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Rules governing examinations
• Each examination candidate must be prepared to produce, upon the request
of the invigilator or examiner, his or her UBCcard for identification.

• Candidates are not permitted to ask questions of the examiners or invigilators,
except in cases of supposed errors or ambiguities in examination questions,
illegible or missing material, or the like.

• No candidate shall be permitted to enter the examination room after the
expiration of one-half hour from the scheduled starting time, or to leave during
the first half hour of the examination. Should the examination run forty-five
(45) minutes or less, no candidate shall be permitted to enter the examination
room once the examination has begun.

• Candidates must conduct themselves honestly and in accordance with es-
tablished rules for a given examination, which will be articulated by the ex-
aminer or invigilator prior to the examination commencing. Should dishonest
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or
forgetfulness shall not be received.

• Candidates suspected of any of the following, or any other similar prac-
tices, may be immediately dismissed from the examination by the exam-
iner/invigilator, and may be subject to disciplinary action:

(a) speaking or communicating with other candidates, unless otherwise au-
thorized;

(b) purposely exposing written papers to the view of other candidates or
imaging devices;

(c) purposely viewing the written papers of other candidates;
(d) using or having visible at the place of writing any books, papers or other

memory aid devices other than those authorized by the examiner(s); and,
(e) using or operating electronic devices including but not limited to tele-

phones, calculators, computers, or similar devices other than those authorized
by the examiner(s)–(electronic devices other than those authorized by the ex-
aminer(s) must be completely powered down if present at the place of writing).

• Candidates must not destroy or damage any examination material, must hand
in all examination papers, and must not take any examination material from
the examination room without permission of the examiner or invigilator.

• Notwithstanding the above, for any mode of examination that does not fall
into the traditional, paper-based method, examination candidates shall adhere
to any special rules for conduct as established and articulated by the examiner.

• Candidates must follow any additional examination rules or directions com-
municated by the examiner(s) or invigilator(s).
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[12] 1.

(a) [3 pts] Write down the definition of the matrix norm ‖A‖ of a matrix A.

(b) [3 pts] Write down the definition of the condition number cond(A) of a matrix A. Why is this a useful
concept?

(c) [3 pts] If A is a 2× 2 matrix with ‖A‖ = 2, is it possible that A

[
1
0

]
=

[
3
0

]
? Give a reason.

(d) [3 pts] Find the norm and condition number of

[
0 2
1 0

](
=

[
0 1
1 0

] [
1 0
0 2

])
.
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[15] 2.

(a) [2 pts] Write down the definition of a Hermitian matrix.

(b) [3 pts] TRUE or FALSE: Eigenvectors for distinct eigenvalues are orthogonal for a real symmetric
matrix. Justify your answer.

(c) [3 pts] TRUE or FALSE: If a square matrix has repeated eigenvalues, then it cannot be diagonalized.
Justify your answer.

(d) [2 pts] Write down the definition of a stochastic matrix.

(e) [3 pts] What can you say about the eigenvalues and eigenvectors of a stochastic matrix?

(f) [2 pts] What can you say about the eigenvalues and eigenvectors of a stochastic matrix if all the entries
are strictly positive?
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[15] 3. Suppose that A is a real symmetric matrix.

(a) [5 pts] Explain how to find the largest (in absolute value) eigenvalue of A using the power method.

(b) [5 pts] Explain how to find the eigenvalue of A that is closest to 2 using the power method.

(c) [5 pts] Write down the MATLAB/Octave commands that implement the procedure in (b) with N
iterations. Assume that A and N have been defined in MATLAB/Octave, and that the size of A is
1000× 1000.
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[13] 4. Let S be the subspace of R4 spanned by

1
1
1

,

 2
−1
−1

 and

4
1
1

. Given the MATLAB/Octave calculation

> rref([1 2 4; 1 -1 1;1 -1 1])

ans =

1 0 2

0 1 1

0 0 0

(a) [7 pts] Find the matrix P that projects onto S.

(b) [6 pts] Write down the MATLAB/Octave commands that find the vector in S closest to

1
0
0


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[15] 5 Suppose A is 3× 4 matrix and

A =

1 1 0 1
2 2 1 3
3 3 1 4

 rref(A) =

1 1 0 1
0 0 1 1
0 0 0 0


(a) [4 pts] Find a basis for R(A)

(b) [4 pts] Find a basis for N(A)

(c) [4 pts] Find a basis for R(AT )

(d) [3 pts] What is the rank of A and dim(N(AT ))
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[10] 6.

(a) [5 pts] Find the coefficients cn in the Fourier series f(x) =
∑∞
n=−∞ cne

2πinx if

f(x) =

{
1 0 ≤ x < 1/2

0 1/2 ≤ x ≤ 1

(b) [5 pts] Find
∑∞
n=0

1
(2n+1)2 using Parseval’s formula.
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[20] 7. We want to interpolate through (0, 1), (1, 0), (2, 2) using cubic splines

f(x) =

{
p1(x) 0 ≤ x ≤ 1

p2(x) 1 ≤ x ≤ 2

(a) [4 pts] Write down p1(x) and p2(x) in terms of unknown coefficients.

(b) [4 pts] f(x) must pass through all given points. Write down the linear equations expressing this
condition.

(c) [4 pts] Interior derivative must be continuous. Write down the linear equations expressing this condition.

(d) [4 pts] At the endpoints we have zero second derivatives. Write down the linear equations expressing
this condition.

(e) [4 pts] Combine equations (a)− (d) into a single matrix equation and write down the MATLAB/Octave
commands you need to solve it.
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The End
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