

Math 546

Continuous Time Stochastic Processes

January 2026

Instructor: Omer Angel, Math Annex 1210

Contact: angel@math.ubc.ca

Lectures: MWF 13:00-14:00, in MATH 203.

Course webpage: <http://www.math.ubc.ca/~angel/546>

Office hours: TBA

Textbook: Diffusions, Markov Processes and Martingales, vol. 2: Itô Calculus, by Rogers and Williams, Cambridge University Press, 2000.

Outline:

This is a rigorous course on finite dimensional continuous Markov processes. Most topics covered will be included in Chapters IV and V of Rogers and Williams' text. We will study stochastic integration with respect to continuous semimartingales, and Itô's stochastic calculus. The focus of the course will be on finite-dimensional stochastic differential equations. After a brief review of Brownian motion we will study Itô's pathwise uniqueness results and then introduce the weak solutions, martingale problems and the relationship with strong or pathwise solutions. Change of measure (Girsanov) formulae will be derived and applied to the well-posedness of the martingale problem for finite dimensional sde's. Depending on time, we may then study local times and one-dimensional diffusion theory or Stroock-Varadhan martingale problems.

The course assumes familiarity with measure theoretic probability theory¹ including discrete parameter martingale theory and Brownian motion although there will be a brief review of these last two topics. The text is self-contained for the most part but does refer to Volume 1 (cited below) on occasion.

Prerequisites: Math 545 or consent of the instructor.

Evaluation: This will be based on homework assignments which will be given every 2-3 weeks.

¹Students from other Departments interested in learning about stochastic differential equations from a mathematical perspective are encouraged—Measure theoretic prerequisites may be treated as “black boxes”.

Other References: The first two are good basic references for measure-theoretic probability. [W1] is a good reference for discrete parameter martingales.

- [B] Breiman, Probability.
- [D] Durrett, Probability: Theory and Examples.
- [EK] Ethier and Kurtz, Markov Processes: Characterization and Convergence.
- [RY] Revuz and Yor, Continuous Martingales and Brownian Motion.
- [P] Protter, Stochastic Integration and Differential Equations.
- [W1] D. Williams, Probability with Martingales.
- [W] D. Williams, Diffusions, Markov Processes and Martingales Vol. 1.

UBC provides resources to support student learning and to maintain healthy lifestyles but recognizes that sometimes crises arise and so there are additional resources to access including those for survivors of sexual violence. UBC values respect for the person and ideas of all members of the academic community. Harassment and discrimination are not tolerated nor is suppression of academic freedom. UBC provides appropriate accommodation for students with disabilities and for religious, spiritual and cultural observances. UBC values academic honesty and students are expected to acknowledge the ideas generated by others and to uphold the highest academic standards in all of their actions. Details of the policies and how to access support are available at <https://senate.ubc.ca/policies-resources-support-student-success>.