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forgetfulness shall not be received.
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[20] 1. In this question we will work with polynomials of degree 3 written

p(x) = a1x
3 + a2x

2 + a3x+ a4

(a) [4 pts]

The coefficient vector a = [a1, a2, a3, a4]T satisfies an equation of the form Aa = 0 when the slopes of
p(x) at x = 0 and x = 2 are zero. Write down the matrix A.

(b) [4 pts]

Show that dim(N(A)) = 2 and find a basis a1,a2 for N(A).

(c) [4 pts]

The coefficient vector a = [a1, a2, a3, a4]T satisfies an equation of the form Ba = b when the graph of
p(x) passes through the points (0, 1), (1, 2) and (2, 2). Write down the matrix B and the vector b.
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(d) [4 pts]

Using the equation in (c) find the equation Cs = c satisfied by s = [s1, s2]T if p(x)

(i) has coefficient vector a = s1a1 + s2a2 (and therefore has zero slopes at x = 0 and x = 2).

(ii) passes through the points (0, 1), (1, 2) and (2, 2).

Does this equation have a solution? Give a reason.

(e) [4 pts]

Write down the MATLAB/Octave code that plots the points (0, 1), (1, 2) and (2, 2) and the polynomial
p(x) that

(i) has has zero slopes at x = 0 and x = 2.

(ii) comes closest in the least squares sense to passing through the points (0, 1), (1, 2) and (2, 2).
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[18] 2. The boundary value problem

f ′′(x) + xf(x) = 1, 0 < x < 1

f(0) = 1, f ′(1) = 1

can be approximated by an (N + 1)× (N + 1) system of linear equations of the form

(L+ (∆x)2Q)F = b

(a) [10 pts]

Write down L, Q, b and ∆x when N = 4.

(b) [8 pts]

How would you use MATLAB/Octave to compute approximations to f(1/2) and f ′(1/2)? Assume
that N has been defined and write code that uses this value of N .
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[16] 3. Let S =
{

[x1, x2, x3]T : x1 + x2 + x3 = 0
}

be the subspace of vectors in R3 whose components sum
to zero.

(a) [2 pts]

Find a matrix A so that S is the null space of A, i.e., S = N(A).

(b) [3 pts]

Write down a basis for S.

(c) [3 pts]

Find a matrix B so that R(B) = S
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(d) [4 pts]

Write down the MATLAB/Octave code that

(i) computes the projection matrix P that projects onto S and

(ii) computes the vector in S that is closest to [0, 1, 0]T .

(e) [4 pts]

Let Q = I − P . What kind of matrix is Q? What are N(Q) and R(Q)?
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[16] 4. Consider the Fourier series

t2 − t =

∞∑
n=−∞

cne
2πint

for 0 ≤ t ≤ 1.

(a) [3 pts]

What is the definition of the inner product 〈f, g〉 for two complex valued functions f(t) and g(t)
defined for 0 ≤ t ≤ 1?

(b) [3 pts]

The coefficient cn can be written as an inner product cn = 〈f, g〉. What are f and g?

(c) [3 pts]

Compute the coefficient c0.
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(d) [3 pts]

Given that cn = 1
2π2n2 for n 6= 0, use Parseval’s formula to find the value of the infinite sum

∑∞
n=1

1
n4 .

Calculate a numerical expression - you do not need to simplify your answer.

(e) [4 pts]

What is the value of
∫ 1

0
cos(2πt)(t2 − t)dt? (Hint: use that cos(2πt) = (1/2)(e2πit + e−2πit))
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[14] 5. Consider an internet with six sites. The stochastic matrix describing the behaviour of a web surfer
(with damping factor zero) is

P =


0 0 1

3 0 0 0
1
2 0 1

3 0 0 0
0 1

3 0 0 0 1
2

1
2

1
3 0 0 1

2 0
0 1

3 0 1 0 1
2

0 0 1
3 0 1

2 0


(a) [4 pts]

Draw the internet links correponding to the matrix P on the following diagram.

4 5 6

2 31

(b) [4 pts]

If we begin equal probabilities of being at each site, what are the probabilities of being a each site
after one step? What is the probability of being at site 6 after two steps?
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(c) [4 pts]

Introduce a damping factor of 1/2 so that the surfer now moves according to the stochastic matrix
(1/2)P + (1/2)Q where Q is the stochastic matrix describing a surfer picking any site at random (in-
cluding the current site). Beginning equal probabilities of being at each site, what are the probabilities
of being a each site after one step?

(d) [2 pts]

Each set below contains the absolute values of the eigenvalues of either P or (1/2)P + (1/2)Q. Check
your guess for which list is which below and give a reason for your choice.

{1.00, 0.42, 0.19, 0.19, 0.10, 0.25} are the values: for P 2, for (1/2)P + (1/2)Q 2.

{1.00, 0.85, 0.38, 0.38, 0.21, 0.50} are the values: for P 2, for (1/2)P + (1/2)Q 2.
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[16] 6. Suppose that A is a matrix with singular value decomposition A = UΣV ∗ where

U =

1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1


Σ =

2 0 0
0 1 0
0 0 1/2


V =

1/
√

3 0 2/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 −1/
√

2 −1/
√

6



(a) [4 pts] Check all the boxes that apply.

U and V are: hermitian 2, real symmetric 2, unitary 2, orthogonal 2.

Σ is: hermitian 2, real symmetric 2, unitary 2, orthogonal 2.

A∗A and AA∗ are: hermitian 2, real symmetric 2, unitary 2, orthogonal 2.

A is: hermitian 2, real symmetric 2, unitary 2, orthogonal 2.

(b) [2 pts]

What are the eigenvalues and eigenvectors of ATA? (Note: AT = A∗ since A is real.)

(c) [2 pts]

What is the matrix norm ‖A‖? Give a reason

(d) [2 pts]

Write down the singular value decomposition for A−1.
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(e) [2 pts]

What are the matrix norm ‖A−1‖ and the condition number of A?

(f) [4 pts]

Let

Â = U

2 0 0
0 1 0
0 0 0

V ∗,
where U and V are the matrices given above. Then Â is a matrix with a non-trivial null space. What
is a basis for N(Â)? What is the norm ‖Â−A‖?

The End
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