Be sure that this examination has 3 pages.

The University of British Columbia

Final Examinations - April 2012

Mathematics 215

H. Dixit, M. Ward

Closed book examination. No notes, texts, or calculators allowed.

Time: $2\frac{1}{2}$ hours

Marks

[15] 1. Two First Order Differential Equations:

(i) Determine the explicit solution y(t) for $t \ge 0$ to

$$y' - 2y = t^2 e^{2t}$$
, $y(0) = 1$.

(ii) Determine the explicit solution y(t) for $t \ge 0$ to

$$y' = 2y^2 + ty^2$$
, $y(0) = 1$.

In addition, for (ii) determine the interval $0 \le t < T$ of existence of your solution, and give a qualitatively accurate plot of the solution y versus t on this interval.

[10] 2. Consider population growth under a logistic growth law but subject to a constant harvesting rate, which is modeled by the solution y(t) to

$$\frac{dy}{dt} = f(y)$$
, where $f(y) = y(4-y) - 3$.

- (i) Determine the two equilibrium solutions and plot f(y) versus y on $y \ge 0$.
- (ii) Plot y versus t for various initial conditions $y(0) = y_0$ with $y_0 \ge 0$.
- (iii) Suppose that y(0) = 1/2. Determine the time T for which the population becomes extinct, i.e. y(T) = 0. (Hint: it is easy to explicitly calculate the integral that determines T).

[15] 3. Let $\omega > 0$ be a constant, and consider the initial value problem for y = y(t)

$$y'' + 5y = \cos(\omega t)$$
, with $y(0) = 0$, $y'(0) = 0$.

- (i) Find the explicit solution to this problem. Account for all $\omega > 0$ (Hint: there are two cases of ω to consider).
- (ii) If $\omega = \sqrt{5}$ what would be the effect on the solution of adding a little damping of the form cy' for some c > 0 small? Identify at least two key qualitative changes in comparison with the solution in (i).
- [15] 4. Consider the second order differential equation

$$t^2y'' + ty' - y = t \ln t.$$

- (i) Find the general solution to this problem in an explicit a form as you can (Hint: you are given that y = t is a solution to the homogeneous problem $t^2y'' + ty' y = 0$).
- (ii) Consider the initial conditions y(1) = a and y'(1) = 0 where a is a parameter. Find the value of the parameter a for which $\lim_{t\to 0} y(t) = 0$.
- [15] 5. Let T > 0 be a constant, and define the piecewise continuous function f(t) by

$$f(t) = \begin{cases} t, & 0 \le t < T, \\ 0, & t \ge T. \end{cases}$$

- (i) Calculate F(s), where F(s) is the Laplace transform of f(t).
- (ii) With f(t) as given above, calculate in an explicit a form as you can the solution y(t) to y'' + 3y' + 2y = f(t) with y(0) = 1, y'(0) = 0.
- (iii) Give a rough sketch of the solution y versus t when T = 10. For this value of T, give an approximate expression for the solution y(t) when t = 9.
- [15] 6. Consider the inhomogeneous linear system for x(t) given by

$$\mathbf{x}' = A\mathbf{x} + \begin{pmatrix} e^{-t} \\ 1 \end{pmatrix}$$
, where $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$.

- (i) Calculate the general solution for this problem.
- (ii) Calculate the vector **b** for which $\lim_{t\to\infty} \mathbf{x}' = \mathbf{b}$ for any initial condition $\mathbf{x}(0)$.

[15] 7. Consider the following nonlinear system for x = x(t) and y = y(t):

$$\frac{dx}{dt} = x(3-x-2y), \qquad \frac{dy}{dt} = y(2-x-y).$$

- (i) Find the equilibrium points and classify their type and stability (i.e. saddle point, node, spiral point etc..) based on the Jacobian matrix associated with the linearization of the nonlinear system.
- (ii)) Plot the solution trajectories near each of the equilibrium points.
- (iii) By considering the nullclines of the system, give a qualitatively accurate sketch of the phase plane for this system in the entire first quadrant $x \ge 0$, $y \ge 0$.
- (iv) Let x(0) = 1 and y(0) = 1/2. For this initial condition, calculate $\lim_{t\to\infty} x(t)$ and $\lim_{t\to\infty} y(t)$.

[100] Total Marks

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$, $s > 0$
2.	e^{at}	$\frac{1}{s-a}$, $s>a$
3.	t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, s > 0$
4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s > 0$
5.	$\sin(at)$	$\frac{a}{s^2 + a^2}, s > 0$
6.	$\cos(at)$	$\frac{s}{s^2 + a^2}, s > 0$
7.	$\sinh(at)$	$\frac{a}{s^2 - a^2}, s > a $
8.	$\cosh(at)$	$\frac{s}{s^2 - a^2}, s > a $
9.	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}, s > a$
10.	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, s>a$
11.	$t^n e^{at}$, n =positive integer	$\frac{n!}{(s-a)^{n+1}}, s > a$
12.	$u_c(t)$	$\frac{e^{-cs}}{s}, s > 0$
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$
14.	$e^{ct}f(t)$	F(s-c)
15.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), c > 0$
16.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
17.	$\delta(t-c)$	e^{-cs}
18.	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
19.	$(-1)^n f(t)$	$F^{(n)}(s)$