 3

3000000 = 10´6, and we can
approximate e by

1 + 1 + 1
2! + 1

3! + 1
4! + 1

5! + 1
6! + 1

7! + 1
8! + 1

9!

=1 + 1 + 0.5 + 0.16̇ + 0.0416̇ + 0.0083̇ + 0.00138̇ + 0.0001984 + 0.0000248 + 0.0000028
=2.718282

and it is correct to six decimal places.
Example 3.6.17

3.6.3 §§ Optional — Linking ex with Trigonometric Functions

Let us return to the observation that we made earlier about the Maclaurin series for sine,
cosine and the exponential functions:

cos x + sin x = 1 + x´ 1
2!

x2 ´ 1
3!

x3 +
1
4!

x4 +
1
5!

x5 ´ ¨ ¨ ¨

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ¨ ¨ ¨

We see that these series are identical except for the differences in the signs of the coeffi-
cients. Let us try to make them look even more alike by introducing extra constants A, B
and q into the equations. Consider

A cos x + B sin x = A + Bx´ A
2!

x2 ´ B
3!

x3 +
A
4!

x4 +
B
5!

x5 ´ ¨ ¨ ¨

eqx = 1 + qx +
q2

2!
x2 +

q3

3!
x3 +

q4

4!
x4 +

q5

5!
x5 + ¨ ¨ ¨

Let’s try to choose A, B and q so that these to expressions are equal. To do so we must make
sure that the coefficients of the various powers of x agree. Looking just at the coefficients
of x0 and x1, we see that we need

A = 1 and B = q

Substituting this into our expansions gives

cos x + q sin x = 1 + qx´ 1
2!

x2 ´ q
3!

x3 +
1
4!

x4 +
q
5!

x5 ´ ¨ ¨ ¨

eqx = 1 + qx +
q2

2!
x2 +

q3

3!
x3 +

q4

4!
x4 +

q5

5!
x5 + ¨ ¨ ¨

Now the coefficients of x0 and x1 agree, but the coefficient of x2 tells us that we need q to
be a number so that q2 = ´1, or

q =
?´1
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We know that no such real number q exists. But for the moment let us see what happens if
we just assume61 that we can find q so that q2 = ´1. Then we will have that

q3 = ´q q4 = 1 q5 = q ¨ ¨ ¨
so that the series for cos x + q sin x and eqx are identical. That is

eqx = cos x + q sin x

If we now write this with the more usual notation q =
?´1 = i we arrive at what is now

known as Euler’s formula

eix = cos x + i sin x

Equation 3.6.18.

Euler’s proof of this formula (in 1740) was based on Maclaurin expansions (much like
our explanation above). Euler’s formula62 is widely regarded as one of the most important
and beautiful in all of mathematics.

Of course having established Euler’s formula one can find slicker demonstrations. For
example, let

f (x) = e´ix (cos x + i sin x)

Differentiating (with product and chain rules and the fact that i2 = ´1) gives us

f 1(x) = ´ie´ix (cos x + i sin x) + e´ix (´ sin x + i cos x)
= 0

Since the derivative is zero, the function f (x) must be a constant. Setting x = 0 tells us
that

f (0) = e0 (cos 0 + i sin 0) = 1.

Hence f (x) = 1 for all x. Rearranging then arrives at

eix = cos x + i sin x

61 We do not wish to give a primer on imaginary and complex numbers here. The interested reader can
start by looking at Appendix B.

62 It is worth mentioning here that history of this topic is perhaps a little rough on Roger Cotes (1682–
1716) who was one of the strongest mathematicians of his time and a collaborator of Newton. Cotes
published a paper on logarithms in 1714 in which he states

ix = log(cos x + i sin x).

(after translating his results into more modern notation). He proved this result by computing in two
different ways the surface area of an ellipse rotated about one axis and equating the results. Unfortu-
nately Cotes died only 2 years later at the age of 33. Upon hearing of his death Newton is supposed
to have said “If he had lived, we might have known something.” The reader might think this a rather
weak statement, however coming from Newton it was high praise.
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as required.
Substituting x = π into Euler’s formula we get Euler’s identity

eiπ = ´1

which is more often stated

eiπ + 1 = 0

Equation 3.6.19.

which links the 5 most important constants in mathematics, 1, 0, π, e and
?´1.

3.6.4 §§ Evaluating Limits using Taylor Expansions

Taylor polynomials provide a good way to understand the behaviour of a function near a
specified point and so are useful for evaluating complicated limits. Here are some exam-
ples.

Example 3.6.20

In this example, we’ll start with a relatively simple limit, namely

lim
xÑ0

sin x
x

The first thing to notice about this limit is that, as x tends to zero, both the numerator, sin x,
and the denominator, x, tend to 0. So we may not evaluate the limit of the ratio by simply
dividing the limits of the numerator and denominator. To find the limit, or show that it
does not exist, we are going to have to exhibit a cancellation between the numerator and
the denominator. Let’s start by taking a closer look at the numerator. By Example 3.6.4,

sin x = x´ 1
3!

x3 +
1
5!

x5 ´ ¨ ¨ ¨

Consequently63

sin x
x

= 1´ 1
3!

x2 +
1
5!

x4 ´ ¨ ¨ ¨

63 We are hiding some mathematics behind this “consequently”. What we are really using is our knowl-
edge of Taylor polynomials to write

f (x) = sin(x) = x´
1
3!

x3 +
1
5!

x5 + E5(x)

where E5(x) = f (6)(c)
6! x6 and c is between 0 and x. We are effectively hiding “E5(x)” inside the “¨ ¨ ¨ ”.

Now we can divide both sides by x (assuming x ‰ 0):

sin(x)
x

= 1´
1
3!

x2 +
1
5!

x4 +
E5(x)

x
.

and everything is fine provided the term E5(x)
x stays well behaved.
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Every term in this series, except for the very first term, is proportional to a strictly positive
power of x. Consequently, as x tends to zero, all terms in this series, except for the very
first term, tend to zero. In fact the sum of all terms, starting with the second term, also
tends to zero. That is,

lim
xÑ0

[
´ 1

3!
x2 +

1
5!

x4 ´ ¨ ¨ ¨
]
= 0

We won’t justify that statement here, but it will be justified in the following (optional)
subsection. So

lim
xÑ0

sin x
x

= lim
xÑ0

[
1´ 1

3!
x2 +

1
5!

x4 ´ ¨ ¨ ¨
]

= 1 + lim
xÑ0

[
´ 1

3!
x2 +

1
5!

x4 ´ ¨ ¨ ¨
]

= 1

Example 3.6.20

The limit in the previous example can also be evaluated relatively easily using l’Hôpital’s
rule64. While the following limit can also, in principal, be evaluated using l’Hôpital’s rule,
it is much more efficient to use Taylor series65.

Example 3.6.21

In this example we evaluate

lim
xÑ0

arctan x´ x
sin x´ x

Once again, the first thing to notice about this limit is that, as x tends to zero, the numera-
tor tends to arctan 0´ 0, which is 0, and the denominator tends to sin 0´ 0, which is also
0. So we may not evaluate the limit of the ratio by simply dividing the limits of the nu-
merator and denominator. Again, to find the limit, or show that it does not exist, we are
going to have to exhibit a cancellation between the numerator and the denominator. To
get a more detailed understanding of the behaviour of the numerator and denominator
near x = 0, we find their Taylor expansions. By Example 3.5.21,

arctan x = x´ x3

3
+

x5

5
´ ¨ ¨ ¨

so the numerator

arctan x´ x = ´x3

3
+

x5

5
´ ¨ ¨ ¨

By Example 3.6.4,

sin x = x´ 1
3!

x3 +
1
5!

x5 ´ ¨ ¨ ¨

64 Many of you learned about l’Hôpital’s rule in school and all of you should have seen it last term in your
differential calculus course.

65 It takes 3 applications of l’Hôpital’s rule and some careful cleaning up of the intermediate expressions.
Oof!
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so the denominator
sin x´ x = ´ 1

3!
x3 +

1
5!

x5 ´ ¨ ¨ ¨
and the ratio

arctan x´ x
sin x´ x

=
´ x3

3 + x5

5 ´ ¨ ¨ ¨
´ 1

3! x
3 + 1

5! x
5 ´ ¨ ¨ ¨

Notice that every term in both the numerator and the denominator contains a common
factor of x3, which we can cancel out.

arctan x´ x
sin x´ x

=
´1

3 +
x2

5 ´ ¨ ¨ ¨
´ 1

3! +
1
5! x

2 ´ ¨ ¨ ¨
As x tends to zero,

• the numerator tends to ´1
3 , which is not 0, and

• the denominator tends to ´ 1
3! = ´1

6 , which is also not 0.

so we may now legitimately evaluate the limit of the ratio by simply dividing the limits
of the numerator and denominator.

lim
xÑ0

arctan x´ x
sin x´ x

= lim
xÑ0

´1
3 +

x2

5 ´ ¨ ¨ ¨
´ 1

3! +
1
5! x

2 ´ ¨ ¨ ¨

=
limxÑ0

[´ 1
3 +

x2

5 ´ ¨ ¨ ¨
]

limxÑ0
[´ 1

3! +
1
5! x

2 ´ ¨ ¨ ¨ ]

=
´1/3

´1/3!

= 2

Example 3.6.21

3.6.5 §§ Optional — The Big O Notation

In Example 3.6.20 we used, without justification66, that, as x tends to zero, not only does
every term in

sin x
x

´ 1 = ´ 1
3!

x2 +
1
5!

x4 ´ ¨ ¨ ¨ =
8ÿ

n=1

(´1)n 1
(2n + 1)!

x2n

converge to zero, but in fact the sum of all infinitely many terms also converges to zero.
We did something similar twice in Example 3.6.21; once in computing the limit of the
numerator and once in computing the limit of the denominator.

66 Though there were a few comments in a footnote.
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We’ll now develop some machinery that provides the justification. We start by recall-
ing, from equation (3.6.1), that if, for some natural number n, the function f (x) has n + 1
derivatives near the point a, then

f (x) = Tn(x) + En(x)

where
Tn(x) = f (a) + f 1(a) (x´ a) + ¨ ¨ ¨+ 1

n! f (n)(a) (x´ a)n

is the Taylor polynomial of degree n for the function f (x) and expansion point a and

En(x) = f (x)´ Tn(x) = 1
(n+1)! f (n+1)(c) (x´ a)n+1

is the error introduced when we approximate f (x) by the polynomial Tn(x). Here c is
some unknown number between a and x. As c is not known, we do not know exactly
what the error En(x) is. But that is usually not a problem.

In the present context67 we are interested in taking the limit as x Ñ a. So we are only
interested in x-values that are very close to a, and because c lies between x and a, c is also
very close to a. Now, as long as f (n+1)(x) is continuous at a, as x Ñ a, f (n+1)(c) must
approach f (n+1)(a) which is some finite value. This, in turn, means that there must be
constants M, D ą 0 such that

ˇ̌
f (n+1)(c)

ˇ̌ ď M for all c’s within a distance D of a. If so,
there is another constant C (namely M

(n+1)! ) such that

ˇ̌
En(x)

ˇ̌ ď C|x´ a|n+1 whenever |x´ a| ď D

There is some notation for this behaviour.

Let a and m be real numbers. We say that the function “g(x) is of order |x´ a|m
near a” and we write g(x) = O

(|x´ a|m) if there exist constants68 C, D ą 0 such
that

ˇ̌
g(x)

ˇ̌ ď C|x´ a|m whenever |x´ a| ď D

Equation 3.6.23.

Whenever O
(|x´ a|m) appears in an algebraic expression, it just stands for some

(unknown) function g(x) that obeys (3.6.23). This is called “big O” notation.

Definition 3.6.22 (Big O).

How should we parse the big O notation when we see it? Consider the following

g(x) = O(|x´ 3|2)

67 It is worth pointing out that our Taylor series must be expanded about the point to which we are
limiting — i.e. a. To work out a limit as x Ñ a we need Taylor series expanded about a and not some
other point.

68 To be precise, C and D do not depend on x, though they may, and usually do, depend on m.
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First of all, we know from the definition that the notation only tells us something about
g(x) for x near the point a. The equation above contains “O(|x ´ 3|2)” which tells us
something about what the function looks like when x is close to 3. Further, because it is
“|x´ 3|” squared, it says that the graph of the function lies below a parabola y = C(x´ 3)2

and above a parabola y = ´C(x ´ 3)2 near x = 3. The notation doesn’t tell us anything
more than this — we don’t know, for example, that the graph of g(x) is concave up or
concave down. It also tells us that Taylor expansion of g(x) around x = 3 does not contain
any constant or linear term — the first non-zero term in the expansion is of degree at least
two. For example, all of the following functions are O(|x´ 3|2).

5(x´ 3)2 + 6(x´ 3)3, ´7(x´ 3)2 ´ 8(x´ 3)4, (x´ 3)3, (x´ 3)5/2

In the next few examples we will rewrite a few of the Taylor polynomials that we know
using this big O notation.

Example 3.6.24

Let f (x) = sin x and a = 0. Then

f (x) = sin x f 1(x) = cos x f 2(x) = ´ sin x f (3)(x) = ´ cos x f (4)(x) = sin x ¨ ¨ ¨
f (0) = 0 f 1(0) = 1 f 2(0) = 0 f (3)(0) = ´1 f (4)(0) = 0 ¨ ¨ ¨

and the pattern repeats. So every derivative is plus or minus either sine or cosine and, as
we saw in previous examples, this makes analysing the error term for the sine and cosine
series quite straightforward. In particular,

ˇ̌
f (n+1)(c)

ˇ̌ ď 1 for all real numbers c and all
natural numbers n. So the Taylor polynomial of, for example, degree 3 and its error term
are

sin x = x´ 1
3! x

3 + cos c
5! x5

= x´ 1
3! x

3 + O(|x|5)

under Definition 3.6.22, with C = 1
5! and any D ą 0. Similarly, for any natural number n,

sin x = x´ 1
3! x

3 + 1
5! x

5 ´ ¨ ¨ ¨+ (´1)n 1
(2n+1)! x

2n+1 + O
(|x|2n+3)

cos x = 1´ 1
2! x

2 + 1
4! x

4 ´ ¨ ¨ ¨+ (´1)n 1
(2n)! x

2n + O
(|x|2n+2)

Equation 3.6.25.

Example 3.6.24

When we studied the error in the expansion of the exponential function (way back in
optional Example 3.6.6), we had to go to some length to understand the behaviour of the
error term well enough to prove convergence for all numbers x. However, in the big O
notation, we are free to assume that x is close to 0. Furthermore we do not need to derive
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an explicit bound on the size of the coefficient C. This makes it quite a bit easier to verify
that the big O notation is correct.

Example 3.6.26

Let n be any natural number. Since d
dx ex = ex, we know that dk

dxk texu = ex for every integer
k ě 0. Thus

ex = 1 + x + x2

2! +
x3

3! + ¨ ¨ ¨+ xn

n! +
ec

(n+1)! x
n+1

for some c between 0 and x. If, for example, |x| ď 1, then |ec| ď e, so that the error term

ˇ̌ ec

(n+1)! x
n+1 ˇ̌ ď C|x|n+1 with C = e

(n+1)! whenever |x| ď 1

So, under Definition 3.6.22, with C = e
(n+1)! and D = 1,

ex = 1 + x + x2

2! +
x3

3! + ¨ ¨ ¨+ xn

n! + O
(|x|n+1)

Equation 3.6.27.

You can see that, because we only have to consider x’s that are close to the expansion
point (in this example, 0) it is relatively easy to derive the bounds that are required to
justify the use of the big O notation.

Example 3.6.26

Example 3.6.28

Let f (x) = log(1 + x) and a = 0. Then

f 1(x) = 1
1+x f 2(x) = ´ 1

(1+x)2 f (3)(x) = 2
(1+x)3 f (4)(x) = ´ 2ˆ3

(1+x)4 f (5)(x) = 2ˆ3ˆ4
(1+x)5

f 1(0) = 1 f 2(0) = ´1 f (3)(0) = 2 f (4)(0) = ´3! f (5)(0) = 4!

We can see a pattern for f (n)(x) forming here — f (n)(x) is a sign times a ratio with

• the sign being + when n is odd and being ´when n is even. So the sign is (´1)n´1.
• The denominator is (1 + x)n.
• The numerator69 is the product 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ (n´ 1) = (n´ 1)!.

69 Remember that n! = 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n, and that we use the convention 0! = 1.
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Thus70, for any natural number n,

f (n)(x) = (´1)n´1 (n´1)!
(1+x)n which means that

1
n! f (n)(0) xn = (´1)n´1 (n´1)!

n! xn = (´1)n´1 xn

n

so
log(1 + x) = x´ x2

2 + x3

3 ´ ¨ ¨ ¨+ (´1)n´1 xn

n + En(x)

with
En(x) = 1

(n+1)! f (n+1)(c) (x´ a)n+1 = 1
n+1 ¨ (´1)n

(1+c)n+1 ¨ xn+1

If we choose, for example D = 1
2 , then71 for any x obeying |x| ď D = 1

2 , we have |c| ď 1
2

and |1 + c| ě 1
2 so that

|En(x)| ď 1
(n+1)(1/2)n+1 |x|n+1 = O

(|x|n+1)

under Definition 3.6.22, with C = 2n+1

n+1 and D = 1
2 . Thus we may write

log(1 + x) = x´ x2

2 + x3

3 ´ ¨ ¨ ¨+ (´1)n´1 xn

n + O
(|x|n+1)

Equation 3.6.29.

Example 3.6.28

Remark 3.6.30. The big O notation has a few properties that are useful in computations
and taking limits. All follow immediately from Definition 3.6.22.

(a) If p ą 0, then
lim
xÑ0

O(|x|p) = 0

(b) For any real numbers p and q,

O(|x|p) O(|x|q) = O(|x|p+q)

70 It is not too hard to make this rigorous using the principle of mathematical induction. The interested
reader should do a little search-engine-ing. Induction is a very standard technique for proving state-
ments of the form “For every natural number n,. . . ”. For example

For every natural number n,
nÿ

k=1

k =
n(n + 1)

2
or

For every natural number n,
dn

dxn tlog(1 + x)u = (´1)n´1 (n´ 1)!
(1 + x)n

It was also used by Polya (1887–1985) to give a very convincing (but subtly (and deliberately) flawed)
proof that all horses have the same colour.

71 Since |c| ď 1
2 , ´ 1

2 ď c ď 1
2 . If we now add 1 to every term we get 1

2 ď 1 + c ď 3
2 and so |1 + c| ě 1

2 .
You can also do this with the triangle inequality which tells us that for any x, y we know that |x + y| ď
|x|+ |y|. Actually, you want the reverse triangle inequality (which is a simple corollary of the triangle
inequality) which says that for any x, y we have |x + y| ě

ˇ̌
|x| ´ |y|

ˇ̌
.
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(This is just because C|x|p ˆ C1|x|q = (CC1)|x|p+q.) In particular,

axm O(|x|p) = O(|x|p+m)

for any constant a and any integer m.

(c) For any real numbers p and q,

O(|x|p) + O(|x|q) = O(|x|mintp,qu)

(For example, if p = 2 and q = 5, then C|x|2 + C1|x|5 =
(
C + C1|x|3)|x|2 ď (C + C1)|x|2

whenever |x| ď 1.)

(d) For any real numbers p and q with p ą q, any function which is O(|x|p) is also O(|x|q)
because C|x|p = C|x|p´q|x|q ď C|x|q whenever |x| ď 1.

(e) All of the above observations also hold for more general expressions with |x| replaced
by |x´ a|, i.e. for O(|x´ a|p). The only difference being in (a) where we must take the
limit as x Ñ a instead of x Ñ 0.

3.6.6 §§ Optional — Evaluating Limits Using Taylor Expansions — More Ex-
amples

Example 3.6.31 (Example 3.6.20 revisited)

In this example, we’ll return to the limit

lim
xÑ0

sin x
x

of Example 3.6.20 and treat it more carefully. By Example 3.6.24,

sin x = x´ 1
3!

x3 + O(|x|5)

That is, for small x, sin x is the same as x ´ 1
3! x

3, up to an error that is bounded by some
constant times |x|5. So, dividing by x, sin x

x is the same as 1´ 1
3! x

2, up to an error that is
bounded by some constant times x4 — see Remark 3.6.30(b). That is

sin x
x

= 1´ 1
3!

x2 + O(x4)

But any function that is bounded by some constant times x4 (for all x smaller than some
constant D ą 0) necessarily tends to 0 as x Ñ 0 — see Remark 3.6.30(a). . Thus

lim
xÑ0

sin x
x

= lim
xÑ0

[
1´ 1

3!
x2 + O(x4)

]
= lim

xÑ0

[
1´ 1

3!
x2
]
= 1

Reviewing the above computation, we see that we did a little more work than we had
to. It wasn’t necessary to keep track of the ´ 1

3! x
3 contribution to sin x so carefully. We

could have just said that
sin x = x + O(|x|3)
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so that

lim
xÑ0

sin x
x

= lim
xÑ0

x + O(|x|3)
x

= lim
xÑ0

[
1 + O(x2)

]
= 1

We’ll spend a little time in the later, more complicated, examples learning how to choose
the number of terms we keep in our Taylor expansions so as to make our computations as
efficient as possible.

Example 3.6.31

Example 3.6.32

In this example, we’ll use the Taylor polynomial of Example 3.6.28 to evaluate lim
xÑ0

log(1+x)
x

and lim
xÑ0

(1 + x)a/x. The Taylor expansion of equation (3.6.29) with n = 1 tells us that

log(1 + x) = x + O(|x|2)

That is, for small x, log(1 + x) is the same as x, up to an error that is bounded by some
constant times x2. So, dividing by x, 1

x log(1 + x) is the same as 1, up to an error that is
bounded by some constant times |x|. That is

1
x

log(1 + x) = 1 + O(|x|)

But any function that is bounded by some constant times |x|, for all x smaller than some
constant D ą 0, necessarily tends to 0 as x Ñ 0. Thus

lim
xÑ0

log(1 + x)
x

= lim
xÑ0

x + O(|x|2)
x

= lim
xÑ0

[
1 + O(|x|)] = 1

We can now use this limit to evaluate

lim
xÑ0

(1 + x)a/x.

Now, we could either evaluate the limit of the logarithm of this expression, or we can
carefully rewrite the expression as e(something). Let us do the latter.

lim
xÑ0

(1 + x)a/x = lim
xÑ0

ea/x log(1+x)

= lim
xÑ0

e
a
x [x+O(|x|2)]

= lim
xÑ0

ea+O(|x|) = ea

Here we have used that if F(x) = O(|x|2) then a
x F(x) = O(x) — see Remark 3.6.30(b). We

have also used that the exponential is continuous — as x tends to zero, the exponent of
ea+O(|x|) tends to a so that ea+O(|x|) tends to ea — see Remark 3.6.30(a).
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Example 3.6.32

Example 3.6.33

In this example, we’ll evaluate72 the harder limit

lim
xÑ0

cos x´ 1 + 1
2 x sin x

[log(1 + x)]4

The first thing to notice about this limit is that, as x tends to zero, the numerator

cos x´ 1 + 1
2 x sin x Ñ cos 0´ 1 + 1

2 ¨ 0 ¨ sin 0 = 0

and the denominator

[log(1 + x)]4 Ñ [log(1 + 0)]4 = 0

too. So both the numerator and denominator tend to zero and we may not simply evaluate
the limit of the ratio by taking the limits of the numerator and denominator and dividing.

To find the limit, or show that it does not exist, we are going to have to exhibit a cancel-
lation between the numerator and the denominator. To develop a strategy for evaluating
this limit, let’s do a “little scratch work”, starting by taking a closer look at the denomina-
tor. By Example 3.6.28,

log(1 + x) = x + O(x2)

This tells us that log(1 + x) looks a lot like x for very small x. So the denominator [x +
O(x2)]4 looks a lot like x4 for very small x. Now, what about the numerator?

• If the numerator looks like some constant times xp with p ą 4, for very small x, then
the ratio will look like the constant times xp

x4 = xp´4 and, as p´ 4 ą 0, will tend to 0
as x tends to zero.

• If the numerator looks like some constant times xp with p ă 4, for very small x, then
the ratio will look like the constant times xp

x4 = xp´4 and will, as p´ 4 ă 0, tend to
infinity, and in particular diverge, as x tends to zero.

• If the numerator looks like Cx4, for very small x, then the ratio will look like Cx4

x4 = C
and will tend to C as x tends to zero.

The moral of the above “scratch work” is that we need to know the behaviour of the
numerator, for small x, up to order x4. Any contributions of order xp with p ą 4 may be
put into error terms O(|x|p).

72 Use of l’Hôpital’s rule here could be characterised as a “courageous decision”. The interested reader
should search-engine their way to Sir Humphrey Appleby and ‘Yes Minister” to better understand this
reference (and the workings of government in the Westminster system). Discretion being the better part
of valour, we’ll stop and think a little before limiting (ha) our choices.
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Now we are ready to evaluate the limit. Because the expressions are a little involved,
we will simplify the numerator and denominator separately and then put things together.
Using the expansions we developed in Example 3.6.24, the numerator,

cos x´ 1 +
1
2

x sin x =

(
1´ 1

2!
x2 +

1
4!

x4 + O(|x|6)
)

´ 1 +
x
2

(
x´ 1

3!
x3 + O(|x|5)

)
expand

=

(
1

24
´ 1

12

)
x4 + O(|x|6) + x

2
O(|x|5)

= ´ 1
24

x4 + O(|x|6) + O(|x|6) by Remark 3.6.30(b)

= ´ 1
24

x4 + O(|x|6) by Remark 3.6.30(c)

Similarly, using the expansion that we developed in Example 3.6.28,

[log(1 + x)]4 =
[
x + O(|x|2)]4

=
[
x + xO(|x|)]4 by Remark 3.6.30(b)

= x4[1 + O(|x|)]4

Now put these together and take the limit as x Ñ 0:

lim
xÑ0

cos x´ 1 + 1
2 x sin x

[log(1 + x)]4
= lim

xÑ0

´ 1
24 x4 + O(|x|6)

x4[1 + O(|x|)]4

= lim
xÑ0

´ 1
24 x4 + x4O(|x|2)
x4[1 + O(|x|)]4 by Remark 3.6.30(b)

= lim
xÑ0

´ 1
24 + O(|x|2)

[1 + O(|x|)]4

= ´ 1
24

by Remark 3.6.30(a).

Example 3.6.33

The next two limits have much the same flavour as those above — expand the numera-
tor and denominator to high enough order, do some cancellations and then take the limit.
We have increased the difficulty a little by introducing “expansions of expansions”.

Example 3.6.34

In this example we’ll evaluate another harder limit, namely

lim
xÑ0

log
( sin x

x
)

x2

The first thing to notice about this limit is that, as x tends to zero, the denominator x2 tends
to 0. So, yet again, to find the limit, we are going to have to show that the numerator also
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tends to 0 and we are going to have to exhibit a cancellation between the numerator and
the denominator.

Because the denominator is x2 any terms in the numerator, log
( sin x

x
)

that are of order

x3 or higher will contribute terms in the ratio log( sin x
x )

x2 that are of order x or higher. Those
terms in the ratio will converge to zero as x Ñ 0. The moral of this discussion is that we
need to compute log sin x

x to order x2 with errors of order x3. Now we saw, in Example
3.6.31, that

sin x
x

= 1´ 1
3!

x2 + O(x4)

We also saw, in equation (3.6.29) with n = 1, that

log(1 + X) = X + O(X2)

Substituting73 X = ´ 1
3! x

2 +O(x4), and using that X2 = O(x4) (by Remark 3.6.30(b,c)), we
have that the numerator

log
(sin x

x

)
= log(1 + X) = X + O(X2) = ´ 1

3!
x2 + O(x4)

and the limit

lim
xÑ0

log
( sin x

x
)

x2 = lim
xÑ0

´ 1
3! x

2 + O(x4)

x2 = lim
xÑ0

[
´ 1

3!
+ O(x2)

]
= ´ 1

3!
= ´1

6

Example 3.6.34

Example 3.6.35

Evaluate

lim
xÑ0

ex2 ´ cos x
log(1 + x)´ sin x

Solution.

Step 1: Find the limit of the denominator.

lim
xÑ0

[
log(1 + x)´ sin x

]
= log(1 + 0)´ sin 0 = 0

This tells us that we can’t evaluate the limit just by finding the limits of the numerator and
denominator separately and then dividing.
Step 2: Determine the leading order behaviour of the denominator near x = 0. By equa-
tions (3.6.29) and (3.6.25),

log(1 + x) = x´ 1
2 x2 + 1

3 x3 ´ ¨ ¨ ¨
sin x = x´ 1

3! x
3 + 1

5! x
5 ´ ¨ ¨ ¨

73 In our derivation of log(1 + X) = X + O(X2) in Example 3.6.28, we required only that |X| ď 1
2 . So we

are free to substitute X = ´ 1
3! x2 + O(x4) for any x that is small enough that

ˇ̌
´ 1

3! x2 + O(x4)
ˇ̌
ă 1

2 .
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Taking the difference of these expansions gives

log(1 + x)´ sin x = ´1
2 x2 +

(1
3 +

1
3!

)
x3 + ¨ ¨ ¨

This tells us that, for x near zero, the denominator is ´ x2

2 (that’s the leading order term)
plus contributions that are of order x3 and smaller. That is

log(1 + x)´ sin x = ´ x2

2 + O(|x|3)
Step 3: Determine the behaviour of the numerator near x = 0 to order x2 with errors of
order x3 and smaller (just like the denominator). By equation (3.6.27)

eX = 1 + X + O
(
X2)

Substituting X = x2

ex2
= 1 + x2 + O

(
x4)

cos x = 1´ 1
2 x2 + O

(
x4)

by equation (3.6.25). Subtracting, the numerator

ex2 ´ cos x = 3
2 x2 + O

(
x4)

Step 4: Evaluate the limit.

lim
xÑ0

ex2 ´ cos x
log(1 + x)´ sin x

= lim
xÑ0

3
2 x2 + O(x4)

´ x2

2 + O(|x|3)
= lim

xÑ0

3/2 + O(x2)

´1/2 + O(|x|) =
3/2

´1/2
= ´3

Example 3.6.35

3.7Ĳ Optional — Rational and Irrational Numbers

In this optional section we shall use series techniques to look a little at rationality and
irrationality of real numbers. We shall see the following results.

• A real number is rational (i.e. a ratio of two integers) if and only if its decimal
expansion is eventually periodic. “Eventually periodic” means that, if we denote
the nth decimal place by dn, then there are two positive integers k and p such that
dn+p = dn whenever n ą k. So the part of the decimal expansion after the decimal
point looks like

. a1a2a3 ¨ ¨ ¨ aklooooomooooon b1b2 ¨ ¨ ¨ bploooomoooon b1b2 ¨ ¨ ¨ bploooomoooon b1b2 ¨ ¨ ¨ bploooomoooon ¨ ¨ ¨

It is possible that a finite number of decimal places right after the decimal point do
not participate in the periodicity. It is also possible that p = 1 and b1 = 0, so that the
decimal expansion ends with an infinite string of zeros.

• e is irrational.
• π is irrational.
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§§ Decimal Expansions of Rational Numbers

We start by showing that a real number is rational if and only if its decimal expansion
is eventually periodic. We need only consider the expansions of numbers 0 ă x ă 1. If
a number is negative then we can just multiply it by ´1 and not change the expansion.
Similarly if the number is larger than 1 then we can just subtract off the integer part of the
number and leave the expansion unchanged.

§§§ Eventually Periodic Implies Rational

Let us assume that a number 0 ă x ă 1 has a decimal expansion that is eventually peri-
odic. Hence we can write

x = 0. a1a2a3 ¨ ¨ ¨ aklooooomooooon b1b2 ¨ ¨ ¨ bploooomoooon b1b2 ¨ ¨ ¨ bploooomoooon b1b2 ¨ ¨ ¨ bploooomoooon ¨ ¨ ¨

Let α = a1a2a3 ¨ ¨ ¨ ak and β = b1b2 ¨ ¨ ¨ bp. In particular, α has at most k digits and β has at
most p digits. Then we can (carefully) write

x =
α

10k +
β

10k+p +
β

10k+2p +
β

10k+3p + ¨ ¨ ¨

=
α

10k +
β

10k+p

8ÿ

j=0

10´p

This sum is just a geometric series (see Example 3.2.4) and we can evaluate it:

=
α

10k +
β

10k+p ¨
1

1´ 10´p =
α

10k +
β

10k ¨
1

10p ´ 1

=
1

10k

(
α +

β

10p ´ 1

)
=

α(10p ´ 1) + β

10k(10p ´ 1)

This is a ratio of integers, so x is a rational number.

§§§ Rational Implies Eventually Periodic

Let 0 ă x ă 1 be rational with x = a
b , where a and b are positive integers. We wish

to show that x’s decimal expansion is eventually periodic. Start by looking at the last
formula we derived in the “eventually periodic implies rational” subsection. If we can

express the denominator b in the form 10k(10p´1)
q with k, p and q integers, we will be in

business because a
b = aq

10k(10p´1) . From this we can generate the desired decimal expansion
by running the argument of the last subsection backwards. So we want to find integers k,
p, q such that 10k+p ´ 10k = b ¨ q. To do so consider the powers of 10 up to 10b:

1, 101, 102, 103, . . . , 10b

For each j = 0, 1, 2, . . . , b, find integers cj and 0 ď rj ă b so that

10j = b ¨ cj + rj
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To do so, start with 10j and repeatedly subtract b from it until the remainder drops strictly
below b. The rj’s can take at most b different values, namely 0, 1, 2, ¨ ¨ ¨ , b´ 1, and we now
have b + 1 rj’s, namely r0, r1, ¨ ¨ ¨ , rb. So we must be able to find two powers of 10 which
give the same remainder74. That is there must be 0 ď k ă l ď b so that rk = rl. Hence

10l ´ 10k = (bcl + rl)´ (bck + rk)

= b(cl ´ ck) since rk = rl.

and we have

b =
10k(10p ´ 1)

q

where p = l ´ k and q = cl ´ ck are both strictly positive integers, since l ą k so that
10l ´ 10k ą 0. Thus we can write

a
b
=

aq
10k(10p ´ 1)

Next divide the numerator aq by 10p ´ 1 and compute the remainder. That is, write aq =
α(10p ´ 1) + β with 0 ď β ă 10p ´ 1. Notice that 0 ď α ă 10k, as otherwise x = a

b ě 1.
That is, α has at most k digits and β has at most p digits. This, finally, gives us

x =
a
b
=

α(10p ´ 1) + β

10k(10p ´ 1)

=
α

10k +
β

10k(10p ´ 1)

=
α

10k +
β

10k+p(1´ 10´p)

=
α

10k +
β

10k+p

8ÿ

j=0

10´pj

which gives the required eventually periodic expansion.

§§ Irrationality of e
We will give 2 proofs that the number e is irrational, the first due to Fourier (1768–1830)
and the second due to Pennisi (1918–2010). Both are proofs by contradiction75 — we first
assume that e is rational and then show that this implies a contradiction. In both cases we
reach the contradiction by showing that a given quantity (related to the series expression
for e) must be both a positive integer and also strictly less than 1.

74 This is an application of the pigeon hole principle — the very simple but surprisingly useful idea that
if you have n items which you have to put in m boxes, and if n ą m, then at least one box must contain
more than one item.

75 Proof by contradiction is a standard and very powerful method of proof in mathematics. It relies on
the law of the excluded middle which states that any given mathematical statement P is either true or
false. Because of this, if we can show that the statement P being false implies something contradictory
— like 1 = 0 or a ą a — then we can conclude that P must be true. The interested reader can certainly
find many examples (and a far more detailed explanation) using their favourite search engine.
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§§§ Proof 1

This proof is due to Fourier. Let us assume that the number e is rational so we can write it
as

e =
a
b

where a, b are positive integers. Using the Maclaurin series for ex we have

a
b
= e1 =

8ÿ

n=0

1
n!

Now multiply both sides by b! to get

a
b!
b
=

8ÿ

n=0

b!
n!

The left-hand side of this expression is an integer. We complete the proof by showing that
the right-hand side cannot be an integer (and hence that we have a contradiction).

First split the series on the right-hand side into two piece as follows

8ÿ

n=0

b!
n!

=
bÿ

n=0

b!
n!loomoon

=A

+
8ÿ

n=b+1

b!
n!

looomooon
=B

The first sum, A, is finite sum of integers:

A =
bÿ

n=0

b!
n!

=
bÿ

n=0

(n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b.

Consequently A must be an integer. Notice that we simplified the ratio of factorials using
the fact that when b ě n we have

b!
n!

=
1 ¨ 2 ¨ ¨ ¨ n(n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b

1 ¨ 2 ¨ ¨ ¨ n = (n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b.

Now we turn to the second sum. Since it is a sum of strictly positive terms we must
have

B ą 0

We complete the proof by showing that B ă 1. To do this we bound each term from above:

b!
n!

=
1

(b + 1)(b + 2) ¨ ¨ ¨ (n´ 1)nloooooooooooooooomoooooooooooooooon
n´b factors

ď 1
(b + 1)(b + 1) ¨ ¨ ¨ (b + 1)(b + 1)loooooooooooooooooooomoooooooooooooooooooon

n´b factors

=
1

(b + 1)n´b
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Indeed the inequality is strict except when n = b + 1. Hence we have that

B ă
8ÿ

n=b+1

1
(b + 1)n´b

=
1

(b + 1)
+

1
(b + 1)2 +

1
(b + 1)3 + ¨ ¨ ¨

This is just a geometric series (see Example 3.2.4) and equals

=
1

(b + 1)
1

1´ 1
b+1

=
1

b + 1´ 1
=

1
b

And since b is a positive integer, we have shown that

0 ă B ă 1

and thus B cannot be an integer.
Thus we have that

a
b!
bloomoon

integer

= Aloomoon
integer

+ Bloomoon
not integer

which gives a contradiction. Thus e cannot be rational.

§§§ Proof 2

This proof is due to Pennisi (1953). Let us (again) assume that the number e is rational.
Hence it can be written as

e =
a
b

,

where a, b are positive integers. This means that we can write

e´1 =
b
a

.

Using the Maclaurin series for ex we have

b
a
= e´1 =

8ÿ

n=0

(´1)n

n!

Before we do anything else, we multiply both sides by (´1)a+1a! — this might seem a little
strange at this point, but the reason will become clear as we proceed through the proof.
The expression is now

(´1)a+1b
a!
a
=

8ÿ

n=0

(´1)n+a+1a!
n!
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The left-hand side of the expression is an integer. We again complete the proof by showing
that the right–hand side cannot be an integer.

We split the series on the right-hand side into two pieces:

8ÿ

n=0

(´1)n+a+1a!
n!

=
aÿ

n=0

(´1)n+a+1a!
n!looooooooomooooooooon

=A

+
8ÿ

n=a+1

(´1)n+a+1a!
n!looooooooooomooooooooooon

=B

We will show that A is an integer while 0 ă B ă 1; this gives the required contradiction.
Every term in the sum A is an integer. To see this we simplify the ratio of factorials as

we did in the previous proof:

A =
aÿ

n=0

(´1)n+a+1a!
n!

=
aÿ

n=0

(´1)n+a+1(n + 1)(n + 2) ¨ ¨ ¨ (a´ 1)a

Let us now examine the series B. Again clean up the ratio of factorials:

B =
8ÿ

n=a+1

(´1)n+a+1a!
n!

=
8ÿ

n=a+1

(´1)n+a+1

(a + 1) ¨ (a + 2) ¨ ¨ ¨ (n´ 1) ¨ n

=
(´1)2a+2

a + 1
+

(´1)2a+3

(a + 1)(a + 2)
+

(´1)2a+4

(a + 1)(a + 2)(a + 3)
+ ¨ ¨ ¨

=
1

a + 1
´ 1

(a + 1)(a + 2)
+

1
(a + 1)(a + 2)(a + 3)

´ ¨ ¨ ¨

Hence B is an alternating series of decreasing terms and by the alternating series test
(Theorem 3.3.14) it converges. Further, it must converge to a number between its first and
second partial sums (see the discussion before Theorem 3.3.14). Hence the right-hand side
lies between

1
a + 1

and
1

a + 1
´ 1

(a + 1)(a + 2)
=

1
a + 2

Since a is a positive integer the above tells us that B converges to a real number strictly
greater than 0 and strictly less than 1. Hence it cannot be an integer.

This gives us a contradiction and hence e cannot be rational.

§§ Irrationality of π

This proof is due to Niven (1946) and doesn’t require any mathematics beyond the level
of this course. Much like the proofs above we will start by assuming that π is rational and
then reach a contradiction. Again this contradiction will be that a given quantity must be
an integer but at the same time must lie strictly between 0 and 1.

Assume that π is a rational number and so can be written as π = a
b with a, b positive

integers. Now let n be a positive integer and define the polynomial

f (x) =
xn(a´ bx)n

n!
.
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It is certainly not immediately obvious why and how Niven chose this polynomial, but
you will see that it has been very carefully crafted to make the proof work. In particular
we will show — under our assumption that π is rational — that, if n is really big, then

In =

ż π

0
f (x) sin(x)dx

is an integer and it also lies strictly between 0 and 1, giving the required contradiction.

§§§ Bounding the Integral

Consider again the polynomial

f (x) =
xn(a´ bx)n

n!
.

Notice that

f (0) = 0
f (π) = f (a/b) = 0.

Furthermore, for 0 ď x ď π = a/b, we have x ď a
b and a´ bx ď a so that

0 ď x(a´ bx) ď a2/b.

We could work out a more precise76 upper bound, but this one is sufficient for the analysis
that follows. Hence

0 ď f (x) ď
(

a2

b

)n 1
n!

We also know that for 0 ď x ď π = a/b, 0 ď sin(x) ď 1. Thus

0 ď f (x) sin(x) ď
(

a2

b

)n 1
n!

for all 0 ď x ď 1. Using this inequality we bound

0 ă In =

ż π

0
f (x) sin(x)dx ă

(
a2

b

)n 1
n!

.

We will later show that, if n is really big, then
( a2

b
)n 1

n! ă 1. We’ll first show, starting now,
that In is an integer.

76 You got lots of practice finding the maximum and minimum values of continuous functions on closed
intervals when you took calculus last term.
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§§§ Integration by Parts

In order to show that the value of this integral is an integer we will use integration by
parts. You have already practiced using integration by parts to integrate quantities like

ż
x2 sin(x)dx

and this integral isn’t much different. For the moment let us just use the fact that f (x) is
a polynomial of degree 2n. Using integration by parts with u = f (x), dv = sin(x) and
v = ´ cos(x) gives us

ż
f (x) sin(x)dx = ´ f (x) cos(x) +

ż
f 1(x) cos(x)dx

Use integration by parts again with u = f 1(x), dv = cos(x) and v = sin(x).

= ´ f (x) cos(x) + f 1(x) sin(x)´
ż

f 2(x) sin(x)dx

Use integration by parts yet again, with u = f 2(x), dv = sin(x) and v = ´ cos(x).

= ´ f (x) cos(x) + f 1(x) sin(x) + f 2(x) cos(x)´
ż

f3(x) cos(x)dx

And now we can see the pattern; we get alternating signs, and then derivatives multiplied
by sines and cosines:

ż
f (x) sin(x)dx = cos(x)

(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

)

+ sin(x)
(

f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨
)

This terminates at the 2nth derivative since f (x) is a polynomial of degree 2n. We can
check this computation by differentiating the terms on the right-hand side:

d
dx

(
cos(x)

(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

))

= ´ sin(x)
(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

)

+ cos(x)
(
´ f 1(x) + f3(x)´ f (5)(x) + f (7)(x)´ ¨ ¨ ¨

)

and similarly

d
dx

(
sin(x)

(
f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨

))

= cos(x)
(

f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨
)

+ sin(x)
(

f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨
)
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When we add these two expressions together all the terms cancel except f (x) sin(x), as
required.

Now when we take the definite integral from 0 to π , all the sine terms give 0 because
sin(0) = sin(π) = 0. Since cos(π) = ´1 and cos(0) = +1, we are just left with:

ż π

0
f (x) sin(x)dx =

(
f (0)´ f 2(0) + f (4)(0)´ f (6)(0) + ¨ ¨ ¨+ (´1)n f (2n)(0)

)

+
(

f (π)´ f 2(π) + f (4)(π)´ f (6)(π) + ¨ ¨ ¨+ (´1)n f (2n)(π)
)

So to show that In is an integer, it now suffices to show that f (j)(0) and f (j)(π) are integers.

§§ The Derivatives are Integers

Recall that

f (x) =
xn(a´ bx)n

n!
and expand it:

f (x) =
c0

n!
x0 +

c1

n!
x1 + ¨ ¨ ¨+ cn

n!
xn + ¨ ¨ ¨+ c2n

n!
x2n

All the cj are integers, and clearly cj = 0 for all j = 0, 1, . . . , n´ 1, because of the factor xn

in f (x).
Now take the kth derivative and set x = 0. Note that, if j ă k, then dk

dxk xj = 0 for all x

and, if j ą k, then dk

dxk xj is some number times xj´k which evaluates to zero when we set
x = 0. So

f (k)(0) =
dk

dxk

( ck
k!

xk
)
=

k!ck
n!

If k ă n, then this is zero since ck = 0. If k ą n, this is an integer because ck is an integer
and k!/n! = (n + 1)(n + 2) ¨ ¨ ¨ (k´ 1)k is an integer. If k = n, then f (k)(0) = cn is again an
integer. Thus all the derivatives of f (x) evaluated at x = 0 are integers.

But what about the derivatives at π = a/b? To see this, we can make use of a handy
symmetry. Notice that

f (x) = f (π ´ x) = f (a/b´ x)

You can confirm this by just grinding through the algebra:

f (x) =
xn(a´ bx)n

n!
now replace x with a/b´ x

f (a/b´ x) =
(a/b´ x)n(a´ b(a/b´ x))n

n!
start cleaning this up:

=

(
a´bx

b

)n
(a´ a + bx)n

n!

=

(
a´bx

b

)n
(bx)n

n!

=
(a´ bx)nxn

n!
= f (x)
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Using this symmetry (and the chain rule) we see that

f 1(x) = ´ f 1(π ´ x)

and if we keep differentiating

f (k)(x) = (´1)k f (k)(π ´ x)

Setting x = 0 in this tells us that

f (k)(0) = (´1)k f (k)(π)

So because all the derivatives at x = 0 are integers, we know that all the derivatives at
x = π are also integers.

Hence the integral we are interested in
ż π

0
f (x) sin(x)dx

must be an integer.

§§§ Putting It Together

Based on our assumption that π = a/b is rational, we have shown that the integral

In =

ż π

0

xn(a´ bx)
n!

sin(x)dx

satisfies

0 ă In ă
(

a2

b

)n 1
n!

and also that In is an integer.
We are, however, free to choose n to be any positive integer we want. If we take n to be

very large — in particular much much larger than a — then n! will be much much larger
than a2n (we showed this in Example 3.6.6), and consequently

0 ă In ă
(

a2

b

)n 1
n!
ă 1

Which means that the integral cannot be an integer. This gives the required contradiction,
showing that π is irrational.
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Appendix A

This chapter is really split into three parts.

• Sections A.1 to A.11 contains results that we expect you to understand and know.

• Then Section A.14 contains results that we don’t expect you to memorise, but that
we think you should be able to quickly derive from other results you know.

• The remaining sections contain some material (that may be new to you) that is re-
lated to topics covered in the main body of these notes.

A.1Ĳ Similar Triangles

Two triangles T1, T2 are similar when

• (AAA — angle angle angle) The angles of T1 are the same as the angles of T2.

• (SSS — side side side) The ratios of the side lengths are the same. That is

A
a
=

B
b
=

C
c

• (SAS — side angle side) Two sides have lengths in the same ratio and the angle
between them is the same. For example

A
a
=

C
c

and angle β is same
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A.2Ĳ Pythagoras

For a right-angled triangle the length of the hypotenuse is related to the lengths of the
other two sides by

(adjacent)2 + (opposite)2 = (hypotenuse)2

A.3Ĳ Trigonometry — Definitions

sin θ =
opposite

hypotenuse
csc θ =

1
sin θ

cos θ =
adjacent

hypotenuse
sec θ =

1
cos θ

tan θ =
opposite
adjacent

cot θ =
1

tan θ

A.4Ĳ Radians, Arcs and Sectors

For a circle of radius r and angle of θ radians:

• Arc length L(θ) = rθ.

• Area of sector A(θ) = θ
2r2.
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A.5Ĳ Trigonometry — Graphs

sin θ cos θ tan θ

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

A.6Ĳ Trigonometry — Special Triangles

From the above pair of special triangles we have

sin
π

4
=

1?
2

sin
π

6
=

1
2

sin
π

3
=

?
3

2

cos
π

4
=

1?
2

cos
π

6
=

?
3

2
cos

π

3
=

1
2

tan
π

4
= 1 tan

π

6
=

1?
3

tan
π

3
=
?

3

A.7Ĳ Trigonometry — Simple Identities

• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(´θ) = ´ sin(θ) cos(´θ) = cos(θ)

• Reflection around π/4

sin
(

π
2 ´ θ

)
= cos θ cos

(
π
2 ´ θ

)
= sin θ
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• Reflection around π/2

sin (π ´ θ) = sin θ cos (π ´ θ) = ´ cos θ

• Rotation by π

sin (θ + π) = ´ sin θ cos (θ + π) = ´ cos θ

• Pythagoras

sin2 θ + cos2 θ = 1

A.8Ĳ Trigonometry — Add and Subtract Angles

• Sine

sin(α˘ β) = sin(α) cos(β)˘ cos(α) sin(β)

• Cosine

cos(α˘ β) = cos(α) cos(β)¯ sin(α) sin(β)

A.9Ĳ Inverse Trigonometric Functions

Some of you may not have studied inverse trigonometric functions in highschool, how-
ever we still expect you to know them by the end of the course.

arcsin x arccos x arctan x

Domain: ´1 ď x ď 1 Domain: ´1 ď x ď 1 Domain: all real numbers

Range: ´π
2 ď arcsin x ď π

2 Range: 0 ď arccos x ď π Range: ´π
2 ă arctan x ă π

2

´1 1

´π/2

π/2

´1 1

π/2

π

´ π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ ´π

2
ď θ ď π

2
arccos(cos θ) = θ 0 ď θ ď π

arctan(tan θ) = θ ´π

2
ď θ ď π

2
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and also

sin(arcsin x) = x ´1 ď x ď 1
cos(arccos x) = x ´1 ď x ď 1
tan(arctan x) = x any real x

arccsc x arcsec x arccot x

Domain: |x| ě 1 Domain: |x| ě 1 Domain: all real numbers

Range: ´π
2 ď arccsc x ď π

2 Range: 0 ď arcsec x ď π Range: 0 ă arccot x ă π
arccsc x ‰ 0 arcsec x ‰ π

2

´1 1

´ π
2

π
2

´1 1

π
2

π

π
2

π

Again

arccsc(csc θ) = θ ´π

2
ď θ ď π

2
, θ ‰ 0

arcsec(sec θ) = θ 0 ď θ ď π, θ ‰ π

2
arccot(cot θ) = θ 0 ă θ ă π

and

csc(arccsc x) = x |x| ě 1
sec(arcsec x) = x |x| ě 1
cot(arccot x) = x any real x

A.10Ĳ Areas

• Area of a rectangle

A = bh
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• Area of a triangle

A =
1
2

bh =
1
2

ab sin θ

• Area of a circle

A = πr2

• Area of an ellipse

A = πab

A.11Ĳ Volumes

• Volume of a rectangular prism

V = lwh

• Volume of a cylinder

V = πr2h

• Volume of a cone

V =
1
3

πr2h

• Volume of a sphere

V =
4
3

πr3

A.12Ĳ Powers

In the following, x and y are arbitrary real numbers, and q is an arbitrary constant that is
strictly bigger than zero.

• q0 = 1
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• qx+y = qxqy, qx´y = qx

qy

• q´x = 1
qx

•
(
qx)y

= qxy

• lim
xÑ8

qx = 8, lim
xÑ´8

qx = 0 if q ą 1

• lim
xÑ8

qx = 0, lim
xÑ´8

qx = 8 if 0 ă q ă 1

• The graph of 2x is given below. The graph of qx, for any q ą 1, is similar.

x

y

1 2 3−1−2−3

1
2

4

6

y = 2x

A.13Ĳ Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, and p
and q are arbitrary constants that are strictly bigger than one.

• qlogq x = x, logq
(
qx) = x

• logq x =
logp x
logp q

• logq 1 = 0, logq q = 1

• logq(xy) = logq x + logq y

• logq
( x

y
)
= logq x´ logq y

• logq
( 1

y
)
= ´ logq y,

• logq(xy) = y logq x

• lim
xÑ8

logq x = 8, lim
xÑ0+

logq x = ´8

• The graph of log10 x is given below. The graph of logq x, for any q ą 1, is similar.
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x

y

1 5 10 15

0.5

1.0

−0.5

−1.0

y = log10 x

A.14Ĳ Highschool Material You Should be Able to Derive

• Graphs of csc θ, sec θ and cot θ:

csc θ sec θ cot θ

´π ´ π
2

π
2

π 3π
2

2π´1

1

´π ´ π
2

π
2

π 3π
2

2π´1

1

´π ´ π
2

π
2

π 3π
2

2π

• More Pythagoras

sin2 θ + cos2 θ = 1
divide by cos2 θÞÝÝÝÝÝÝÝÝÝÝÑ tan2 θ + 1 = sec2 θ

sin2 θ + cos2 θ = 1
divide by sin2 θÞÝÝÝÝÝÝÝÝÝÑ 1 + cot2 θ = csc2 θ

• Sine — double angle (set β = α in sine angle addition formula)

sin(2α) = 2 sin(α) cos(α)

• Cosine — double angle (set β = α in cosine angle addition formula)

cos(2α) = cos2(α)´ sin2(α)

= 2 cos2(α)´ 1 (use sin2(α) = 1´ cos2(α))

= 1´ 2 sin2(α) (use cos2(α) = 1´ sin2(α))

• Composition of trigonometric and inverse trigonometric functions:

cos(arcsin x) =
a

1´ x2 sec(arctan x) =
a

1 + x2

and similar expressions.
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A.15Ĳ Cartesian Coordinates

Each point in two dimensions may be labeled by two coordinates (x, y) which specify the
position of the point in some units with respect to some axes as in the figure below.

x

y

x

y

(x, y)

The set of all points in two dimensions is denoted R2. Observe that

• the distance from the point (x, y) to the x–axis is |y|
• the distance from the point (x, y) to the y–axis is |x|
• the distance from the point (x, y) to the origin (0, 0) is

a
x2 + y2

Similarly, each point in three dimensions may be labeled by three coordinates (x, y, z),
as in the two figures below.

(x, y, z)

x

y

z

x

y

z

(x, y, z)

x

y

z

x

y

z

The set of all points in three dimensions is denoted R3. The plane that contains, for exam-
ple, the x– and y–axes is called the xy–plane.

• The xy–plane is the set of all points (x, y, z) that obey z = 0.
• The xz–plane is the set of all points (x, y, z) that obey y = 0.
• The yz–plane is the set of all points (x, y, z) that obey x = 0.

More generally,

• The set of all points (x, y, z) that obey z = c is a plane that is parallel to the xy–plane
and is a distance |c| from it. If c ą 0, the plane z = c is above the xy–plane. If
c ă 0, the plane z = c is below the xy–plane. We say that the plane z = c is a signed
distance c from the xy–plane.
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• The set of all points (x, y, z) that obey y = b is a plane that is parallel to the xz–plane
and is a signed distance b from it.

• The set of all points (x, y, z) that obey x = a is a plane that is parallel to the yz–plane
and is a signed distance a from it.

z = c

x

y

z

y = b

x

y

z

x = a

x

y

z

Observe that

• the distance from the point (x, y, z) to the xy–plane is |z|
• the distance from the point (x, y, z) to the xz–plane is |y|
• the distance from the point (x, y, z) to the yz–plane is |x|
• the distance from the point (x, y, z) to the origin (0, 0, 0) is

a
x2 + y2 + z2

The distance from the point (x, y, z) to the point (x1, y1, z1) is
b
(x´ x1)2 + (y´ y1)2 + (z´ z1)2

so that the equation of the sphere centered on (1, 2, 3) with radius 4, that is, the set of all
points (x, y, z) whose distance from (1, 2, 3) is 4, is

(x´ 1)2 + (y´ 2)2 + (z´ 3)2 = 16

A.16Ĳ Roots of Polynomials

Being able to factor polynomials is a very important part of many of the computations in
this course. Related to this is the process of finding roots (or zeros) of polynomials. That
is, given a polynomial P(x), find all numbers r so that P(r) = 0.

In the case of a quadratic P(x) = ax2 + bx + c, we can use the formula

x =
´b˘?b2 ´ 4ac

2a

The corresponding formulas for cubics and quartics1 are extremely cumbersome, and no
such formula exists for polynomials of degree 5 and higher2.

1 The method for cubics was developed in the 15th century by del Ferro, Cardano and Ferrari (Cardano’s
student). Ferrari then went on to discover a formula for the roots of a quartic. His formula requires the
solution of an associated cubic polynomial.

2 This is the famous Abel-Ruffini theorem.
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Despite this there are many tricks3 for finding roots of polynomials that work well in
some situations but not all. Here we describe approaches that will help you find integer
and rational roots of polynomials that will work well on exams, quizzes and homework
assignments.

Consider the quadratic equation x2 ´ 5x + 6 = 0. We could4 solve this using the
quadratic formula

x =
5˘?25´ 4ˆ 1ˆ 6

2
=

5˘ 1
2

= 2, 3.

Hence x2 ´ 5x + 6 has roots x = 2, 3 and so it factors as (x ´ 3)(x ´ 2). Notice5 that the
numbers 2 and 3 divide the constant term of the polynomial, 6. This happens in general
and forms the basis of our first trick.

If r or ´r is an integer root of a polynomial P(x) = anxn + ¨ ¨ ¨ + a1x + a0 with
integer coefficients, then r is a factor of the constant term a0.

Trick A.16.1 (A very useful trick).

Proof. If r is a root of the polynomial we know that P(r) = 0. Hence

an ¨ rn + ¨ ¨ ¨ + a1 ¨ r + a0 = 0

If we isolate a0 in this expression we get

a0 = ´[anrn + ¨ ¨ ¨ + a1r
]

We can see that r divides every term on the right-hand side. This means that the right-
hand side is an integer times r. Thus the left-hand side, being a0, is an integer times r, as
required. The argument for when ´r is a root is almost identical.

Let us put this observation to work.

Example A.16.1

Find the integer roots of P(x) = x3 ´ x2 + 2.

Solution.

• The constant term in this polynomial is 2.

• The only divisors of 2 are 1, 2. So the only candidates for integer roots are ˘1,˘2.

3 There is actually a large body of mathematics devoted to developing methods for factoring polyno-
mials. Polynomial factorisation is a fundamental problem for most computer algebra systems. The
interested reader should make use of their favourite search engine to find out more.

4 We probably shouldn’t do it this way for such a simple polynomial, but for pedagogical purposes we
do here.

5 Many of you may have been taught this approach in highschool.
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• Trying each in turn

P(1) = 2 P(´1) = 0
P(2) = 6 P(´2) = ´10

• Thus the only integer root is ´1.

Example A.16.1

Example A.16.2

Find the integer roots of P(x) = 3x3 + 8x2 ´ 5x´ 6.

Solution.

• The constant term is ´6.

• The divisors of 6 are 1, 2, 3, 6. So the only candidates for integer roots are˘1,˘2,˘3,˘6.

• We try each in turn (it is tedious but not difficult):

P(1) = 0 P(´1) = 4
P(2) = 40 P(´2) = 12
P(3) = 132 P(´3) = 0
P(6) = 900 P(´6) = ´336

• Thus the only integer roots are 1 and ´3.

Example A.16.2

We can generalise this approach in order to find rational roots. Consider the polyno-
mial 6x2 ´ x´ 2. We can find its zeros using the quadratic formula:

x =
1˘?1 + 48

12
=

1˘ 7
12

= ´1
2

,
2
3

.

Notice now that the numerators, 1 and 2, both divide the constant term of the polynomial
(being 2). Similarly, the denominators, 2 and 3, both divide the coefficient of the highest
power of x (being 6). This is quite general.

If b/d or ´b/d is a rational root in lowest terms (i.e. b and d are integers with
no common factors) of a polynomial Q(x) = anxn + ¨ ¨ ¨ + a1x + a0 with inte-
ger coefficients, then the numerator b is a factor of the constant term a0 and the
denominator d is a factor of an.

Trick A.16.2 (Another nice trick).
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Proof. Since b/d is a root of P(x) we know that

an(b/d)n + ¨ ¨ ¨ + a1(b/d) + a0 = 0

Multiply this equation through by dn to get

anbn + ¨ ¨ ¨ + a1bdn´1 + a0dn = 0

Move terms around to isolate a0dn:

a0dn = ´[anbn + ¨ ¨ ¨ + a1bdn´1]

Now every term on the right-hand side is some integer times b. Thus the left-hand side
must also be an integer times b. We know that d does not contain any factors of b, hence
a0 must be some integer times b (as required).

Similarly we can isolate the term anbn:

anbn = ´[an´1bn´1d + ¨ ¨ ¨ + a1bdn´1 + a0dn]

Now every term on the right-hand side is some integer times d. Thus the left-hand side
must also be an integer times d. We know that b does not contain any factors of d, hence
an must be some integer times d (as required).

The argument when ´b/d is a root is nearly identical.

We should put this to work:

Example A.16.3

P(x) = 2x2 ´ x´ 3.

Solution.

• The constant term in this polynomial is 3 = 1ˆ 3 and the coefficient of the highest
power of x is 2 = 1ˆ 2.

• Thus the only candidates for integer roots are ˘1, ˘3.

• By our newest trick, the only candidates for fractional roots are ˘1
2 , ˘3

2 .

• We try each in turn6

P(1) = ´2 P(´1) = 0
P(3) = 12 P(´3) = 18

P
(

1
2

)
= ´3 P

(
´1

2

)
= ´2

P
(3

2

)
= 0 P

(´3
2

)
= 3

so the roots are ´1 and 3
2 .

6 Again, this is a little tedious, but not difficult. Its actually pretty easy to code up for a computer to do.
Modern polynomial factoring algorithms do more sophisticated things, but these are a pretty good way
to start.
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Example A.16.3

The tricks above help us to find integer and rational roots of polynomials. With a little
extra work we can extend those methods to help us factor polynomials. Say we have a
polynomial P(x) of degree p and have established that r is one of its roots. That is, we
know P(r) = 0. Then we can factor (x´ r) out from P(x) — it is always possible to find a
polynomial Q(x) of degree p´ 1 so that

P(x) = (x´ r)Q(x)

In sufficiently simple cases, you can probably do this factoring by inspection. For
example, P(x) = x2 ´ 4 has r = 2 as a root because P(2) = 22 ´ 4 = 0. In this case,
P(x) = (x ´ 2)(x + 2) so that Q(x) = (x + 2). As another example, P(x) = x2 ´ 2x ´ 3
has r = ´1 as a root because P(´1) = (´1)2 ´ 2(´1)´ 3 = 1 + 2´ 3 = 0. In this case,
P(x) = (x + 1)(x´ 3) so that Q(x) = (x´ 3).

For higher degree polynomials we need to use something more systematic — long
divison.

Once you have found a root r of a polynomial, even if you cannot factor (x ´ r)
out of the polynomial by inspection, you can find Q(x) by dividing P(x) by x´ r,
using the long division algorithm you learned7 in school, but with 10 replaced
by x.

Trick A.16.3 (Long Division).

Example A.16.4

Factor P(x) = x3 ´ x2 + 2.

Solution.

• We can go hunting for integer roots of the polynomial by looking at the divisors of
the constant term. This tells us to try x = ˘1,˘2.

• A quick computation shows that P(´1) = 0 while P(1), P(´2), P(2) ‰ 0. Hence
x = ´1 is a root of the polynomial and so x + 1 must be a factor.

• So we divide x3´x2+2
x+1 . The first term, x2, in the quotient is chosen so that when you

multiply it by the denominator, x2(x + 1) = x3 + x2, the leading term, x3, matches
the leading term in the numerator, x3 ´ x2 + 2, exactly.

x+ 1
x2

x3 − x2 + 2
x3 + x2 x2(x+ 1)

7 This is a standard part of most highschool mathematics curricula, but perhaps not all. You should revise
this carefully.
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• When you subtract x2(x + 1) = x3 + x2 from the numerator x3 ´ x2 + 2 you get the
remainder´2x2 + 2. Just like in public school, the 2 is not normally “brought down”
until it is actually needed.

x+ 1
x2

x3 − x2 + 2
x3 + x2

−2x2

x2(x+ 1)

• The next term, ´2x, in the quotient is chosen so that when you multiply it by the
denominator, ´2x(x + 1) = ´2x2 ´ 2x, the leading term ´2x2 matches the leading
term in the remainder exactly.

x+ 1
x2 − 2x

x3 − x2 + 2
x3 + x2

−2x2

−2x2 − 2x

x2(x+ 1)

−2x(x+ 1)

And so on.

x+ 1
x2 − 2x + 2

x3 − x2 + 2
x3 + x2

−2x2

−2x2 − 2x

2x+2
2x+2

0

x2(x+ 1)

−2x(x+ 1)

2(x+ 1)

• Note that we finally end up with a remainder 0. A nonzero remainder would have
signalled a computational error, since we know that the denominator x´ (´1) must
divide the numerator x3 ´ x2 + 2 exactly.

• We conclude that

(x + 1)(x2 ´ 2x + 2) = x3 ´ x2 + 2

To check this, just multiply out the left hand side explicitly.

• Applying the high school quadratic root formula ´b˘
?

b2´4ac
2a to x2 ´ 2x + 2 tells us

that it has no real roots and that we cannot factor it further8.

Example A.16.4

8 Because we are not permitted to use complex numbers.
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We finish by describing an alternative to long division. The approach is roughly equiv-
alent, but is perhaps more straightforward at the expense of requiring more algebra.

Example A.16.5

Factor P(x) = x3 ´ x2 + 2, again.

Solution. Let us do this again but avoid long division.

• From the previous example, we know that x3´x2+2
x+1 must be a polynomial (since ´1

is a root of the numerator) of degree 2. So write

x3 ´ x2 + 2
x + 1

= ax2 + bx + c

for some, as yet unknown, coefficients a, b and c.

• Cross multiplying and simplifying gives us

x3 ´ x2 + 2 = (ax2 + bx + c)(x + 1)

= ax3 + (a + b)x2 + (b + c)x + c

• Now matching coefficients of the various powers of x on the left and right hand
sides

coefficient of x3: a = 1

coefficient of x2: a + b = ´1

coefficient of x1: b + c = 0

coefficient of x0: c = 2

• This gives us a system of equations that we can solve quite directly. Indeed it tells
us immediately that that a = 1 and c = 2. Subbing a = 1 into a + b = ´1 tells us
that 1 + b = ´1 and hence b = ´2.

• Thus

x3 ´ x2 + 2 = (x + 1)(x2 ´ 2x + 2).

Example A.16.5
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COMPLEX NUMBERS
AND EXPONENTIALS

Appendix B

B.1Ĳ Definition and Basic Operations

We’ll start with the definition of a complex number and its addition and multiplication
rules. You may find the multiplication rule quite mysterious. Don’t worry. We’ll soon
gets lots of practice using it and seeing how useful it is.

(a) The complex plane is simply the xy-plane equipped with an addition opera-
tion and a multiplication operation. A complex number is nothing more than
a point in that xy-plane. It is conventional to use the notation x + iy1 to stand
for the complex number (x, y). In other words, it is conventional to write x
in place of (x, 0) and i in place of (0, 1).

(b) The first component, x, of the complex number x + iy is called its real part
and the second component, y, is called its imaginary part, even though there
is nothing imaginary2 about it.

(c) The sum of the complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is defined
by

z1 + z2 = (x1 + x2) + i(y1 + y2)

That is, you just separately add the real parts and the imaginary parts.

Definition B.1.1.

1 In electrical engineering it is conventional to use x + jy instead of x + iy.
2 Don’t attempt to attribute any special significance to the word “complex” in “complex number”, or to

the word “real” in “real number” and “real part”, or to the word “imaginary” in “imaginary part”. All
are just names. The name “imaginary” was introduced by René Descartes in 1637. René Descartes (1596–
1650) was a French scientist and philosopher, who lived in the Dutch Republic for roughly twenty years
after serving in the (mercenary) Dutch States Army. Originally, “imaginary” was a derogatory term and
imaginary numbers were thought to be useless. But they turned out to be incredibly useful!
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(d) The product of the complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is
defined by

z1z2 = x1x2 ´ y1y2 + i(x1y2 + x2y1)

Do not memorise this multiplication rule. We’ll see a simple, effective mem-
ory aid for it shortly. The heart of that memory aid is the observation that the
complex number i has the special property that

i2 = (0 + 1i)(0 + 1i) = (0ˆ 0´ 1ˆ 1) + i(0ˆ 1 + 1ˆ 0) = ´1

Definition B.1.1 (continued).

Addition and multiplication of complex numbers obey the familiar addition rules

z1 + z2 = z2 + z1

z1 + (z2 + z3) = (z1 + z2) + z3

0 + z1 = z1

and multiplication rules

z1z2 = z2z1

z1(z2z3) = (z1z2)z3

1z1 = z1

and distributive laws

z1(z2 + z3) = z1z2 + z1z3

(z1 + z2)z3 = z1z3 + z2z3

To remember how to multiply complex numbers, you just have to supplement the familiar
rules of the real number system with i2 = ´1. The previous sentence is the memory aid
referred to in Definition B.1.1(d).

Example B.1.2

If z = 1 + 2i and w = 3 + 4i, then

z + w = (1 + 2i) + (3 + 4i) = 4 + 6i

zw = (1 + 2i)(3 + 4i) = 3 + 4i + 6i + 8i2 = 3 + 4i + 6i´ 8 = ´5 + 10i

Example B.1.2

403



COMPLEX NUMBERS AND EXPONENTIALS B.1 DEFINITION AND BASIC OPERATIONS

(a) The negative of any complex number z = x + iy is defined by

´z = ´x + (´y)i

and obviously obeys z + (´z) = 0.

(b) The reciprocal3, z´1 or 1
z , of any complex number z = x + iy, other than 0, is

defined by
1
z

z = 1

We shall see below that it is given by the formula

z´1 =
1
z
=

x
x2 + y2 +

´y
x2 + y2 i

Definition B.1.3.

Example B.1.4

It is possible to derive the formula for 1
z by observing that

(a + ib)(x + iy) = [ax´ by] + i[ay + bx]

equals 1 = 1 + i0 if and only if

ax´ by = 1
ay + bx = 0

and solving these equations for a and b. We will see a much shorter derivation in Re-
mark B.1.6 below. For now, we’ll content ourselves with just verifying that x

x2+y2 +
´y

x2+y2 i
is the inverse of x + iy by multiplying out

(
x

x2 + y2 ´
y

x2 + y2 i
)
(x + iy) =

x2

x2 + y2 ´
xy

x2 + y2 i +
xy

x2 + y2 i´ y2

x2 + y2 i2

=
x2 ´ i2y2

x2 + y2 =
x2 + y2

x2 + y2 = 1

Example B.1.4

3 The reciprocal z´1 is also called the multiplicative inverse of z.
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(a) The complex conjugate of z = x + iy is denoted z̄ and is defined to be

z̄ = x + iy = x´ iy

That is, to take the complex conjugate, one replaces every i by ´i and vice
versa.

(b) The distance from z = x + iy (recall that this is the point (x, y) in the xy-
plane) to 0 is denoted |z| and is called the absolute value, or modulus, of z .
It is given by

|z| =
b

x2 + y2

Note that

zz̄ = (x + iy)(x´ iy) = x2 ´ ixy + ixy + y2 = x2 + y2

is always a nonnegative real number and that

|z| = ?
z z̄

Definition B.1.5.

Remark B.1.6. Let z = x + iy with x and y real. Since |z|2 = z z̄, we have

1
z
=

1
z

z̄
z̄
=

z̄
|z|2 =

x´ iy
x2 + y2 =

x
x2 + y2 +

´y
x2 + y2 i

which is the formula for 1
z given in Definition B.1.3(b).

Example B.1.7

It is easy to divide a complex number by a real number. For example

11 + 2i
25

=
11
25

+
2

25
i

In general, the complex conjugate provides us with a trick for rewriting any ratio of com-
plex numbers as a ratio with a real denominator. For example, suppose that we want to
find 1+2i

3+4i . The trick is to multiply by 1 = 3´4i
3´4i . The number 3´ 4i is the complex conjugate

of the denominator 3 + 4i. Since (3 + 4i)(3´ 4i) = 9´ 12i + 12i´ 16i2 = 9 + 16 = 25

1 + 2i
3 + 4i

=
1 + 2i
3 + 4i

3´ 4i
3´ 4i

=
(1 + 2i)(3´ 4i)

25
=

11 + 2i
25

=
11
25

+
2

25
i

Example B.1.7
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The notations4 <z and =z stand for the real and imaginary parts of the complex
number z, respectively. If z = x + iy (with x and y real) they are defined by

<z = x =z = y

Note that both <z and =z are real numbers. Just subbing in z̄ = x´ iy, you can
verify that

<z =
1
2
(z + z̄) =z =

1
2i
(z´ z̄)

Definition B.1.8.

If z1 = x1 + iy1 and z2 = x2 + iy2, then

|z1z2| = |z1| |z2|

Lemma B.1.9.

Proof. Since z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 ´ y1y2) + i(x1y2 + x2y1),

|z1z2| =
b
(x1x2 ´ y1y2)2 + (x1y2 + x2y1)2

=
b

x2
1x2

2 ´ 2x1x2y1y2 + y2
1y2

2 + x2
1y2

2 + 2x1y2x2y1 + x2
2y2

1

=
b

x2
1x2

2 + y2
1y2

2 + x2
1y2

2 + x2
2y2

1 =
b
(x2

1 + y2
1)(x2

2 + y2
2)

= |z1| |z2|

B.2Ĳ The Complex Exponential

B.2.1 §§ Definition and Basic Properties.

There are two equivalent standard definitions of the exponential, ez, of the complex num-
ber z = x + iy. For the more intuitive definition, one simply replaces the real number x in
the Taylor series expansion5 ex =

ř8
n=0

xn

n! with the complex number z, giving

ez =
8ÿ

n=0

zn

n!
(EZ)

We instead highlight the more computationally useful definition.

4 The symbols < and = are the letters R and I in the Fraktur font, which was created in the early 1500’s
and became common in the German-speaking world. A standard alternative notation is Re(z) and
Im(z).

5 See Theorem 3.6.5.
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For any complex number z = x + iy, with x and y real, the exponential ez , is
defined by

ex+iy = ex cos y + iex sin y

In particular6, eiy = cos y + i sin y.

Definition B.2.1.

We will not fully prove that the intuitive definition (EZ) and the computational Defi-
nition B.2.1 are equivalent. But we will do so in the special case that z = iy, with y real.
Under (EZ),

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+

(iy)6

6!
+ ¨ ¨ ¨

The even terms in this expansion are

1 +
(iy)2

2!
+

(iy)4

4!
+

(iy)6

6!
+ ¨ ¨ ¨ = 1´ y2

2!
+

y4

4!
´ y6

6!
+ ¨ ¨ ¨ = cos y

and the odd terms in this expansion are

iy +
(iy)3

3!
+

(iy)5

5!
+ ¨ ¨ ¨ = i

(
y´ y3

3!
+

y5

5!
+ ¨ ¨ ¨

)
= i sin y

Adding the even and odd terms together gives us that, under (EZ), eiy is indeed equal to
cos y + i sin y.7 As a consequence, we have

eiπ = ´1

which gives an amazing linking between calculus (e), geometry (π), algebra (i) and the
basic number ´1.

In the next lemma we verify that the complex exponential obeys a couple of familiar
computational properties.

(a) For any complex numbers z1 and z2,

ez1+z2 = ez1ez2

(b) For any complex number c,
d
dt

ect = cect

Lemma B.2.2.

6 The equation eiy = cos y + i sin y is known as Euler’s formula. Leonhard Euler (1707–1783) was a
Swiss mathematician and physicist who spent most of his adult life in Saint Petersberg and Berlin. He
gave the name π to the ratio of a circle’s circumference to its diameter. He also developed the constant
e. His collected works fill 92 volumes.

7 It is obvious that, in the special case that z = x with x real, the definitions (EZ) and B.2.1 are equivalent.
So to complete the proof of equivalence in the general case z = x + iy, it suffices to prove that ex+iy =
exeiy under both (EZ) and Definition B.2.1. For Definition B.2.1, this follows from Lemma B.2.2, below.
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Proof. (a) For any two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, with x1, y1, x2,
y2 real,

ez1ez2 = ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2 t(cos y1 cos y2 ´ sin y1 sin y2) + i(cos y1 sin y2 + cos y2 sin y1)u
= ex1+x2 tcos(y1 + y2) + i sin(y1 + y2)u

by the trig identities of Appendix A.8

= e(x1+x2)+i(y1+y2)

= ez1+z2

so that the familiar multiplication formula also applies to complex exponentials.

(b) For any real number t and any complex number c = α + iβ, with α, β real,

ect = eαt+iβt = eαt[cos(βt) + i sin(βt)]

so that the derivative with respect to t

d
dt

ect = αeαt[cos(βt) + i sin(βt)] + eαt[´β sin(βt) + iβ cos(βt)]

= (α + iβ)eαt[cos(βt) + i sin(βt)]

= cect

is also the familiar one.

B.2.2 §§ Relationship with sin and cos.

When θ is a real number

eiθ = cos θ + i sin θ

e´iθ = cos θ ´ i sin θ = eiθ

are complex numbers of modulus one.

Equation B.2.3.

Solving for cos θ and sin θ (by adding and subtracting the two equations) gives

cos θ =
1
2
(eiθ + e´iθ) = <eiθ

sin θ =
1
2i
(eiθ ´ e´iθ) = =eiθ

Equation B.2.4.
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Example B.2.5

These formulae make it easy derive trig identities. For example,

cos θ cos φ =
1
4
(
eiθ + e´iθ)(eiφ + e´iφ)

=
1
4
(
ei(θ+φ) + ei(θ´φ) + ei(´θ+φ) + e´i(θ+φ)

)

=
1
4
(
ei(θ+φ) + e´i(θ+φ) + ei(θ´φ) + ei(´θ+φ)

)

=
1
2
(

cos(θ + φ) + cos(θ ´ φ)
)

and, using (a + b)3 = a3 + 3a2b + 3ab2 + b3,

sin3 θ = ´ 1
8i
(
eiθ ´ e´iθ)3

= ´ 1
8i
(
ei3θ ´ 3eiθ + 3e´iθ ´ e´i3θ

)

=
3
4

1
2i
(
eiθ ´ e´iθ)´ 1

4
1
2i
(
ei3θ ´ e´i3θ

)

=
3
4

sin θ ´ 1
4

sin(3θ)

and

cos(2θ) = <
(
e2θi) = <

(
eiθ)2

= <
(

cos θ + i sin θ
)2

= <
(

cos2 θ + 2i sin θ cos θ ´ sin2 θ
)

= cos2 θ ´ sin2 θ

Example B.2.5

B.2.3 §§ Polar Coordinates.

Let z = x + iy be any complex number. Writing x and y in polar coordinates in the usual
way, i.e. x = r cos(θ), y = r sin(θ), gives

x + iy = r cos θ + ir sin θ = reiθ

See the figure on the left below. In particular

1 = ei0 = e2πi = e2kπi for k = 0,˘1,˘2, ¨ ¨ ¨
´1 = eiπ = e3πi = e(1+2k)πi for k = 0,˘1,˘2, ¨ ¨ ¨

i = eiπ/2 = e
5
2 πi = e(

1
2+2k)πi for k = 0,˘1,˘2, ¨ ¨ ¨

´i = e´iπ/2 = e
3
2 πi = e(´

1
2+2k)πi for k = 0,˘1,˘2, ¨ ¨ ¨

See the figure on the right below.
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y

x

x+ iy = reiθ

θ

r

y

x

π
2

−π
2

π 1=(1,0)(−1,0)=−1

i=(0,1)

−i=(0,−1)

The polar coordinate θ = arctan y
x associated with the complex number z = x + iy, i.e. the

point (x, y) in the xy-plane, is also called the argument of z.
The polar coordinate representation makes it easy to find square roots, third roots and

so on. Fix any positive integer n. The nth roots of unity are, by definition, all solutions z of

zn = 1

Writing z = reiθ

rnenθi = 1e0i

The polar coordinates (r, θ) and (r1, θ1) represent the same point in the xy-plane if and
only if r = r1 and θ = θ1+ 2kπ for some integer k. So zn = 1 if and only if rn = 1, i.e. r = 1,
and nθ = 2kπ for some integer k. The nth roots of unity are all the complex numbers e2πi k

n

with k integer. There are precisely n distinct nth roots of unity because e2πi k
n = e2πi k1

n if and
only if 2π k

n ´ 2π k1
n = 2π k´k1

n is an integer multiple of 2π. That is, if and only if k´ k1 is an
integer multiple of n. The n distinct nth roots of unity are

1 , e2πi 1
n , e2πi 2

n , e2πi 3
n , ¨ ¨ ¨ , e2πi n´1

n

For example, the 6th roots of unity are depicted below.

y

x
1“e2πi

0
6

e2πi
1
6e2πi

2
6

e2πi
3
6 “´1

e2πi
4
6 e2πi

5
6

B.2.4 §§ Exploiting Complex Exponentials in Calculus Computations

You have learned how to evaluate integrals involving trigonometric functions by using
integration by parts, various trigonometric identities and various substitutions. It is often
much easier to just use (B.2.3) and (B.2.4). Part of the utility of complex numbers comes
from how well they interact with calculus through the exponential function. Here are two
examples
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Example B.2.6

ż
ex cos x dx =

1
2

ż
ex[eix + e´ix] dx =

1
2

ż [
e(1+i)x + e(1´i)x] dx

=
1
2

[
1

1 + i
e(1+i)x +

1
1´ i

e(1´i)x
]
+ C

This form of the indefinite integral looks a little weird because of the i’s. While it looks
complex because of the i’s, it is actually purely real (and correct), because 1

1´i e
(1´i)x is

the complex conjugate of 1
1+i e

(1+i)x. We can convert the indefinite integral into a more
familiar form just by subbing back in e˘ix = cos x ˘ i sin x, 1

1+i = 1´i
(1+i)(1´i) = 1´i

2 and
1

1´i =
1

1+i =
1+i

2 .

ż
ex cos x dx =

1
2

ex
[

1
1 + i

eix +
1

1´ i
e´ix

]
+ C

=
1
2

ex
[

1´ i
2

(cos x + i sin x) +
1 + i

2
(cos x´ i sin x)

]
+ C

=
1
2

ex cos x +
1
2

ex sin x + C

You can quickly verify this by differentiating (or by comparing with Example 1.7.11).
Example B.2.6

Example B.2.7

Evaluating the integral
ş

cosn x dx using the methods of Section 1.8 can be a real pain. It is
much easier if we convert to complex exponentials. Using (a + b)4 = a4 + 4a3b + 6a2b2 +
4ab3 + b4,

ż
cos4 x dx =

1
24

ż [
eix + e´ix]4 dx =

1
24

ż [
e4ix + 4e2ix + 6 + 4e´2ix + e´4ix] dx

=
1
24

[
1
4i

e4ix +
4
2i

e2ix + 6x +
4
´2i

e´2ix +
1
´4i

e´4ix
]
+ C

=
1
24

[
1
2

1
2i
(e4ix ´ e´4ix) +

4
2i
(e2ix ´ e´2ix) + 6x

]
+ C

=
1
24

[
1
2

sin 4x + 4 sin 2x + 6x
]
+ C

=
1

32
sin 4x +

1
4

sin 2x +
3
8

x + C

Example B.2.7
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B.2.5 §§ Exploiting Complex Exponentials in Differential Equation Computa-
tions

Complex exponentials are also widely used to simplify the process of guessing solutions
to ordinary differential equations. We’ll start with (possibly a review of) some basic defi-
nitions and facts about differential equations.

(a) A differential equation is an equation for an unknown function that contains
the derivatives of that unknown function. For example y2(t) + y(t) = 0 is a
differential equation for the unknown function y(t).

(b) In the differential calculus text CLP-1, we treated only derivatives of func-
tions of one variable. Such derivatives are called ordinary derivatives. A
differential equation is called an ordinary differential equation (often shortened
to “ODE”) if only ordinary derivatives appear. That is, if the unknown func-
tion has only a single independent variable.

In CLP-3 we will treat derivatives of functions of more than one variable. For
example, let f (x, y) be a function of two variables. If you treat y as a constant
and take the derivative of the resulting function of the single variable x, the
result is called the partial derivative of f with respect to x. A differential
equation is called a partial differential equation (often shortened to “PDE”) if
partial derivatives appear. That is, if the unknown function has more than
one independent variable. For example y2(t) + y(t) = 0 is an ODE while
B2u
B t2 (x, t) = c2 B2u

B x2 (x, t) is a PDE.

(c) The order of a differential equation is the order of the highest derivative that
appears. For example y2(t) + y(t) = 0 is a second order ODE.

(d) An ordinary differential equation that is of the form

a0(t)y(n)(t) + a1(t)y(n´1)(t) + ¨ ¨ ¨+ an´1(t)y1(t) + an(t)y(t) = F(t) (B.2.1)

with given coefficient functions a0(t), ¨ ¨ ¨ , an(t) and F(t) is said to be linear.
Otherwise, the ODE is said to be nonlinear. For example, y1(t)2 + y(t) = 0,
y1(t)y2(t) + y(t) = 0 and y1(t) = ey(t) are all nonlinear.

(e) The ODE (B.2.1) is said to have constant coefficients if the coefficients a0(t),
a1(t), ¨ ¨ ¨ , an(t) are all constants. Otherwise, it is said to have variable coef-
ficients. For example, the ODE y2(t) + 7y(t) = sin t is constant coefficient,
while y2(t) + ty(t) = sin t is variable coefficient.

(f) The ODE (B.2.1) is said to be homogeneous if F(t) is identically zero. Other-
wise, it is said to be inhomogeneous or nonhomogeneous. For example, the ODE
y2(t) + 7y(t) = 0 is homogeneous, while y2(t) + 7y(t) = sin t is inhomoge-
neous. A homogeneous ODE always has the trivial solution y(t) = 0.

Definition B.2.8.
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(g) An initial value problem is a problem in which one is to find an unknown
function y(t) that satisfies both a given ODE and given initial conditions,
like y(t0) = 1, y1(t0) = 0. Note that all of the conditions involve the function
y(t) (or its derivatives) evaluated at a single time t = t0.

(h) A boundary value problem is a problem in which one is to find an unknown
function y(t) that satisfies both a given ODE and given boundary conditions,
like y(t0) = 0, y(t1) = 0. Note that the conditions involve the function y(t)
(or its derivatives) evaluated at two different times.

Definition B.2.8 (continued).

The following theorem gives the form of solutions to the linear8 ODE (B.2.1).

Assume that the coefficients a0(t), a1(t), ¨ ¨ ¨ , an´1(t), an(t) and F(t) are continu-
ous functions and that a0(t) is not zero.

(a) The general solution to the linear ODE (B.2.1) is of the form

y(t) = yp(t) + C1y1(t) + C2y2(t) + ¨ ¨ ¨+ Cnyn(t) (B.2.2)

where

˝ n is the order of (B.2.1)
˝ yp(t) is any solution to (B.2.1)
˝ C1, C2, ¨ ¨ ¨ , Cn are arbitrary constants
˝ y1, y2, ¨ ¨ ¨ , yn are n independent solutions to the homogenous equation

a0(t)y(n)(t) + a1(t)y(n´1)(t) + ¨ ¨ ¨+ an´1(t)y1(t) + an(t)y(t) = 0

associated to (B.2.1). “Independent” just means that no yi can be written
as a linear combination of the other yj’s. For example, y1(t) cannot be
expressed in the form b2y2(t) + ¨ ¨ ¨+ bnyn(t).

In (B.2.2), yp is called the “particular solution” and C1y1(t) + C2y2(t) + ¨ ¨ ¨+
Cnyn(t) is called the “complementary solution”.

(b) Given any constants b0, ¨ ¨ ¨ , bn´1 there is exactly one function y(t) that obeys
the ODE (B.2.1) and the initial conditions

y(0) = b0 y1(0) = b1 ¨ ¨ ¨ y(n´1)(0) = bn´1

Theorem B.2.9.

8 There are a some special classes of nonlinear ODE’s, like the separable differential equations of §2.4,
that are relatively easy to solve. But generally, nonlinear ODE’s are much harder to solve than linear
ODE’s.
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In the following example we’ll derive one widely used linear constant coefficient ODE.

Example B.2.10 (RLC circuit)

As an example of how ODE’s arise, we consider the RLC circuit, which is the electrical cir-
cuit consisting of a resistor of resistance R, a coil (or solenoid) of inductance L, a capacitor
of capacitance C and a voltage source arranged in series, as shown below. Here R, L and
C are all nonnegative constants.

`
´xptq

R L

C
iptq

`

´

yptq

We’re going to think of the voltage x(t) as an input signal, and the voltage y(t) as an
output signal. The goal is to determine the output signal produced by a given input signal.
If i(t) is the current flowing at time t in the loop as shown and q(t) is the charge on the
capacitor, then the voltages across R, L and C, respectively, at time t are Ri(t), L di

dt (t) and

y(t) = q(t)
C . By the Kirchhoff’s law9 that says that the voltage between any two points has

to be independent of the path used to travel between the two points, these three voltages
must add up to x(t) so that

Ri(t) + L
di
dt

(t) +
q(t)
C

= x(t) (B.2.3)

Assuming that R, L, C and x(t) are known, this is still one differential equation in two un-
knowns, the current i(t) and the charge q(t). Fortunately, there is a relationship between
the two. Because the current entering the capacitor is the rate of change of the charge on
the capacitor

i(t) =
dq
dt

(t) = Cy1(t) (B.2.4)

This just says that the capacitor cannot create or destroy charge on its own; all charging of
the capacitor must come from the current. Substituting (B.2.4) into (B.2.3) gives

LCy2(t) + RCy1(t) + y(t) = x(t)

which is a second order linear constant coefficient ODE. As a concrete example, we’ll take
an ac voltage source and choose the origin of time so that x(0) = 0, x(t) = E0 sin(ωt).
Then the differential equation becomes

LCy2(t) + RCy1(t) + y(t) = E0 sin(ωt) (B.2.5)

9 Gustav Robert Kirchhoff (1824–1887) was a German physicist. There are several sets of Kirchhoff’s laws
that are named after him — Kirchhoff’s circuit laws, that we are using in this example, Krichhoff’s spec-
troscopy laws and Kirchhoff’s law of thermochemistry. Kirchhoff and his collaborator Robert Bunsen,
of Bunsen burner fame, invented the spectroscope.
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Example B.2.10

Finally, here are two examples in which we use complex exponentials to solve an ODE.

Example B.2.11

By Theorem B.2.9(a), the general solution to the ordinary differential equation

y2(t) + 4y1(t) + 5y(t) = 0 (ODE)

is of the form C1u1(t) + C2u2(t) with u1(t) and u2(t) being two (independent) solutions
to (ODE) and with C1 and C2 being arbitrary constants. The easiest way to find u1(t) and
u2(t) is to guess them. And the easiest way to guess them is to try10 y(t) = ert, with r
being a constant to be determined. Substituting y(t) = ert into (ODE) gives

r2ert + 4rert + 5ert = 0 ðñ (
r2 + 4r + 5

)
ert = 0 ðñ r2 + 4r + 5 = 0

This quadratic equation for r can be solved either by using the high school formula or by
completing the square.

r2 + 4r + 5 = 0 ðñ (r + 2)2 + 1 = 0 ðñ (r + 2)2 = ´1 ðñ r + 2 = ˘i
ðñ r = ´2˘ i

So the general solution to (ODE) is

y(t) = C1e(´2+i)t + C2e(´2´i)t

This is one way to write the general solution, but there are many others. In particular there
are quite a few people in the world who are (foolishly) afraid11 of complex exponentials.
We can hide them by using (B.2.3) and (B.2.4).

y(t) = C1e(´2+i)t + C2e(´2´i)t = C1e´2teit + C2e´2te´it

= C1e´2t( cos t + i sin t
)
+ C2e´2t( cos t´ i sin t

)

= (C1 + C2)e´2t cos t + (iC1 ´ iC2)e´2t sin t

= D1e´2t cos t + D2e´2t sin t

with D1 = C1 + C2 and D2 = iC1 ´ iC2 being two other arbitrary constants. Don’t make
the mistake of thinking that D2 must be complex because i appears in the formula D2 =
iC1 ´ iC2 relating D2 and C1, C2. No one said that C1 and C2 are real numbers. In fact, in
typical applications, the arbitrary constants are determined by initial conditions and often
D1 and D2 turn out to be real and C1 and C2 turn out to be complex. For example, the
initial conditions y(0) = 0, y1(0) = 2 force

0 = y(0) = C1 + C2

2 = y1(0) = (´2 + i)C1 + (´2´ i)C2

10 The reason that y(t) = ert is a good guess is that, with this guess, all of y(t), y1(t) and y2(t) are constants
times ert. So the left hand side of the differential equation is also a constant, that depends on r, times
ert. So we just have to choose r so that the constant is zero.

11 Embracing the complexity leads to simplicity.
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The first equation gives C2 = ´C1 and then the second equation gives

(´2 + i)C1 ´ (´2´ i)C1 = 2 ðñ 2iC1 = 2 ðñ iC1 = 1 ðñ C1 = ´i, C2 = i

and

D1 = C1 + C2 = 0 D2 = iC1 ´ iC2 = 2

Example B.2.11

Example B.2.12

We shall now guess one solution (i.e. a particular solution) to the differential equation

y2(t) + 2y1(t) + 3y(t) = cos t (ODE1)

Equations like this arise, for example, in the study of the RLC circuit. We shall simplify the
computation by exploiting that cos t = <eit. First, we shall guess a function Y(t) obeying

Y2 + 2Y1 + 3Y = eit (ODE2)

Then, taking complex conjugates,

Ȳ2 + 2Ȳ1 + 3Ȳ = e´it (ODE2)

and, adding 1
2 (ODE2) and 1

2 (ODE2) together will give

(<Y)2 + 2(<Y)1 + 3(<Y) = <eit = cos t

which shows that <Y(t) is a solution to (ODE1). Let’s try Y(t) = Aeit, with A a constant
to be determined. This is a solution of (ODE2) if and only if

d2

dt2

(
Aeit)+ 2

d
dt
(

Aeit)+ 3Aeit = eit

ðñ (i2 + 2i + 3)Aeit = eit

ðñ A =
1

2 + 2i

So eit

2+2i is a solution to (ODE2) and < eit

2+2i is a solution to (ODE1). To simplify this, write
2 + 2i in polar coordinates. From the sketch

y

x

2 ` 2i “ 2
?
2eiπ{4

π{4
2
?
2

2

2
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we have 2 + 2i = 2
?

2ei π
4 . So

eit

2 + 2i
=

eit

2
?

2ei π
4
=

1
2
?

2
ei(t´π

4 )

ùñ < eit

2 + 2i
=

1
2
?

2
<ei(t´π

4 ) =
1

2
?

2
cos

(
t´ π

4

)

Example B.2.12
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MORE ABOUT NUMER-
ICAL INTEGRATION

Appendix C

C.1Ĳ Richardson Extrapolation

There are many approximation procedures in which one first picks a step size h and then
generates an approximation A(h) to some desired quantity A. For example, A might be
the value of some integral

şb
a f (x)dx. For the trapezoidal rule with n steps, ∆x = b´a

n
plays the role of the step size. Often the order of the error generated by the procedure is
known. This means

A = A(h) + Khk + K1hk+1 + K2hk+2 + ¨ ¨ ¨ (E1)

with k being some known constant, called the order of the error, and K, K1, K2, ¨ ¨ ¨ being
some other (usually unknown) constants. If A(h) is the approximation to A =

şb
a f (x)dx

produced by the trapezoidal rule with ∆x = h, then k = 2. If Simpson’s rule is used, k = 4.
Let’s first suppose that h is small enough that the terms K1hk+1 + K2hk+2 + ¨ ¨ ¨ in (E1)

are small enough1 that dropping them has essentially no impact. This would give

A = A(h) + Khk (E2)

Imagine that we know k, but that we do not know A or K, and think of (E2) as an equation
that the unknowns A and K have to solve. It may look like we have one equation in the
two unknowns K, A, but that is not the case. The reason is that (E2) is (essentially) true
for all (sufficiently small) choices of h. If we pick some h, say h1, and use the algorithm to
determine A(h1) then (E2), with h replaced by h1, gives one equation in the two unknowns
A and K, and if we then pick some different h, say h2, and use the algorithm a second time
to determine A(h2) then (E2), with h replaced by h2, gives a second equation in the two
unknowns A and K. The two equations will then determine both A and K.

1 Typically, we don’t have access to, and don’t care about, the exact error. We only care about its order of
magnitude. So if h is small enough that K1hk+1 + K2hk+2 + ¨ ¨ ¨ is a factor of at least, for example, one
hundred smaller than Khk, then dropping K1hk+1 + K2hk+2 + ¨ ¨ ¨ would not bother us at all.
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To be more concrete, suppose that we have picked some specific value of h, and have
chosen h1 = h and h2 = h

2 , and that we have evaluated A(h) and A(h/2). Then the two
equations are

A = A(h) + Khk (E3a)

A = A(h/2) + K
( h

2

)k (E3b)

While these equations are nonlinear in h, they are linear in the constants K and A, so it is
easy to solve for both K and A. To get K, just subtract (E3b) from (E3a).

(E3a)´ (E3b) : 0 = A(h)´A(h/2)+
(
1´ 1

2k

)
Khk ùñ K =

A(h/2)´ A(h)
[1´ 2´k]hk (E4a)

To get A, multiply (E3b) by 2k and then subtract (E3a).

2k(E3b)´ (E3a) : [2k ´ 1]A = 2k A(h/2)´ A(h) ùñ A =
2k A(h/2)´ A(h)

2k ´ 1
(E4b)

The generation of a “new improved” approximation for A from two A(h)’s with different
values of h is called Richardson2 Extrapolation. Here is a summary

Let A(h) be a step size h approximation to A. If

A = A(h) + Khk

then

K =
A(h/2)´ A(h)
[1´ 2´k]hk A =

2k A(h/2)´ A(h)
2k ´ 1

Equation C.1.1 (Richardson extrapolation).

This works very well since, by computing A(h) for two different h’s, we can remove
the biggest error term in (E1), and so get a much more precise approximation to A for little
additional work.

Example C.1.2

Applying the trapezoidal rule (1.11.6) to the integral A =
ş1

0
4

1+x2 dx with step sizes 1
8 and

1
16 (i.e. with n = 8 and n = 16) gives, with h = 1

8 ,

A(h) = 3.1389884945 A(h/2) = 3.1409416120

So (E4b), with k = 2, gives us the “new improved” approximation

22 ˆ 3.1409416120´ 3.1389884945
22 ´ 1

= 3.1415926512

We saw in Example 1.11.3 that
ş1

0
4

1+x2 dx = π, so this new approximation really is “im-
proved”:

2 Richardson extrapolation was introduced by the Englishman Lewis Fry Richardson (1881–1953) in 1911.
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• A(1/8) agrees with π to two decimal places,
• A(1/16) agrees with π to three decimal places and
• the new approximation agrees with π to eight decimal places.

Beware that (E3b), namely A = A(h/2) + K
( h

2

)k, is saying that K
( h

2

)k is (approximately)
the error in A(h/2), not the error in A. You cannot get an “even more improved” approx-
imation by using (E4a) to compute K and then adding K

( h
2

)k to the “new improved” A of

(E4b) — doing so just gives A+ K
( h

2

)k, not a more accurate A.

Example C.1.2

Example C.1.3 (Example 1.11.15 revisited)

Suppose again that we wish to use Simpson’s rule (1.11.9) to evaluate
ş1

0 e´x2
dx to within

an accuracy of 10´6, but that we do not need the degree of certainty provided by Example
1.11.15. Observe that we need (approximately) that |K|h4 ă 10´6, so if we can estimate
K (using our Richardson trick) then we can estimate the required h. A commonly used
strategy, based on this observation, is to

• first apply Simpson’s rule twice with some relatively small number of steps and

• then use (E4a), with k = 4, to estimate K and

• then use the condition |K|hk ď 10´6 to determine, approximately, the number of
steps required

• and finally apply Simpson’s rule with the number of steps just determined.

Let’s implement this strategy. First we estimate K by applying Simpson’s rule with step
sizes 1

4 and 1
8 . Writing 1

4 = h1, we get

A(h1) = 0.74685538 A(h1/2) = 0.74682612

so that (E4a), with k = 4 and h replaced by h1, yields

K =
0.74682612´ 0.74685538

[1´ 2´4](1/4)4 = ´7.990ˆ 10´3

We want to use a step size h obeying

|K|h4 ď 10´6 ðñ 7.990ˆ 10´3h4 ď 10´6 ðñ h ď 4

c
1

7990
=

1
9.45

like, for example, h = 1
10 . Applying Simpson’s rule with h = 1

10 gives

A(1/10) = 0.74682495

The exact answer, to eight decimal places, is 0.74682413 so the error in A(1/10) is indeed
just under 10´6.

420
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Suppose now that we change our minds. We want an accuracy of 10´12, rather than
10´6. We have already estimated K. So now we want to use a step size h obeying

|K|h4 ď 10´12 ðñ 7.99ˆ 10´3h4 ď 10´12 ðñ h ď 4

c
1

7.99ˆ 109 =
1

299.0

like, for example, h = 1
300 . Applying Simpson’s rule with h = 1

300 gives, to fourteen
decimal places,

A(1/300) = 0.74682413281344

The exact answer, to fourteen decimal places, is 0.74682413281243 so the error in A(1/300)
is indeed just over 10´12.

Example C.1.3

C.2Ĳ Romberg Integration

The formulae (E4a,b) for K and A are, of course, only3 approximate since they are based
on (E2), which is an approximation to (E1). Let’s repeat the derivation that leads to (E4),
but using the full (E1),

A = A(h) + Khk + K1hk+1 + K2hk+2 + ¨ ¨ ¨
Once again, suppose that we have chosen some h and that we have evaluated A(h) and
A(h/2). They obey

A = A(h) + Khk + K1hk+1 + K2hk+2 + ¨ ¨ ¨ (E5a)

A = A(h/2) + K
( h

2

)k
+ K1

( h
2

)k+1
+ K2

( h
2

)k+2
+ ¨ ¨ ¨ (E5b)

Now, as we did in the derivation of (E4b), multiply (E5b) by 2k and then subtract (E5a).
This gives (

2k ´ 1
)
A = 2k A(h/2)´ A(h)´ 1

2 K1hk+1 ´ 3
4 K2hk+2 + ¨ ¨ ¨

and then, dividing across by
(
2k ´ 1

)
,

A =
2k A(h/2)´ A(h)

2k ´ 1
´ 1/2

2k ´ 1
K1hk+1 ´ 3/4

2k ´ 1
K2hk+2 + ¨ ¨ ¨

Hence if we define our “new improved approximation”

B(h) =
2k A(h/2)´ A(h)

2k ´ 1
and K̃ = ´ 1/2

2k ´ 1
K1 and K̃1 = ´ 3/4

2k ´ 1
K2 (E6)

we have
A = B(h) + K̃hk+1 + K̃1hk+2 + ¨ ¨ ¨

3 “Only” is a bit strong. Don’t underestimate the power of a good approximation (pun intended).
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MORE ABOUT NUMERICAL INTEGRATION C.2 ROMBERG INTEGRATION

which says that B(h) is an approximation to A whose error is of order k + 1, one better4

than A(h)’s.
If A(h) has been computed for three values of h, we can generate B(h) for two values

of h and repeat the above procedure with a new value of k. And so on. One widely used
numerical integration algorithm, called Romberg integration5, applies this procedure re-
peatedly to the trapezoidal rule. It is known that the trapezoidal rule approximation T(h)
to an integral I has error behaviour (assuming that the integrand f (x) is smooth)

I = T(h) + K1h2 + K2h4 + K3h6 + ¨ ¨ ¨

Only even powers of h appear. Hence

T(h) has error of order 2, so that, using (E6) with k = 2,

T1(h) =
4T(h/2)´T(h)

3 has error of order 4, so that, using (E6) with k = 4,

T2(h) =
16T1(h/2)´T1(h)

15 has error of order 6, so that, using (E6) with k = 6,

T3(h) =
64T2(h/2)´T2(h)

63 has error of order 8 and so on

We know another method which produces an error of order 4 — Simpson’s rule. In fact,
T1(h) is exactly Simpson’s rule (for step size h

2 ).

Let T(h) be the trapezoidal rule approximation, with step size h, to an integral I.
The Romberg integration algorithm is

T1(h) =
4T(h/2)´T(h)

3

T2(h) =
16T1(h/2)´T1(h)

15

T3(h) =
64T2(h/2)´T2(h)

63
...

Tk(h) =
22kTk´1(h/2)´Tk´1(h)

22k´1
...

Equation C.2.1 (Romberg integration).

Example C.2.2

The following table6 illustrates Romberg integration by applying it to the area A of the in-
tegral A =

ş1
0

4
1+x2 dx. The exact value of this integral is π which is 3.14159265358979, to

fourteen decimal places.

4 That is, the error decays as hk+1 as opposed to hk — so, as h decreases, it gets smaller faster.
5 Romberg Integration was introduced by the German Werner Romberg (1909–2003) in 1955.
6 The second column, for example, of the table only reports 5 decimal places for T(h). But many more

decimal places of T(h) were used in the computations of T1(h) etc.
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h T(h) T1(h) T2(h) T3(h)
1/4 3.13118 3.14159250246 3.14159266114 3.14159265359003
1/8 3.13899 3.141592651225 3.141592653708

1/16 3.14094 3.141592653553
1/32 3.14143

This computation required the evaluation of f (x) = 4
1+x2 only for x = n/32 with 0 ď n ď 32

— that is, a total of 33 evaluations of f . Those 33 evaluations gave us 12 correct decimal
places. By way of comparison, T

(
1/32

)
used the same 33 evaluations of f , but only gave

us 3 correct decimal places.
Example C.2.2

As we have seen, Richardson extrapolation can be used to choose the step size so
as to achieve some desired degree of accuracy. We are next going to consider a family
of algorithms that extend this idea to use small step sizes in the part of the domain of
integration where it is hard to get good accuracy and large step sizes in the part of the
domain of integration where it is easy to get good accuracy. We will illustrate the ideas by
applying them to the integral

ş1
0
?

x dx. The integrand
?

x changes very quickly when x is
small and changes slowly when x is large. So we will make the step size small near x = 0
and make the step size large near x = 1.

x

y

1

y “ ?
x

C.3Ĳ Adaptive Quadrature

“Adaptive quadrature” refers to a family of algorithms that use small step sizes in the part
of the domain of integration where it is hard to get good accuracy and large step sizes in
the part of the domain of integration where it is easy to get good accuracy.

We’ll illustrate the idea using Simpson’s rule applied to the integral
şb

a f (x) dx, and
assuming that we want the error to be no more than (approximately) some fixed constant
ε. For example, ε could be 10´6. Denote by S(a1, b1 ; h1), the answer given when Simpson’s
rule is applied to the integral

şb1
a1 f (x) dx with step size h1.

• Step 1. We start by applying Simpson’s rule, combined with Richardson extrapola-
tion so as to get an error estimate, with the largest possible step size h. Namely, set
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h = b´a
2 and compute

f (a) f
(
a + h

2

)
f (a + h) = f

( a+b
2

)
f
(
a + 3h

2

)
f (a + 2h) = f (b)

Then
S
(
a, b ; h

)
= h

3

 
f (a) + 4 f

(
a + h

)
+ f (b)

(

and

S
(
a, b ; h

2

)
= h

6

 
f (a) + 4 f

(
a + h

2

)
+ 2 f

(
a + h

)
+ 4 f

(
a + 3h

2

)
+ f (b)

(

= S
(
a, a+b

2 ; h
2

)
+ S

( a+b
2 , b ; h

2

)

with

S
(
a, a+b

2 ; h
2

)
= h

6

 
f (a) + 4 f

(
a + h

2

)
+ f

( a+b
2

)(

S
( a+b

2 , b ; h
2

)
= h

6

 
f
( a+b

2

)
+ 4 f

(
a + 3h

2

)
+ f (b)

(

Using the Richardson extrapolation formula (E4a) with k = 4 gives that the error in
S
(
a, b ; h

2

)
is (approximately)

ˇ̌
K
( h

2

)4ˇ̌
= 1

15

ˇ̌
ˇS
(
a, b ; h

2

)´ S
(
a, b ; h

)ˇ̌
ˇ (E7)

If this is smaller than ε, we have (approximately) the desired accuracy and stop7.

• Step 2. If (E7) is larger than ε, we divide the original integral I =
şb

a f (x)dx into

two “half-sized” integrals, I1 =
ş a+b

2
a f (x)dx and I2 =

şb
a+b

2
f (x)dx and repeat the

procedure of Step 1 on each of them, but with h replaced by h
2 and ε replaced by

ε
2 — if we can find an approximation, Ĩ1, to I1 with an error less than ε

2 and an
approximation, Ĩ2, to I2 with an error less than ε

2 , then Ĩ1 + Ĩ2 approximates I with
an error less than ε. Here is more detail.

– If the error in the approximation Ĩ1 to I1 and the error in the approximation Ĩ2
to I2 are both acceptable, then we use Ĩ1 as our final approximation to I1 and we
use Ĩ2 as our final approximation to I2.

– If the error in the approximation Ĩ1 to I1 is acceptable but the error in the ap-
proximation Ĩ2 to I2 is not acceptable, then we use Ĩ1 as our final approximation
to I1 but we subdivide the integral I2.

– If the error in the approximation Ĩ1 to I1 is not acceptable but the error in the
approximation Ĩ2 to I2 is acceptable, then we use Ĩ2 as our final approximation
to I2 but we subdivide the integral I1.

– If the error in the approximation Ĩ1 to I1 and the error in the approximation Ĩ2
to I2 are both not acceptable, then we subdivide both of the integrals I1 and I2.

So we adapt the step size as we go.

7 It is very common to build in a bit of a safety margin and require that, for example,
ˇ̌
K
( h

2
)4 ˇ̌ be smaller

than ε
2 rather than ε.
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• Steps 3, 4, 5, ¨ ¨ ¨ Repeat as required.

Example C.3.1

Let’s apply adaptive quadrature using Simpson’s rule as above with the goal of comput-
ing

ş1
0
?

x dx with an error of at most ε = 0.0005 = 5ˆ 10´4. Observe that d
dx
?

x = 1
2
?

x
blows up as x tends to zero. The integrand changes very quickly when x is small. So we
will probably need to make the step size small near the limit of integration x = 0.

• Step 1 — the interval [0, 1]. (The notation [0, 1] stands for the interval 0 ď x ď 1.)

S(0, 1 ; 1
2) = 0.63807119

S(0, 1
2 ; 1

4) = 0.22559223

S(1
2 , 1 ; 1

4) = 0.43093403

error = 1
15

ˇ̌
ˇS(0, 1

2 ; 1
4) + S(1

2 , 1 ; 1
4)´ S(0, 1 ; 1

2)
ˇ̌
ˇ = 0.0012 ą ε = 0.0005

This is unacceptably large, so we subdivide the interval [0, 1] into the two halves[
0, 1

2

]
and

[1
2 , 1
]

and apply the procedure separately to each half.

• Step 2a — the interval [0, 1
2 ].

S(0, 1
2 ; 1

4) = 0.22559223

S(0, 1
4 ; 1

8) = 0.07975890

S(1
4 , 1

2 ; 1
8) = 0.15235819

error = 1
15

ˇ̌
ˇS(0, 1

4 ; 1
8) + S(1

4 , 1
2 ; 1

8)´ S(0, 1
2 ; 1

4)
ˇ̌
ˇ = 0.00043 ą ε

2 = 0.00025

This error is unacceptably large.

• Step 2b — the interval [1
2 , 1].

S(1
2 , 1 ; 1

4) = 0.43093403

S(1
2 , 3

4 ; 1
8) = 0.19730874

S(3
4 , 1 ; 1

8) = 0.23365345

error = 1
15

ˇ̌
ˇS(1

2 , 3
4 ; 1

8) + S(3
4 , 1 ; 1

8)´ S(1
2 , 1 ; 1

4)
ˇ̌
ˇ = 0.0000019 ă ε

2 = 0.00025

This error is acceptable.

• Step 2 resumé. The error for the interval [1
2 , 1] is small enough, so we accept

S(1
2 , 1 ; 1

8) = S(1
2 , 3

4 ; 1
8) + S(3

4 , 1 ; 1
8) = 0.43096219

as the approximate value of
ş1

1/2
?

x dx.

The error for the interval [0, 1
2 ] is unacceptably large, so we subdivide the interval

[0, 1
2 ] into the two halves [0, 1

4 ] and [1
4 , 1

2 ] and apply the procedure separately to each
half.
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• Step 3a — the interval [0, 1
4 ].

S(0, 1
4 ; 1

8) = 0.07975890

S(0, 1
8 ; 1

16) = 0.02819903

S(1
8 , 1

4 ; 1
16) = 0.05386675

error = 1
15

ˇ̌
ˇS(0, 1

8 ; 1
16) + S(1

8 , 1
4 ; 1

16)´ S(0, 1
4 ; 1

8)
ˇ̌
ˇ = 0.000153792 ą ε

4 = 0.000125

This error is unacceptably large.

• Step 3b — the interval [1
4 , 1

2 ].

S(1
4 , 1

2 ; 1
8) = 0.15235819

S(1
4 , 3

8 ; 1
16) = 0.06975918

S(3
8 , 1

2 ; 1
16) = 0.08260897

error = 1
15

ˇ̌
ˇS(1

4 , 3
8 ; 1

16) + S(3
8 , 1

2 ; 1
16)´ S(1

4 , 1
2 ; 1

8)
ˇ̌
ˇ = 0.00000066 ă ε

4 = 0.000125

This error is acceptable.

• Step 3 resumé. The error for the interval [1
4 , 1

2 ] is small enough, so we accept

S(1
4 , 1

2 ; 1
16) = S(1

4 , 3
8 ; 1

16) + S(3
8 , 1

2 ; 1
16) = 0.15236814

as the approximate value of
ş1/2

1/4
?

x dx.

The error for the interval [0, 1
4 ] is unacceptably large, so we subdivide the interval

[0, 1
4 ] into the two halves [0, 1

8 ] and [1
8 , 1

4 ] and apply the procedure separately to each
half.

• Step 4a — the interval [0, 1
8 ].

S(0, 1
8 ; 1

16) = 0.02819903

S(0, 1
16 ; 1

32) = 0.00996986

S( 1
16 , 1

8 ; 1
32) = 0.01904477

error = 1
15

ˇ̌
ˇS(0, 1

16 ; 1
32) + S( 1

16 , 1
8 ; 1

32)´ S(0, 1
8 ; 1

16)
ˇ̌
ˇ = 0.000054 ă ε

8 = 0.0000625

This error is acceptable.

• Step 4b — the interval [1
8 , 1

4 ].

S(1
8 , 1

4 ; 1
16) = 0.05386675

S(1
8 , 3

16 ; 1
32) = 0.02466359

S( 3
16 , 1

4 ; 1
32) = 0.02920668

error = 1
15

ˇ̌
ˇS(1

8 , 3
16 ; 1

32) + S(3
6 , 1

4 ; 1
32)´ S(1

8 , 1
4 ; 1

16)
ˇ̌
ˇ = 0.00000024 ă ε

8 = 0.0000625

This error is acceptable.
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• Step 4 resumé. The error for the interval [0, 1
8 ] is small enough, so we accept

S(0, 1
8 ; 1

32) = S(0, 1
16 ; 1

32) + S( 1
16 , 1

8 ; 1
32) = 0.02901464

as the approximate value of
ş1/8

0
?

x dx.

The error for the interval [1
8 , 1

4 ] is small enough, so we accept

S(1
8 , 1

4 ; 1
32) = S(1

8 , 3
16 ; 1

32) + S( 3
16 , 1

4 ; 1
32) = 0.05387027

as the approximate value of
ş1/4

1/8
?

x dx.

• Conclusion The approximate value for
ş1

0
?

x dx is

S(0, 1
8 ; 1

32) + S(1
8 , 1

4 ; 1
32) + S(1

4 , 1
2 ; 1

16) + S(1
2 , 1 ; 1

8) = 0.66621525 (E8)

Of course the exact value of
ş1

0
?

x dx = 2
3 , so the actual error in our approximation is

2
3 ´ 0.66621525 = 0.00045 ă ε = 0.0005

Here is what Simpson’s rule gives us when applied with some fixed step sizes.

S(0, 1 ; 1
8) = 0.66307928

S(0, 1 ; 1
16) = 0.66539819

S(0, 1 ; 1
32) = 0.66621818

S(0, 1 ; 1
64) = 0.66650810

So to get an error comparable to that in (E8) from Simpson’s rule with a fixed step size,
we need to use h = 1

32 . In (E8) the step size h = 1
32 was just used on the subinterval

[
0, 1

4

]
.

Example C.3.1
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Appendix D

In Section 2.4 we solved a number of inital value problems of the form

y1(t) = f
(
t, y(t)

)

y(t0) = y0

Here f (t, y) is a given function, t0 is a given initial time and y0 is a given initial value
for y. The unknown in the problem is the function y(t). There are a number of other
techniques for analytically solving some problems of this type. However it is often simply
not possible to find an explicit solution. This appendix introduces some simple algorithms
for generating approximate numerical solutions to such problems.

D.1Ĳ Simple ODE Solvers — Derivation

The first order of business is to derive three simple algorithms for generating approximate
numerical solutions to the initial value problem

y1(t) = f
(
t, y(t)

)

y(t0) = y0

The first is called Euler’s method because it was developed by (surprise!) Euler1.

D.1.1 §§ Euler’s Method

Our goal is to approximate (numerically) the unknown function

y(t) = y(t0) +

ż t

t0

y1(τ)dτ

= y(t0) +

ż t

t0

f
(
τ, y(τ)

)
dτ

1 Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who spent most of his adult life
in Saint Petersberg and Berlin. He gave the name π to the ratio of a circle’s circumference to its diameter.
He also developed the constant e.
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for t ě t0. We are told explicitly the value of y(t0), namely y0. So we know f
(
τ, y(τ)

)ˇ̌
τ=t0

=

f
(
t0, y0

)
. But we do not know the integrand f

(
τ, y(τ)

)
for τ ą t0. On the other hand, if

τ is close t0, then f
(
τ, y(τ)

)
will remain close2 to f

(
t0, y0

)
. So pick a small number h and

define

t1 = t0 + h

y1 = y(t0) +

ż t1

t0

f (t0, y0)dτ = y0 + f
(
t0, y0

)
(t1 ´ t0)

= y0 + f
(
t0, y0

)
h

By the above argument
y(t1) « y1

t

y

y “ yptq

y “ y0 ` fpt0, y0q pt ´ t0q

pt0, y0q

`
t1, ypt1q

˘

pt1, y1q

Now we start over from the new point (t1, y1). We now know an approximate value
for y at time t1. If y(t1) were exactly y1, then the instantaneous rate of change of y at time
t1, namely y1(t1) = f

(
t1, y(t1)

)
, would be exactly f (t1, y1) and f

(
t, y(t)

)
would remain

close to f (t1, y1) for t close to t1. Defining

t2 = t1 + h = t0 + 2h

y2 = y1 +

ż t2

t1

f (t1, y1)dt = y1 + f
(
t1, y1

)
(t2 ´ t1)

= y1 + f
(
t1, y1

)
h

we have
y(t2) « y2

We just repeat this argument ad infinitum. Define, for n = 0, 1, 2, 3, ¨ ¨ ¨
tn = t0 + nh

Suppose that, for some value of n, we have already computed an approximate value yn for
y(tn). Then the rate of change of y(t) for t close to tn is f

(
t, y(t)

) « f
(
tn, y(tn)

) « f
(
tn, yn

)

and

2 This will be the case as long as f (t, y) is continuous.
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y(tn+1) « yn+1 = yn + f
(
tn, yn

)
h

Equation D.1.1 (Euler’s Method).

This algorithm is called Euler’s Method. The parameter h is called the step size.
Here is a table applying a few steps of Euler’s method to the initial value problem

y1 = ´2t + y
y(0) = 3

with step size h = 0.1. For this initial value problem

f (t, y) = ´2t + y
t0 = 0
y0 = 3

Of course this initial value problem has been chosen for illustrative purposes only. The
exact solution is3 y(t) = 2 + 2t + et.

n tn yn f (tn, yn) = ´2tn + yn yn+1 = yn + f (tn, yn) ˚ h

0 0.0 3.000 -2*0.0+3.000=3.000 3.000+3.000*0.1=3.300

1 0.1 3.300 -2*0.1+3.300=3.100 3.300+3.100*0.1=3.610

2 0.2 3.610 -2* 0.2+3.610=3.210 3.610+3.210*0.1=3.931

3 0.3 3.931 -2* 0.3+3.931=3.331 3.931+3.331*0.1=4.264

4 0.4 4.264 -2* 0.4+4.264=3.464 4.264+3.464*0.1=4.611

5 0.5 4.611

The exact solution at t = 0.5 is 4.6487, to four decimal places. We expect that Euler’s
method will become more accurate as the step size becomes smaller. But, of course, the
amount of effort goes up as well. If we recompute using h = 0.01, we get (after much
more work) 4.6446.

D.1.2 §§ The Improved Euler’s Method

Euler’s method is one algorithm which generates approximate solutions to the initial
value problem

y1(t) = f
(
t, y(t)

)

y(t0) = y0

In applications, f (t, y) is a given function and t0 and y0 are given numbers. The function
y(t) is unknown. Denote by ϕ(t) the exact solution4 for this initial value problem. In other

3 Even if you haven’t learned how to solve initial value problems like this one, you can check that y(t) =
2 + 2t + et obeys both y1(t) = ´2t + y(t) and y(0) = 3.

4 Under reasonable hypotheses on f , there is exactly one such solution. The interested reader should
search engine their way to the Picard-Lindelöf theorem.
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words ϕ(t) is the function that obeys

ϕ1(t) = f
(
t, ϕ(t)

)

ϕ(t0) = y0

exactly.
Fix a step size h and define tn = t0 + nh. By turning the problem into one of approx-

imating integrals, we now derive another algorithm that generates approximate values
for ϕ at the sequence of equally spaced time values t0, t1, t2, ¨ ¨ ¨ . We shall denote the
approximate values yn with

yn « ϕ(tn)

By the fundamental theorem of calculus and the differential equation, the exact solution
obeys

ϕ(tn+1) = ϕ(tn) +

ż tn+1

tn

ϕ1(t) dt

= ϕ(tn) +

ż tn+1

tn

f
(
t, ϕ(t)

)
dt

Fix any n and suppose that we have already found y0, y1, ¨ ¨ ¨ , yn. Our algorithm for
computing yn+1 will be of the form

yn+1 = yn + approximate value of
ż tn+1

tn

f
(
t, ϕ(t)

)
dt

In Euler’s method, we approximated f
(
t, ϕ(t)

)
for tn ď t ď tn+1 by the constant

f
(
tn, yn

)
. Thus

Euler’s approximate value for
ż tn+1

tn

f
(
t, ϕ(t)

)
dt is

ż tn+1

tn

f
(
tn, yn

)
dt = f

(
tn, yn

)
h

So Euler’s method approximates the area of the complicated region 0 ď y ď f
(
t, ϕ(t)

)
,

tn ď t ď tn+1 (represented by the shaded region under the parabola in the left half of the
figure below) by the area of the rectangle 0 ď y ď f

(
tn, yn

)
, tn ď t ď tn+1 (the shaded

rectangle in the right half of the figure below).

tn tn`1

y “ f
`
t, ϕptq˘

f
`
tn, ϕptnq˘

f
`
tn, yn

˘

tn tn`1

y “ f
`
t, ϕptq˘

f
`
tn, ϕptnq˘

f
`
tn, yn

˘

Our second algorithm, the improved Euler’s method, gets a better approximation by
using the trapezoidal rule. That is, we approximate the integral by the area of the trape-
zoid on the right below, rather than the rectangle on the right above. The exact area of
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tn tn`1

y “ f
`
t, ϕptq˘

f
`
tn`1, ϕptn`1q

˘

f
`
tn, ϕptnq˘

tn tn`1

y “ f
`
t, ϕptq˘

f
`
tn`1, ϕptn`1q

˘

f
`
tn, ϕptnq˘

this trapezoid is the length h of the base multiplied by the average of the heights of the
two sides, which is 1

2

[
f
(
tn, ϕ(tn)

)
+ f
(
tn+1, ϕ(tn+1)

)]
. Of course we do not know ϕ(tn) or

ϕ(tn+1) exactly.
Recall that we have already found y0, ¨ ¨ ¨ , yn and are in the process of finding yn+1. So

we already have an approximation for ϕ(tn), namely yn. But we still need to approximate
ϕ(tn+1). We can do so by using one step of the original Euler method! That is

ϕ(tn+1) « ϕ(tn) + ϕ1(tn)h « yn + f (tn, yn)h

So our approximation of 1
2

[
f
(
tn, ϕ(tn)

)
+ f

(
tn+1, ϕ(tn+1)

)]
is

1
2

[
f
(
tn, yn

)
+ f

(
tn+1, yn + f (tn, yn)h

)]

and

Improved Euler’s approximate value for
ż tn+1

tn

f
(
t, ϕ(t)

)
dt is

1
2

[
f
(
tn, yn

)
+ f

(
tn+1, yn + f (tn, yn)h

)]
h

Putting everything together5, the improved Euler’s method algorithm is

y(tn+1) « yn+1 = yn +
1
2

[
f
(
tn, yn

)
+ f

(
tn+1, yn + f (tn, yn)h

)]
h

Equation D.1.2 (Improved Euler).

Here are the first two steps of the improved Euler’s method applied to

y1 = ´2t + y y(0) = 3

5 Notice that we have made a first approximation for ϕ(tn+1) by using Euler’s method. Then improved
Euler uses the first approximation to build a better approximation for ϕ(tn+1). Building an approxima-
tion on top of another approximation does not always work, but it works very well here.
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with h = 0.1. In each step we compute f (tn, yn), followed by yn + f (tn, yn)h, which we de-
note ỹn+1, followed by f (tn+1, ỹn+1), followed by yn+1 = yn +

1
2

[
f
(
tn, yn

)
+ f
(
tn+1, ỹn+1

)]
h.

t0 = 0 y0 = 3 ùñ f (t0, y0) = ´2 ˚ 0 + 3 = 3
ùñ ỹ1 = 3 + 3 ˚ 0.1 = 3.3
ùñ f (t1, ỹ1) = ´2 ˚ 0.1 + 3.3 = 3.1

ùñ y1 = 3 +
1
2
[3 + 3.1] ˚ 0.1 = 3.305

t1 = 0.1 y1 = 3.305 ùñ f (t1, y1) = ´2 ˚ 0.1 + 3.305 = 3.105
ùñ ỹ2 = 3.305 + 3.105 ˚ 0.1 = 3.6155
ùñ f (t2, ỹ2) = ´2 ˚ 0.2 + 3.6155 = 3.2155

ùñ y2 = 3.305 +
1
2
[3.105 + 3.2155] ˚ 0.1 = 3.621025

Here is a table which gives the first five steps.

n tn yn f (tn, yn) ỹn+1 f (tn+1, ỹn+1) yn+1

0 0.0 3.000 3.000 3.300 3.100 3.305

1 0.1 3.305 3.105 3.616 3.216 3.621

2 0.2 3.621 3.221 3.943 3.343 3.949

3 0.3 3.949 3.349 4.284 3.484 4.291

4 0.4 4.291 3.491 4.640 3.640 4.647

5 0.5 4.647

As we saw at the end of Section D.1.1, the exact y(0.5) is 4.6487, to four decimal places,
and Euler’s method gave 4.611.

D.1.3 §§ The Runge-Kutta Method

The Runge-Kutta6 algorithm is similar to the Euler and improved Euler methods in that it
also uses, in the notation of the last subsection,

yn+1 = yn + approximate value for
ż tn+1

tn

f
(
t, ϕ(t)

)
dt

But rather than approximating
ştn+1

tn
f
(
t, ϕ(t)

)
dt by the area of a rectangle, as does Euler,

or by the area of a trapezoid, as does improved Euler, it approximates by the area under
a parabola. That is, it uses Simpson’s rule. According to Simpson’s rule (which is derived
in §1.11.3)

ż tn+h

tn

f
(
t, ϕ(t)

)
dt « h

6

[
f
(
tn, ϕ(tn)

)
+ 4 f

(
tn +

h
2 , ϕ(tn +

h
2 )
)
+ f

(
tn + h, ϕ(tn + h)

)]

6 Carl David Tolmé Runge (1856–1927) and Martin Wilhelm Kutta (1867–1944) were German mathemati-
cians.
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Analogously to what happened in our development of the improved Euler method, we
don’t know ϕ(tn), ϕ(tn +

h
2 ) or ϕ(tn + h). So we have to approximate them as well. The

Runge-Kutta algorithm, incorporating all these approximations, is7

k1,n = f (tn, yn)

k2,n = f (tn +
1
2 h, yn +

h
2 k1,n)

k3,n = f (tn +
1
2 h, yn +

h
2 k2,n)

k4,n = f (tn + h, yn + hk3,n)

yn+1 = yn +
h
6 [k1,n + 2k2,n + 2k3,n + k4,n]

Equation D.1.3 (Runge-Kutta).

That is, Runge-Kutta uses

• k1,n to approximate f
(
tn, ϕ(tn)

)
= ϕ1(tn),

• both k2,n and k3,n to approximate f
(
tn +

h
2 , ϕ(tn +

h
2 )
)
= ϕ1(tn +

h
2 ), and

• k4,n to approximate f
(
tn + h, ϕ(tn + h)

)
.

Here are the first two steps of the Runge-Kutta algorithm applied to

y1 = ´2t + y y(0) = 3

with h = 0.1.

t0 = 0 y0 = 3
ùñ k1,0 = f (0, 3) = ´2 ˚ 0 + 3 = 3

ùñ y0 +
h
2 k1,0 = 3 + 0.05 ˚ 3 = 3.15

ùñ k2,0 = f (0.05, 3.15) = ´2 ˚ 0.05 + 3.15 = 3.05

ùñ y0 +
h
2 k2,0 = 3 + 0.05 ˚ 3.05 = 3.1525

ùñ k3,0 = f (0.05, 3.1525) = ´2 ˚ 0.05 + 3.1525 = 3.0525
ùñ y0 + hk3,0 = 3 + 0.1 ˚ 3.0525 = 3.30525
ùñ k4,0 = f (0.1, 3.30525) = ´2 ˚ 0.1 + 3.30525 = 3.10525

ùñ y1 = 3 + 0.1
6 [3 + 2 ˚ 3.05 + 2 ˚ 3.0525 + 3.10525] = 3.3051708

7 It is well beyond our scope to derive this algorithm, though the derivation is similar in flavour to that
of the improved Euler method. You can find more in, for example, Wikipedia.
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t1 = 0.1 y1 = 3.3051708
ùñ k1,1 = f (0.1, 3.3051708) = ´2 ˚ 0.1 + 3.3051708 = 3.1051708

ùñ y1 +
h
2 k1,1 = 3.3051708 + 0.05 ˚ 3.1051708 = 3.4604293

ùñ k2,1 = f (0.15, 3.4604293) = ´2 ˚ 0.15 + 3.4604293 = 3.1604293

ùñ y1 +
h
2 k2,1 = 3.3051708 + 0.05 ˚ 3.1604293 = 3.4631923

ùñ k3,1 = f (0.15, 3.4631923) = ´2 ˚ 0.15 + 3.4631923 = 3.1631923
ùñ y1 + hk3,1 = 3.3051708 + 0.1 ˚ 3.4631923 = 3.62149
ùñ k4,1 = f (0.2, 3.62149) = ´2 ˚ 0.2 + 3.62149 = 3.22149

ùñ y2 = 3.3051708 + 0.1
6 [3.1051708 + 2 ˚ 3.1604293+
+ 2 ˚ 3.1631923 + 3.22149] = 3.6214025

t2 = 0.2 y2 = 3.6214025

While this might look intimidating written out in full like this, one should keep in mind
that it is quite easy to write a program to do this. Here is a table giving the first five steps.
The intermediate data is only given to three decimal places even though the computation
has been done to many more.

n tn yn k1,n yn,1 k2,n yn,2 k3,n yn,3 k4,n yn+1

0 0.0 3.000 3.000 3.150 3.050 3.153 3.053 3.305 3.105 3.305170833

1 0.1 3.305 3.105 3.460 3.160 3.463 3.163 3.621 3.221 3.621402571

2 0.2 3.621 3.221 3.782 3.282 3.786 3.286 3.950 3.350 3.949858497

3 0.3 3.950 3.350 4.117 3.417 4.121 3.421 4.292 3.492 4.291824240

4 0.4 4.292 3.492 4.466 3.566 4.470 3.570 4.649 3.649 4.648720639

5 0.5 4.6487206

As we saw at the end of Section D.1.2, the exact y(0.5) is 4.6487213, to seven decimal
places, Euler’s method gave 4.611 and improved Euler gave 4.647.

So far we have, hopefully, motivated the Euler, improved Euler and Runge-Kutta al-
gorithms. We have not attempted to see how efficient and how accurate the algorithms
are. A first look at those questions is provided in the next section.

D.2Ĳ Simple ODE Solvers — Error Behaviour

We now provide an introduction to the error behaviour of Euler’s Method, the improved
Euler’s method and the Runge-Kutta algorithm for generating approximate solutions to
the initial value problem

y1(t) = f
(
t, y(t)

)

y(t0) = y0

Here f (t, y) is a given known function, t0 is a given initial time and y0 is a given initial
value for y. The unknown in the problem is the function y(t).
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Two obvious considerations in deciding whether or not a given algorithm is of any
practical value are

(a) the amount of computational effort required to execute the algorithm and
(b) the accuracy that this computational effort yields.

For algorithms like our simple ODE solvers, the bulk of the computational effort usually
goes into evaluating the function8 f (t, y). Euler’s method uses one evaluation of f (t, y)
for each step; the improved Euler’s method uses two evaluations of f per step; the Runge-
Kutta algorithm uses four evaluations of f per step. So Runge-Kutta costs four times as
much work per step as does Euler. But this fact is extremely deceptive because, as we shall
see, you typically get the same accuracy with a few steps of Runge-Kutta as you do with
hundreds of steps of Euler.

To get a first impression of the error behaviour of these methods, we apply them to a
problem that we know the answer to. The solution to the first order constant coefficient
linear initial value problem

y1(t) = y´ 2t
y(0) = 3

is
y(t) = 2 + 2t + et

In particular, the exact value of y(1), to ten decimal places, is 4 + e = 6.7182818285. The
following table lists the error in the approximate value for this number generated by our
three methods applied with three different step sizes. It also lists the number of evalua-
tions of f required to compute the approximation.

Euler Improved Euler Runge Kutta
steps error # evals error # evals error # evals

5 2.3ˆ 10´1 5 1.6ˆ 10´2 10 3.1ˆ 10´5 20
50 2.7ˆ 10´2 50 1.8ˆ 10´4 100 3.6ˆ 10´9 200

500 2.7ˆ 10´3 500 1.8ˆ 10´6 1000 3.6ˆ 10´13 2000

Observe

• Using 20 evaluations of f worth of Runge-Kutta gives an error 90 times smaller than
500 evaluations of f worth of Euler.

• With Euler’s method, decreasing the step size by a factor of ten appears to reduce
the error by about a factor of ten.

• With improved Euler, decreasing the step size by a factor of ten appears to reduce
the error by about a factor of one hundred.

• With Runge-Kutta, decreasing the step size by a factor of ten appears to reduce the
error by about a factor of about 104.

8 Typically, evaluating a complicated function will take a great many arithmetic operations, while the
actual ODE solver method (as per, for example, (D.1.3)) takes only an additional handful of operations.
So the great bulk of computational time goes into evaulating f and we want to do it as few times as
possible.
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Use AE(h), AIE(h) and ARK(h) to denote the approximate value of y(1) given by Euler,
improved Euler and Runge-Kutta, respectively, with step size h. It looks like

AE(h) « y(1) + KEh

AIE(h) « y(1) + KIEh2

ARK(h) « y(1) + KRKh4

with some constants KE, KIE and KRK.

Equation D.2.1.

To test these conjectures further, we apply our three methods with about ten different
step sizes of the form 1

n = 1
2m with m integer. Below are three graphs, one for each method.

Each contains a plot of Y = log2 en, the (base 2) logarithm of the error for step size 1
n ,

against the logarithm (of base 2) of n. The logarithm of base 2 is used because log2 n =
log2 2m = m — nice and simple.

Here is why it is a good reason to plot Y = log2 en against x = log2 n. If, for some
algorithm, there are (unknown) constants K and k such that

approx value of y(1) with step size h = y(1) + Khk

then the error with step size 1
n is en = K 1

nk and obeys

log2 en = log2 K´ k log2 n (E1)

The graph of Y = log2 en against x = log2 n is the straight line Y = ´kx + log2 K of slope
´k and y intercept log2 K.

Remark D.2.2. This procedure can still be used even if we do not know the exact value of
y(1). Suppose, more generally, that we have some algorithm that generates approximate
values for some (unknown) exact value A. Call Ah the approximate value with step size
h. Suppose that

Ah = A+ Khk

with K and k constant (but also unknown). Then plotting

y = log(Ah ´ Ah/2) = log
(

Khk ´ K
(

h
2

)k
)
= log

(
K´ K

2k

)
+ k log h

against x = log h gives the straight line y = mx + b with slope m = k and y intercept
b = log

(
K´ K

2k

)
. So we can

• read off k from the slope of the line and then

• compute K = eb
(

1´ 1
2k

)´1
from the y intercept b and then

• compute9 A = Ah ´ Khk.

9 This is the type of strategy used by the Richardson extrapolation of Section C.1.
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Here are the three graphs — one each for the Euler method, the improved Euler method
and the Runge-Kutta method. Each graph contains about a dozen data points, (x, Y) =
(log2 n, log2 en).
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Runge Kutta

Y “ ´5.508 ´ 3.997 x

Each graph also contains a straight line, chosen by linear regression, to best fit the data.
The method of linear regression for finding the straight line which best fits a given set
of data points is covered in Example 2.9.11 of the CLP-3 text. The three straight lines
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have slopes ´0.998 for Euler, ´1.997 for improved Euler and ´3.997 for Runge Kutta.
Reviewing (E1), it sure looks like k = 1 for Euler, k = 2 for improved Euler and k = 4 for
Runge-Kutta (at least if k is integer).

So far we have only looked at the error in the approximate value of y(t f ) as a function
of the step size h with t f held fixed. The graph below illustrates how the error behaves
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t

100 eptq Error eptq in the yptq generated by improved Euler
with step size 0.1 applied to y1 “ y ´ 2t, yp0q “ 3

as a function of t, with h held fixed. That is, we hold the step size fixed and look at the
error as a function of the distance, t, from the initial point. From the graph, it appears
that the error grows exponentially with t. But it is not so easy to visually distinguish
exponential curves from other upward curving curves. On the other hand, it is pretty easy
to visually distinguish straight lines from other curves, and taking a logarithm converts
the exponential curve y = ekx into the straight line Y = log y = k x. Here is a graph of the
logarithm, log e(t), of the error at time t, e(t), against t. We have added a straight line as
an aide to your eye.
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It looks like the log of the error grows very quickly initially, but then settles into a
straight line. Hence it really does look like, at least in this example, except at the very
beginning, the error e(t) grows exponentially with t.

The above numerical experiments have given a little intuition about the error be-
haviour of the Euler, improved Euler and Runge-Kutta methods. It’s time to try and
understand what is going on more rigorously.

D.2.1 §§ Local Truncation Error for Euler’s Method

We now try to develop some understanding as to why we got the above experimental
results. We start with the error generated by a single step of Euler’s method.

The (signed) error generated by a single step of Euler’s method, under the as-
sumptions that we start the step with the exact solution and that there is no
roundoff error, is called the local truncation error for Euler’s method. That is, if
φ(t) obeys φ1(t) = f

(
t, φ(t)

)
and φ(tn) = yn, and if yn+1 = yn + h f (tn, yn), then

the local truncation error for Euler’s method is

φ
(
tn+1

)´ yn+1

That is, it is difference between the exact value, φ
(
tn+1

)
, and the approximate

value generated by a single Euler method step, yn+1, ignoring any numerical
issues caused by storing numbers in a computer.

Definition D.2.3 (Local truncation error).

Denote by φ(t) the exact solution to the initial value problem

y1(t) = f (t, y) y(tn) = yn

That is, φ(t) obeys
φ1(t) = f

(
t, φ(t)

)
φ(tn) = yn

for all t. Now execute one more step of Euler’s method with step size h:

yn+1 = yn + h f
(
tn, yn

)

Because we are assuming that yn = φ(tn)

yn+1 = φ(tn) + h f
(
tn, φ(tn)

)

Because φ(t) is the exact solution, φ1(tn) = f
(
tn, φ(tn)

)
= f (tn, yn) and

yn+1 = φ(tn) + hφ1(tn)

The local truncation error in yn+1 is, by definition, φ(tn+1)´ yn+1.
Taylor expanding (see (3.4.10) in the CLP-1 text) φ(tn+1) = φ(tn + h) about tn

φ(tn + h) = φ(tn) + φ1(tn)h + 1
2 φ2(tn)h2 + 1

3! φ
3(tn)h3 + ¨ ¨ ¨
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so that

φ(tn+1)´ yn+1 =
[
φ(tn) + φ1(tn)h + 1

2 φ2(tn)h2 + 1
3! φ

3(tn)h3 + ¨ ¨ ¨ ]´ [φ(tn) + hφ1(tn)
]

= 1
2 φ2(tn)h2 + 1

3! φ
3(tn)h3 + ¨ ¨ ¨ (E2)

Notice that the constant and h1 terms have cancelled out. So the first term that appears
is proportional to h2. Since h is typically a very small number, the h3, h4, ¨ ¨ ¨ terms will
usually be much smaller than the h2 term.

We conclude that the local truncation error for Euler’s method is h2 times some un-
known constant (we usually don’t know the value of 1

2 φ2(tn) because we don’t usually
know the solution φ(t) of the differential equation) plus smaller terms that are propor-
tional to hr with r ě 3. This conclusion is typically written

Local truncation error for Euler’s method = Kh2 + O(h3)

Equation D.2.4.

The symbol O(h3) is used to designate any function that, for small h, is bounded by a
constant times h3. So, if h is very small, O(h3) will be a lot smaller than h2.

To get from an initial time t = t0 to a final time t = t f using steps of size h requires
(t f ´ t0)/h steps. If each step were to introduce an error10 Kh2 +O(h3), then the final error
in the approximate value of y(t f ) would be

t f ´ t0

h

[
Kh2 + O(h3)

]
= K(t f ´ t0) h + O(h2)

This very rough estimate is consistent with the experimental data for the dependence of
error on step size with t f held fixed, shown on the first graph after Remark D.2.2. But it is
not consistent with the experimental time dependence data above, which shows the error
growing exponentially, rather than linearly, in t f ´ t0.

We can get some rough understanding of this exponential growth as follows. The
general solution to y1 = y´ 2t is y(t) = 2 + 2t + c0et. The arbitrary constant, c0, is to be
determined by initial conditions. When y(0) = 3, c0 = 1. At the end of step 1, we have
computed an approximation y1 to y(h). This y1 is not exactly y(h) = 2 + 2h + eh. Instead,
it is a number that differs from 2 + 2h + eh by O(h2). We choose to write the number
y1 = 2 + 2h + eh + O(h2) as 2 + 2h + (1 + ε)eh with ε = e´hO(h2) of order of magnitude
h2. That is, we choose to write

y1 = 2 + 2t + c0et
ˇ̌
ˇ
t=h

with c0 = 1 + ε

If we were to make no further errors we would end up with the solution to

y1 = y´ 2t, y(h) = 2 + 2h + (1 + ε)eh

10 For simplicity, we are assuming that K takes the same value in every step. If, instead, there is a different
K in each of the n = (t f ´ t0)/h steps, the final error would be K1h2 + K2h2 + ¨ ¨ ¨+ Knh2 + nO(h3) =

K̄nh2 + nO(h3) = K̄(t f ´ t0) h + O(h2), where K̄ is the average of K1, K2, ¨ ¨ ¨ , Kn.
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which is11

y(t) = 2 + 2t + (1 + ε)et = 2 + 2t + et + εet

= φ(t) + εet

So, once as error has been introduced, the natural time evolution of the solutions to this
differential equation cause the error to grow exponentially. Other differential equations
with other time evolution characteristics will exhibit different t f dependence of errors12.
In the next section, we show that, for many differential equations, errors grow at worst
exponentially with t f .

D.2.2 §§ Global Truncation Error for Euler’s Method

Suppose once again that we are applying Euler’s method with step size h to the initial
value problem

y1(t) = f (t, y)
y(0) = y0

Denote by φ(t) the exact solution to the initial value problem and by yn the approximation
to φ(tn), tn = t0 +nh, given by n steps of Euler’s method (applied without roundoff error).

The (signed) error in yn is φ(tn)´ yn and is called the global truncation error at
time tn.

Definition D.2.5 (Global truncation error).

The word “truncation” is supposed to signify that this error is due solely to Euler’s method
and does not include any effects of roundoff error that might be introduced by our not
writing down an infinite number of decimal digits for each number that we compute
along the way. We now derive a bound on the global truncation error.

Define
εn = φ(tn)´ yn

The first half of the derivation is to find a bound on εn+1 in terms of εn.

εn+1 = φ(tn+1)´ yn+1

= φ(tn+1)´ yn ´ h f (tn, yn)

= [φ(tn)´ yn] + h[ f
(
tn, φ(tn)

)´ f (tn, yn)] + [φ(tn+1)´ φ(tn)´ h f
(
tn, φ(tn)

)
]

(E3)

where we have massaged the expression into three manageable pieces.

• The first [¨ ¨ ¨ ] is exactly εn.

11 Note that this y(t) obeys both the differential equation y1 = y ´ 2t and the initial condition y(h) =
2 + 2h + (1 + ε)eh.

12 For example, if the solution is polynomial, then we might expect (by a similar argument) that the error
also grows polynomially in t f
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• The third [¨ ¨ ¨ ] is exactly the local truncation error. Assuming that |φ2(t)| ď A for all
t of interest13, we can bound the third [¨ ¨ ¨ ] by

ˇ̌
φ(tn+1)´ φ(tn)´ h f

(
tn, φ(tn)

)ˇ̌ ď 1
2 Ah2

This bound follows quickly from the Taylor expansion with remainder ((3.4.32) in
the CLP-1 text),

φ(tn+1) = φ(tn) + φ1(tn)h + 1
2 φ2(t̃)h2

= φ(tn) + h f
(
tn, φ(tn)

)
+ 1

2 φ2(t̃)h2

for some tn ă t̃ ă tn+1.

• Finally, by the mean value theorem, the magnitude of the second [¨ ¨ ¨ ] is h times

| f (tn, φ(tn)
)´ f (tn, yn)| = Ftn

(
φ(tn)

)´ Ftn(yn) where Ftn(y) = f
(
tn, y

)

=
ˇ̌
F1tn(ỹ)

ˇ̌ |φ(tn)´ yn| for some ỹ between yn and φ(tn)

=
ˇ̌
F1tn(ỹ)

ˇ̌ |εn|
ď B|εn|

assuming that
ˇ̌
F1t(y)

ˇ̌ ď B for all t and y of interest14.

Substituting into (E3) gives

|εn+1| ď |εn|+ Bh|εn|+ 1
2 Ah2 = (1 + Bh)|εn|+ 1

2 Ah2 (E4n)

Hence the (bound on the) magnitude of the total error, |εn+1|, consists of two parts. One
part is the magnitude of the local truncation error, which is no more than 1

2 Ah2 and which
is present even if we start the step with no error at all, i.e. with εn = 0. The other part is
due to the combined error from all previous steps. This is the εn term. At the beginning
of step number n + 1, the combined error has magnitude |εn|. During the step, this error
gets magnified by no more than a factor of 1 + Bh.

The second half of the derivation is to repeatedly apply (E4n) with n = 0, 1, 2, ¨ ¨ ¨ . By
definition φ(t0) = y0 so that ε0 = 0, so

(E40) ùñ |ε1| ď (1 + Bh)|ε0|+ A
2 h2 = A

2 h2

(E41) ùñ |ε2| ď (1 + Bh)|ε1|+ A
2 h2 = (1 + Bh)A

2 h2 + A
2 h2

(E42) ùñ |ε3| ď (1 + Bh)|ε2|+ A
2 h2 = (1 + Bh)2 A

2 h2 + (1 + Bh)A
2 h2 + A

2 h2

Continuing in this way

|εn| ď (1 + Bh)n´1 A
2 h2 + ¨ ¨ ¨+ (1 + Bh)A

2 h2 + A
2 h2 =

n´1ÿ

m=0

(1 + Bh)m A
2 h2

13 We are assuming that the derivative φ1(t) doesn’t change too rapidly. This will be the case if f (t, y) is a
reasonably smooth function.

14 Again, this will be the case if f (t, y) is a reasonably smooth function.
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This is the beginning of a geometric series, and we can sum it up by using
n´1ř
m=0

arm = rn´1
r´1 a

(which is Theorem 1.1.6(a)) with a = A
2 h2 and r = 1 + Bh gives

|εn| ď (1 + Bh)n ´ 1
(1 + Bh)´ 1

A
2

h2 =
A
2B
[
(1 + Bh)n ´ 1

]
h

We are interested in how this behaves as tn ´ t0 increases and/or h decreases. Now
n = tn´t0

h so that (1 + Bh)n = (1 + Bh)(tn´t0)/h. When h is small, the behaviour of
(1 + Bh)(tn´t0)/h is not so obvious. So we’ll use a little trickery to make it easier to un-
derstand. Setting x = Bh in

x ě 0 ùñ 1 + x ď 1 + x +
1
2

x2 +
1
3!

x3 + ¨ ¨ ¨ = ex

(the exponential series ex = 1+ x + 1
2 x2 + 1

3! x
3 + ¨ ¨ ¨ was derived in Example 3.6.3) gives15

1 + Bh ď eBh. Hence (1 + Bh)n ď eBhn = eB(tn´t0), since tn = t0 + nh, and we arrive at the
conclusion

|εn| ď A
2B

[
eB(tn´t0) ´ 1

]
h

Equation D.2.6.

which is of the form K(t f )hk with k = 1 and the coefficient K(t f ) growing exponentially
with t f ´ t0. If we keep h fixed and increase tn we see exponential growth, but if we fix tn
and decrease h we see the error decrease linearly. This is just what our experimental data
suggested.

D.3Ĳ Variable Step Size Methods

We now introduce a family of procedures that decide by themselves what step size to use.
In all of these procedures the user specifies an acceptable error rate and the procedure
attempts to adjust the step size so that each step introduces error at no more than that
rate. That way the procedure uses a small step size when it is hard to get an accurate
approximation, and a large step size when it is easy to get a good approximation.

Suppose that we wish to generate an approximation to the initial value problem

y1 = f (t, y), y(t0) = y0

for some range of t’s and we want the error introduced per unit increase16 of t to be no
more than about some small fixed number ε. This means that if yn « y(t0 + nh) and
yn+1 « y(t + (n + 1)h), then we want the local truncation error in the step from yn to
yn+1 to be no more than about εh. Suppose further that we have already produced the

15 When x = Bh is large, it is not wise to bound the linear 1 + x by the much larger exponential ex.
However when x is small, 1 + x and ex are almost the same.

16 We know that the error will get larger the further we go in t. So it makes sense to try to limit the error
per unit increase in t.
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approximate solution as far as tn. The rough strategy is as follows. We do the step from
tn to tn + h twice using two different algorithms, giving two different approximations to
y(tn+1), that we call A1,n+1 and A2,n+1. The two algorithms are chosen so that

(1) we can use A1,n+1 ´ A2,n+1 to compute an approximate local truncation error and
(2) for efficiency, the two algorithms use almost the same evaluations of f . Remem-
ber that evaluating the function f is typically the most time-consuming part of our
computation.

In the event that the local truncation error, divided by h, (i.e. the error per unit increase
of t) is smaller than ε, we set tn+1 = tn + h, accept A2,n+1 as the approximate value17 for
y(tn+1), and move on to the next step. Otherwise we pick, using what we have learned
from A1,n+1 ´ A2,n+1, a new trial step size h and start over again at tn.

Now for the details. We start with a very simple minded procedure.

D.3.1 §§ Euler and Euler-2step (preliminary version)

Denote by φ(t) the exact solution to y1 = f (t, y) that satisfies the initial condition φ(tn) =
yn. If we apply one step of Euler with step size h, giving

A1,n+1 = yn + h f (tn, yn)

we know, from (D.2.4), that

A1,n+1 = φ(tn + h) + Kh2 + O(h3)

The problem, of course, is that we don’t know what the error is, even approximately,
because we don’t know what the constant K is. But we can estimate K simply by redoing
the step from tn to tn + h using a judiciously chosen second algorithm. There are a number
of different second algorithms that will work. We call the simple algorithm that we use
in this subsection Euler-2step18. One step of Euler-2step with step size h just consists of
doing two steps of Euler with step size h/2:

A2,n+1 = yn +
h
2 f (tn, yn) +

h
2 f
(
tn +

h
2 , yn +

h
2 f (tn, yn)

)

Here, the first half-step took us from yn to ymid = yn +
h
2 f (tn, yn) and the second half-step

took us from ymid to ymid + h
2 f
(
tn +

h
2 , ymid

)
. The local truncation error introduced in the

first half-step is K(h/2)2 + O(h3). That for the second half-step is K(h/2)2 + O(h3) with
the same19 K, though with a different O(h3). All together

A2,n+1 = φ(tn + h) +
[
K
( h

2

)2
+ O(h3)

]
+
[
K
( h

2

)2
+ O(h3)

]

= φ(tn + h) + 1
2 Kh2 + O(h3)

17 Better still, accept A2,n+1 minus the computed approximate error in A2,n+1 as the approximate value
for y(tn+1).

18 This name is begging for a dance related footnote and we invite the reader to supply their own.
19 Because the two half-steps start at values of t only h/2 apart, and we are thinking of h as being very

small, it should not be surprising that we can use the same value of K in both. In case you don’t believe
us, we have included a derivation of the local truncation error for Euler-2step later in this appendix.
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The difference is20

A1,n+1 ´ A2,n+1 =
[
φ(tn + h) + Kh2 + O(h3)

]´ [φ(tn + h)´ 1
2 Kh2 ´O(h3)

]

= 1
2 Kh2 + O(h3)

So if we do one step of both Euler and Euler-2step, we can estimate

1
2 Kh2 = A1,n+1 ´ A2,n+1 + O(h3)

We now know that in the step just completed Euler-2step introduced an error of about
1
2 Kh2 « A1,n+1 ´ A2,n+1. That is, the current error rate is about r =

|A1,n+1´A2,n+1|

h « 1
2 |K|h

per unit increase of t.

• If this r = |A1,n+1´A2,n+1|

h ą ε, we reject21 A2,n+1 and repeat the current step with a new
trial step size chosen so that 1

2 |K|(new h) ă ε, i.e. r
h (new h) ă ε. To give ourselves a

small safety margin, we could use22

new h = 0.9
ε

r
h

• If r =
|A1,n+1´A2,n+1|

h ă ε we can accept23 A2,n+1 as an approximate value for y(tn+1),
with tn+1 = tn + h, and move on to the next step, starting with the new trial step
size24

new h = 0.9
ε

r
h

That is our preliminary version of the Euler/Euler-2step variable step size method. We
call it the preliminary version, because we will shortly tweak it to get a much more effi-
cient procedure.

Example D.3.1

As a concrete example, suppose that our problem is

y(0) = e´2, y1 = 8(1´ 2t)y, ε = 0.1

and that we have gotten as far as

tn = 0.33, yn = 0.75, trial h = 0.094

20 Recall that every time the symbol O(h3) is used it can stand for a different function that is bounded
by some constant times h3 for small h. Thus O(h3) ´O(h3) need not be zero, but is O(h3). What is
important here, is that if K is not zero and if h is very small, then O(h3) is much smaller than 1

2 Kh2.
21 The measured error rate, r, is bigger than the desired error rate ε. That means that it is harder to get the

accuracy we want than we thought. So we have to take smaller steps.
22 We don’t want to make the new h too close to ε

r h since we are only estimating things and we might
end up with an error rate bigger that ε. On the other hand, we don’t want to make the new h too small
because that means too much work — so we choose it to be just a little smaller than ε

r h . . . say 0.9 ε
r h .

23 The measured error rate, r, is smaller than the desired error rate ε. That means that it is easier to get the
accuracy we want than we thought. So we can make the next step larger.

24 Note that in this case ε
r ą 1. So the new h can be bigger than the last h.
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Then, using E = |A1,n+1 ´ A2,n+1| to denote the magnitude of the estimated local trunca-
tion error in A2,n+1 and r the corresponding error rate

f (tn, yn) = 8(1´ 2ˆ 0.33)0.75 = 2.04
A1,n+1 = yn + h f (tn, yn) = 0.75 + 0.094ˆ 2.04 = 0.942

ymid = yn +
h
2 f (tn, yn) = 0.75 + 0.094

2 ˆ 2.04 = 0.846

f
(
tn +

h
2 , ymid

)
= 8

[
1´ 2

(
0.33 + 0.094

2

)]
0.846 = 1.66

A2,n+1 = ymid + h
2 f (tn +

h
2 , ymid) = 0.846 + 0.094

2 1.66 = 0.924

E = |A1,n+1 ´ A2,n+1| = |0.942´ 0.924| = 0.018

r =
|E|
h

=
0.018
0.094

= 0.19

Since r = 0.19 ą ε = 0.1 , the current step size is unacceptable and we have to recompute
with the new step size

new h = 0.9
ε

r
(old h) = 0.9

0.1
0.19

0.094 = 0.045

to give

f (tn, yn) = 8(1´ 2ˆ 0.33)0.75 = 2.04
A1,n+1 = yn + h f (tn, yn) = 0.75 + 0.045ˆ 2.04 = 0.842

ymid = yn +
h
2 f (tn, yn) = 0.75 + 0.045

2 ˆ 2.04 = 0.796

f
(
tn +

h
2 , ymid

)
= 8

[
1´ 2

(
0.33 + 0.045

2

)]
0.796 = 1.88

A2,n+1 = ymid + h
2 f (tn +

h
2 , ymid) = 0.796 + 0.045

2 1.88 = 0.838

E = A1.n+1 ´ A2.n+1 = 0.842´ 0.838 = 0.004

r =
|E|
h

=
0.004
0.045

= 0.09

This time r = 0.09 ă ε = 0.1 , is acceptable so we set tn+1 = 0.33 + 0.045 = 0.375 and

yn+1 = A2,n+1 = 0.838

The initial trial step size from tn+1 to tn+2 is

new h = 0.9
ε

r
(old h) = 0.9

0.1
0.09

.045 = .045

By a fluke, it has turned out that the new h is the same as the old h (to three decimal places).
If r had been significantly smaller than ε, then the new h would have been signficantly
bigger than the old h - indicating that it is (relatively) easy to estimate things in this region,
making a larger step size sufficient.

Example D.3.1
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As we said above, we will shortly upgrade the above variable step size method, that
we are calling the preliminary version of the Euler/Euler-2step method, to get a much
more efficient procedure. Before we do so, let’s pause to investigate a little how well our
preliminary procedure does at controlling the rate of error production.

We have been referring, loosely, to ε as the desired rate for introduction of error, by
our variable step size method, as t advances. If the rate of increase of error were exactly ε,
then at final time t f the accumulated error would be exactly ε(t f ´ t0). But our algorithm
actually chooses the step size h for each step so that the estimated local truncation error
in A2,n+1 for that step is about εh. We have seen that, once some local truncation error has
been introduced, its contribution to the global truncation error can grow exponentially
with t f .

Here are the results of a numerical experiment that illustrate this effect. In this ex-
periment, the above preliminary Euler/Euler-2step method is applied to the initial value
problem y1 = t ´ 2y, y(0) = 3 for ε = 1

16 , 1
32 , ¨ ¨ ¨ (ten different values) and for t f =

0.2, 0.4, ¨ ¨ ¨ , 3.8. Here is a plot of the resulting
actual error at t=t f

εt f
against t f . If the rate of

■■
■■■■■■■■

■■■■■■■■■■ ■
■■■■■■■■■

■
■■■■■■■■■

■
■■■■■■■■■

■
■■■■■■■■■

■
■■■■■■■■■

■
■■■■■■■■■

■
■■■■■■■■■

■
■
■■■■■■■■

■
■
■■■■■■■■

■
■
■
■■■■■■■

■
■
■
■■■■■■■

■

■
■
■■■■■■■

■

■
■
■■■■■■■

■

■
■
■■■■■■■

■

■

■
■■■■■■■

■

■

■
■
■■■■■■

tf

errorptf q
ε tf

1 2 3 4

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

introduction of error were exactly ε, we would have
actual error at t=t f

εt f
= 1. There is a small

square on the graph for each different pair ε, t f . So for each value of t f there are ten (pos-
sibly overlapping) squares on the line x = t f . This numerical experiment suggests that
actual error at t=t f

εt f
is relatively independent of ε and starts, when t f is small, at about one, as

we want, but grows (perhaps exponentially) with t f .

D.3.2 §§ Euler and Euler-2step (final version)

We are now ready to use a sneaky bit of arithemtic to supercharge our Euler/Euler-2step
method. As in our development of the preliminary version of the method, denote by φ(t)
the exact solution to y1 = f (t, y) that satisfies the initial condition φ(tn) = yn. We have
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seen, at the beginning of §D.3.1, that applying one step of Euler with step size h, gives

A1,n+1 = yn + h f (tn, yn)

= φ(tn + h) + Kh2 + O(h3) (E5)

and applying one step of Euler-2step with step size h (i.e. applying two steps of Euler
with step size h/2) gives

A2,n+1 = yn +
h
2 f (tn, yn) +

h
2 f
(
tn +

h
2 , yn +

h
2 f (tn, yn)

)

= φ(tn + h) + 1
2 Kh2 + O(h3) (E6)

because the local truncation error introduced in the first half-step was K(h/2)2 + O(h3)
and that introduced in the second half-step was K(h/2)2 +O(h3). Now here is the sneaky
bit. Equations (E5) and (E6) are very similar and we can eliminate all Kh2’s by subtracting
(E5) from 2 times (E6). This gives

2(E6)´(E5): 2A2,n+1 ´ A1,n+1 = φ(tn + h) + O(h3)

(no more h2 term!) or

φ(tn + h) = 2A2,n+1 ´ A1,n+1 + O(h3) (E7)

which tells us that choosing
yn+1 = 2A2,n+1 ´ A1,n+1 (E8)

would give a local truncation error of order h3, rather than the order h2 of the preliminary
Euler/Euler-2step method. To convert the preliminary version of the Euler/Euler-2step
algorithm to the final version, we just replace yn+1 = A2,n+1 by yn+1 = 2A2,n+1 ´ A1,n+1:

Given ε ą 0, tn, yn and the current step size h

• compute

A1,n+1 = yn + h f (tn, yn)

A2,n+1 = yn +
h
2 f (tn, yn) +

h
2 f
(
tn +

h
2 , yn +

h
2 f (tn, yn)

)

r =
|A1,n+1 ´ A2,n+1|

h

• If r ą ε, repeat the first bullet but with the new step size

(new h) = 0.9
ε

r
(old h)

• If r ă ε set

tn+1 = tn + h
yn+1 = 2A2,n+1 ´ A1,n+1 and the new trial step size

(new h) = 0.9
ε

r
(old h)

and move on to the next step.

Equation D.3.2 (Euler/Euler-2step Method).
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Note that when r ă ε, we have r
ε h ą h which indicates that the new h can be larger than

the old h. We include the 0.9 to be careful not to make the error of the next step too big.
Let’s think a bit about how our final Euler/Euler-2step method should perform.

• The step size here, as in the preliminary version, is chosen so that the local truncation
error in A2,n+1 per unit increase of t, namely r =

|A1,n+1´A2,n+1|

h « Kh2/2
h = K

2 h, is
approximately ε. So h is roughly proportional to ε.

• On the other hand, (E7) shows that, in the full method, local truncation error is being

added to yn+1 at a rate of O(h3)
h = O(h2) per unit increase in t.

• So one would expect that local truncation increases the error at a rate proportional
to ε2 per unit increase in t.

• If the rate of increase of error were exactly a constant time ε2, then the error accu-
mulated between the initial time t = 0 and the final time t = t f would be exactly a
constant times ε2 t f .

• However we have seen that, once some local truncation error has been introduced,
its contribution to the global error can grow exponentially with t f . So we would

expect that, under the full Euler/Euler-2step method,
actual error at t=t f

ε2t f
to be more or

less independent of ε, but still growing exponentially in t f .

Here are the results of a numerical experiment that illustrate this. In this experiment,
the above final Euler/Euler-2step method, (D.3.2), is applied to the initial value problem
y1 = t´ 2y, y(0) = 3 for ε = 1

16 , 1
32 , ¨ ¨ ¨ (ten different values) and for t f = 0.2, 0.4, ¨ ¨ ¨ , 3.8.

In the following plot, there is a small square for the resulting
actual error at t=t f

ε2t f
for each

different pair ε, t f .
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It does indeed look like
actual error at t=t f

ε2t f
is relatively independent of ε but grows (perhaps

exponentially) with t f . Note that
actual error at t=t f

ε2t f
contains a factor of ε2 in the denominator.

The actual error rate
actual error at t=t f

t f
is much smaller than is suggested by the graph.

D.3.3 §§ Fehlberg’s Method

Of course, in practice more efficient and more accurate methods25 than Euler and Euler-
2step are used. Fehlberg’s method26 uses improved Euler and a second more accurate
method. Each step involves three calculations of f :

f1,n = f (tn, yn)

f2,n = f (tn + h, yn + h f1,n)

f3,n = f
(

tn +
h
2 , yn +

h
4 [ f1,n + f2,n]

)

Once these three evaluations have been made, the method generates two approximations
for y(tn + h):

A1,n+1 = yn +
h
2 [ f1,n + f2,n]

A2,n+1 = yn +
h
6 [ f1,n + f2,n + 4 f3,n]

Denote by φ(t) the exact solution to y1 = f (t, y) that satisfies the initial condition φ(tn) =
yn. Now A1,n+1 is just the yn+1 produced by the improved Euler’s method. The local
truncation error for the improved Euler’s method is of order h3, one power of h smaller
than that for Euler’s method. So

A1,n+1 = φ(tn + h) + Kh3 + O(h4)

and it turns out27 that
A2,n+1 = φ(tn + h) + O(h4)

So the error in A1,n+1 is

E =
ˇ̌
Kh3 + O(h4)

ˇ̌
=

ˇ̌
A1,n+1 ´ φ(tn + h)

ˇ̌
+ O(h4)

=
ˇ̌
A1,n+1 ´ A2,n+1

ˇ̌
+ O(h4)

and our estimate for rate at which error is being introduced into A1,n+1 is

r =
|A1,n+1 ´ A2,n+1|

h
« |K|h2

per unit increase of t.

25 There are a very large number of such methods. We will only look briefly at a couple of the simpler ones.
The interested reader can find more by search engining for such keywords as “Runge-Kutta methods”
and “adaptive step size”.

26 E. Fehlberg, NASA Technical Report R315 (1969) and NASA Technical Report R287 (1968).
27 The interested reader can find Fehlberg’s original paper online (at NASA!) and follow the derivation.

It requires careful Taylor expansions and then clever algebra to cancel the bigger error terms.
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• If r ą ε we redo this step with a new trial step size chosen so that |K|(new h)2 ă ε,
i.e. r

h2 (new h)2 ă ε. With our traditional safety factor, we take

new h = 0.9
c

ε

r
h (the new h is smaller)

• If r ď ε we set tn+1 = tn + h and yn+1 = A2,n+1 (since A2,n+1 should be considerably
more accurate than A1,n+1) and move on to the next step with trial step size

new h = 0.9
c

ε

r
h (the new h is usually bigger)

D.3.4 §§ The Kutta-Merson Process

The Kutta-Merson process28 uses two variations of the Runge-Kutta method. Each step
involves five calculations29 of f :

k1,n = f (tn, yn)

k2,n = f
(
tn +

1
3 h, yn +

1
3 hk1,n

)

k3,n = f
(
tn +

1
3 h, yn +

1
6 hk1,n +

1
6 hk2,n

)

k4,n = f
(
tn +

1
2 h, yn +

1
8 hk1,n +

3
8 hk3,n

)

k5,n = f
(
tn + h, yn +

1
2 hk1,n ´ 3

2 hk3,n + 2hk4,n
)

Once these five evaluations have been made, the process generates two approximations
for y(tn + h):

A1,n+1 = yn + h
[

1
2 k1,n ´ 3

2 k3,n + 2k4,n

]

A2,n+1 = yn + h
[

1
6 k1,n +

2
3 k4,n +

1
6 k5,n

]

The (signed) error in A1,n+1 is 1
120 h5K +O(h6) while that in A2,n+1 is 1

720 h5K +O(h6) with
the same constant K. So A1,n+1 ´ A2,n+1 = 5

720 Kh5 + O(h6) and the unknown constant K
can be determined, to within an error O(h), by

K =
720
5 h5 (A1,n+1 ´ A2,n+1)

and the approximate (signed) error in A2,n+1 and its corresponding rate per unit increase
of t are

E =
1

720
Kh5 =

1
5
(A1,n+1 ´ A2,n+1)

r =
|E|
h

=
1

720
|K|h4 =

1
5 h

ˇ̌
A1,n+1 ´ A2,n+1

ˇ̌

28 R.H. Merson, “An operational method for the study of integration processes” , Proc. Symp. Data
Processing , Weapons Res. Establ. Salisbury , Salisbury (1957) pp. 110–125.

29 Like the other methods described above, the coefficients 1/3, 1/6, 1/8 etc. are chosen so as to cancel
larger error terms. While determining the correct choice of coefficients is not conceptually difficult, it
does take some work and is beyond the scope of this appendix. The interested reader should search-
engine their way to a discussion of adaptive Runge-Kutta methods.
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• If r ą ε we redo this step with a new trial step size chosen so that 1
720 |K|(new h)4 ă ε,

i.e. r
h4 (new h)4 ă ε. With our traditional safety factor, we take

new h = 0.9
( ε

r

)1/4
h

• If r ď ε we set tn+1 = tn + h and yn+1 = A2,n+1 ´ E (since E is our estimate of the
signed error in A2,n+1) and move on to the next step with trial step size

new h = 0.9
( ε

r

)1/4
h

D.3.5 §§ The Local Truncation Error for Euler-2step

In our description of Euler/Euler-2step above we simply stated the local truncation error
without an explanation. In this section, we show how it may be derived. We note that
very similar calculations underpin the other methods we have described.

In this section, we will be using partial derivatives and, in particular, the chain rule for
functions of two variables. That material is covered in Chapter 2 of the CLP-3 text. If you
are not yet comfortable with it, you can either take our word for those bits, or you can
delay reading this section until you have learned a little multivariable calculus.

Recall that, by definition, the local truncation error for an algorithm is the (signed)
error generated by a single step of the algorithm, under the assumptions that we start the
step with the exact solution and that there is no roundoff error30 Denote by φ(t) the exact
solution to

y1(t) = f (t, y)
y(tn) = yn

In other words, φ(t) obeys

φ1(t) = f
(
t, φ(t)

)
for all t

φ(tn) = yn

In particular φ1(tn) = f
(
tn, φ(tn)

)
= f (tn, yn) and, carefully using the chain rule, which is

(2.4.2) in the CLP-3 text,

φ2(tn) =
d
dt

f
(
t, φ(t)

)ˇ̌
ˇ
t=tn

=
[

ft
(
t, φ(t)

)
+ fy

(
t, φ(t)

)
φ1(t)

]
t=tn

= ft(tn, yn) + fy(tn, yn) f (tn, yn) (E9)

Remember that ft is the partial derivative of f with respect to t, and that fy is the partial
derivative of f with respect to y. We’ll need (E9) below.

30 We should note that in serious big numerical computations, one really does have to take rounding
errors into account because they can cause serious problems. The interested reader should search-
engine their way to the story of Edward Lorenz’s numerical simulations and the beginnings of chaos
theory. Unfortunately we simply do not have space in this text to discuss all aspects of mathematics.
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By definition, the local truncation error for Euler is

E1(h) = φ(tn + h)´ yn ´ h f
(
tn, yn

)

while that for Euler-2step is

E2(h) = φ(tn + h)´ yn ´ h
2 f (tn, yn)´ h

2 f
(
tn +

h
2 , yn +

h
2 f (tn, yn)

)

To understand how E1(h) and E2(h) behave for small h we can use Taylor expansions
((3.4.10) in the CLP-1 text) to write them as power series in h. To be precise, we use

g(h) = g(0) + g1(0) h + 1
2 g2(0) h2 + O(h3)

to expand both E1(h) and E2(h) in powers of h to order h2. Note that, in the expression
for E1(h), tn and yn are constants — they do not vary with h. So computing derivatives of
E1(h) with respect to h is actually quite simple.

E1(h) = φ(tn + h)´ yn ´ h f
(
tn, yn

)
E1(0) = φ(tn)´ yn = 0

E11(h) = φ1(tn + h)´ f
(
tn, yn

)
E11(0) = φ1(tn)´ f

(
tn, yn

)
= 0

E21(h) = φ2(tn + h) E21(0) = φ2(tn)

By Taylor, the local truncation error for Euler obeys

E1(h) = 1
2 φ2(tn)h2 + O(h3) = Kh2 + O(h3) with K = 1

2 φ2(tn)

Equation D.3.3.

Computing arguments of E2(h) with respect to h is a little harder, since h now appears
in the arguments of the function f . As a consequence, we have to include some partial
derivatives.

E2(h) = φ(tn + h)´ yn ´ h
2

f (tn, yn)´ h
2

f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)

E12(h) = φ1(tn + h)´ 1
2

f (tn, yn)´ 1
2

f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)

´ h
2

d
dh

f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)

looooooooooooooooooomooooooooooooooooooon
leave this expression as is for now

E22(h) = φ2(tn + h)´ 2ˆ 1
2

d
dh

f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)

looooooooooooooooooomooooooooooooooooooon
leave this one too

´ h
2

d2

dh2 f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)

looooooooooooooooooomooooooooooooooooooon
and leave this one too
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Since we only need E2(h) and its derivatives at h = 0, we don’t have to compute the d2 f
dh2

term (thankfully) and we also do not need to compute the d f
dh term in E12. We do, however,

need d f
dh

ˇ̌
ˇ
h=0

for E22(0).

E2(0) = φ(tn)´ yn = 0

E12(0) = φ1(tn)´ 1
2

f (tn, yn)´ 1
2

f (tn, yn) = 0

E22(0) = φ2(tn)´ d
dh

f
(

tn +
h
2

, yn +
h
2

f (tn, yn)
)ˇ̌
ˇ
h=0

= φ2(tn)´ 1
2

ft

(
tn +

h
2

, yn +
h
2

f (tn, yn)
)ˇ̌
ˇ
h=0

´ 1
2

f (tn, yn) fy

(
tn +

h
2

, yn +
h
2

f (tn, yn)
)ˇ̌
ˇ
h=0

= φ2(tn)´ 1
2

ft(tn, yn)´ 1
2

fy(tn, yn) f (tn, yn)

= 1
2 φ2(tn) by (E9)

By Taylor, the local truncation error for Euler-2step obeys

E2(h) =
1
4

φ2(tn) h2 + O(h3) = 1
2 Kh2 + O(h3) with K = 1

2 φ2(tn)

Equation D.3.4.

Observe that the K in (D.3.4) is identical to the K in (D.3.3). This is exactly what we needed
in our analysis of Sections D.3.1 and D.3.2.
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