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Special Instructions:
- Be sure that this examination has 12 pages. Write your name on top of each page.
- No calculators or notes are permitted.
- In case of an exam disruption such as a fire alarm, leave the exam papers in the room and
exit quickly and quietly to a pre-designated location.

Rules governing examinations

• Each candidate should be prepared to produce her/his
library/AMS card upon request.
• No candidate shall be permitted to enter the examination
room after the expiration of one half hour, or to leave during
the first half hour of examination.
• Candidates are not permitted to ask questions of the in-
vigilators, except in cases of supposed errors or ambiguities
in examination questions.
• CAUTION - Candidates guilty of any of the following or
similar practices shall be immediately dismissed from the
examination and shall be liable to disciplinary action.

(a) Making use of any books, papers, or memoranda, other
than those authorized by the examiners.

(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other

candidates.
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Problem 1. (12 points.)
Evaluate the integral ∫

C

xy dx + yz dy + zx dz

around the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented clockwise as seen
from the point (1, 1, 1).



December 2005 Math 317 Name: Page 3 out of 12

Problem 2. (13 points.)
Let C be the curve in the xy plane from the point (0, 0) to the point (5, 5) consisting of the
ten line segments consecutively connecting the points (0,0), (0,1), (1,1), (1,2), (2,2), (2,3),
(3,3), (3,4), (4,4), (4,5), (5,5). Evaluate the line integral∫

C

F · dr

where
F = yi + (2x − 10)j.
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Problem 3. (12 points.)
Let S be the surface given by the equation

x2 + z2 = sin2(y)

lying between the planes y = 0 and y = π. Evaluate the integral∫∫
S

√
1 + cos2(y) dS.
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Problem 4. (13 points.)
Let S be the part of the sphere x2 +y2 +z2 = 4 between the planes z = 1 and z = 0 oriented
away from the origin. Let

F = (ey + xz) i + (zy + tan(x))j + (z2 − 1)k.

Compute the flux integral ∫∫
S

F · dS.
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Problem 5. (12 points.)
Let

r(t) = cos3 t i + sin3 t j +
3

2
sin t cos t k.

Reparameterize r(t) with respect to arclength measured from the point t = 0 in the direction
of increasing t.
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Problem 6. (13 points.)
Let

r(t) = t2 i + 2t j + ln tk.

Compute the unit tangent and unit normal vectors T(t) and N(t). Compute the curvature
κ(t). Simplify whenever possible!
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Problem 7. (12 points.)
Show that the following line integral is independent of path and evaluate the integral.∫

C

(yex + sin y)dx + (ex + sin y + x cos y)dy,

where C is any path from (1, 0) to (0, π/2).
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Problem 8. (13 points.)
Let

F =
−z

x2 + z2
i + y j +

x

x2 + z2
k.

1. Determine the domain of F.

2. Determine the curl of F. Simplify if possible.

3. Determine the divergence of F. Simplify if possible.

4. Is F conservative? Give a reason for your answer.
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