The University of British Columbia

Final Examination - December 10, 2009

Mathematics 308

Section 101

Closed book examination			Time: 2.5 hours
Last Name:,	First:	$Signature _$	
Student Number			
Special Instructions:			

Rules governing examinations

- No books, notes or calculators are allowed.

- \bullet Each candidate must be prepared to produce, upon request, a UBCcard for identification.
- \bullet Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- No candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination.
- Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) Having at the place of writing any books, papers or memoranda, calculators, computers, sound or image players/recorders/transmitters (including telephones), or other memory aid devices, other than those authorized by the examiners.
 - (b) Speaking or communicating with other candidates.
- (c) Purposely exposing written papers to the view of other candidates or imaging devices. The plea of accident or forgetfulness shall not be received.
- Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator.
- Candidates must follow any additional examination rules or directions communicated by the instructor or invigilator.

1	10
2	12
3	14
4	16
5	14
6	12
7	12
8	10
Total	100

[10] 1. In Fig. 1, AB = AC, both ΔABD and ΔACF are equilateral triangles. If G is the intersection point of AB and CF, and H is the intersection point of AC and BD, prove that AG = AH.

Name: _____

[12] **2**. In Fig. 2, ABC is a right triangle with $\angle ACB = 90^{\circ}$, ACDE, BCNM and ABHF are three squares. If GF = BC and $\angle GFH = \angle ABC$, prove that the quadrilateral ABME and the quadrilateral AFGC are congruent by addition, i.e., $ABME \simeq AFGC(+)$.

December 10, 2009 Math 308 Name: ______ Page 4 of 10 pages

[14] 3. Assume that $\Omega_{\ell}\tau_{v}=\tau_{kv}\Omega_{\ell}$, where Ω_{ℓ} is the reflection in a line ℓ , τ_{v} is the translation determined by a non-zero vector v and k is a real constant. Show that $v//\ell$ or $v \perp \ell$.

[16] 4. Let $T: \mathbb{E}^2 \to \mathbb{E}^2$ be a function defined by

$$T(x,y) = (y+1,x+1) \qquad \text{for } (x,y) \in \mathbb{E}^2.$$

- (i) Prove that T is an isometry?
- (ii) Find the fixed line(s) of T.
- (iii) Is T a glide reflection? If your answer is YES, find a vector v and a line ℓ such that $T = T_v \Omega_\ell$, where Ω_ℓ is the reflection in the line ℓ and τ_v is the translation determined by the vector v. If your answer is NO, give your reason.

December 10, 2009 Math 308 Name: _____ Page 6 of 10 pages

[14] 5. Let A(1,2), B(0,0), C(4,0) and H(2,2) be four points in \mathbb{E}^2 . Assume that T is central dilatation such that T(A) = B and T(H) = C.

- (i) If M(a, b) is the center of T, find a and b.
- (ii) Find T(R), where R is the point $(\sqrt{2}, \sqrt{3})$.

[12] **6**. In Fig. 3, $M_1M_2M_3H_1H_2H_3N_1N_2N_3$ is the nine-point circle of $\Delta A_1A_2A_3$ and H is the orthocenter of $\Delta A_1A_2A_3$.

- (i) Which point in Fig. 3 is the orthocenter of $\Delta A_1 A_2 H$?
- (ii) If the area of the circle which passes through A_1 , A_2 and A_3 has the area π , find the area of the nine-point circle of A_1A_2H .

[12] 7. Let A(1,0), B(5,0) and C(2,0) be three points in \mathbb{E}^2 . Find a point D(x,0) such that the cross ratio (AB,CD) is equal to $-\frac{1}{2}$.

December 10, 2009	Math 308	Name:	Page 10 of 10 page
-------------------	----------	-------	--------------------

[10] 8. In a triangle ABC, prolong BA and CA to get two parallelograms AGHC and ALKB (see Fig. 4). Show that if AD, BH and CK are concurrent and D is the midpoint of BC, then the two parallelograms AGHC and ALKB have the same areas. (Hint: the area of the parallelogram AGHC is equal to $AG \cdot AC \cdot \sin \angle GAC$.)