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Marks

[21] 1. Short-Answer Questions. Put your answer in the box provided but show your work also.
Each question is worth 3 marks, but not all questions are of equal difficulty. Full marks will
be given for correct answers placed in the box, but at most 1 mark will be given for incorrect
answers. Unless otherwise stated, simplify your answer as much as possible.

(a) Evaluate


x3 − 2x√
x

dx.

Answer

(b) Evaluate
 π

0

(4 sin θ − 3 cos θ) dθ. You must simplify your answer completely.

Answer

(c) Express lim
n→∞

1
n

n

i=1

1
1 + (i/n)2

as a definite integral. Do not evaluate this integral.

Answer

Continued on page 3
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(d) Write down the Trapezoidal Rule approximation T3 for
 4

1

x cos(π/x) dx. Leave your

answer expressed as a sum involving cosines.
Answer

(e) Let f(x) = kx2(1 − x) if 0 ≤ x ≤ 1 and f(x) = 0 if x < 0 or x > 1. For what value of
the positive constant k is f(x) a probability density function?

Answer

(f) Find the first three nonzero terms in the power-series representation in powers of x (i.e.

the Maclaurin series) for
 x

0

t

1− t8
dt.

Answer

(g) Let f(x) =
 x3

x

√
t sin t dt. Find f (x).

Answer

Continued on page 4
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Full-Solution Problems. In questions 2–7, justify your answers and show all your work. If a
box is provided, write your final answer there. Unless otherwise indicated, simplification of answers
is not required.

[20] 2. (a) [5] Sketch the bounded region that lies between the curves y = 2x2 and y = 4 + x2, and
find its area. (Place only your answer for the area in the answer box.)

Answer

(b) [5] Let R be the unbounded region that lies under the curve y = 1/xp, above the x-axis,
and to the right of the vertical line x = 1. For what values of the constant p does the
solid obtained by rotating R about the x-axis have finite volume?

Answer

Continued on page 5
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(c) [5] Find the volume of the solid obtained by rotating the region bounded by the curves
y = 5 and y = x+ (4/x) about the line x = −1.

Answer

(d) [5] A cable that weighs 2 lb/ft is used to lift 800 lb of coal up a mine shaft 500 ft deep.
Find the total work done (including the work done in lifting the cable itself).

Answer

Continued on page 6
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[20] 3. Evaluate the following integrals.

(a) [5]  2

1

e1/x

x2
dx

Answer

(b) [5] 
cos
√
x dx

Hint: You will need to use a substitution combined with another method of integration.
Answer

Continued on page 7
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(c) [5] 
dx

x(x2 + 4)

Answer

(d) [5] 
dx√

x2 + 16

Answer

Continued on page 8



Name:

April 2008 Mathematics 101 Page 8 of 11 pages

[12] 4. (a) [6] Solve the initial-value problem 2y + 5y + 3y = 0, y(0) = 3, y(0) = −4.
Answer

(b) [6] Find the general solution of the differential equation y − y = sin(2x).

Answer

Continued on page 9
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[10] 5. Let I =
 1

0

cos(x2) dx.

(a) [6] Write down the first three nonzero terms obtained by using Maclaurin series to esti-
mate I, and explain why the error in using this estimate is less than 0.001.

(b) [4] It can be shown that the 4th derivative of cos(x2) has absolute value at most 60 on
the interval [0, 1]. Using this bound, find the smallest positive integer n you can such
that the Simpson’s Rule approximation Sn for I has error less or equal to 0.001. You
may use the fact that if |f (4)(t)| ≤ K on the interval [a, b], then the error in using Sn to
approximate

 b
a
f(x) dx has absolute value less than or equal to K(b− a)5/180n4.

Answer

Continued on page 10
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[10] 6. A paper cup has the unusual shape depicted below. All of its horizontal cross sections are
squares, with the top of the cup a square of side length 6 cm, and the cup has a height of
10 cm. The cup is initially full of Jolting Java, a potent coffee drink. The precious liquid
is leaking from a small hole at the bottom of the cup. After 10 minutes, the height of the
coffee above the bottom of the cup has decreased from 10 cm to 5 cm. After how many more
minutes will the cup be completely empty? Assume the coffee drains according to Toricelli’s
Law, which is stated below. Here, y is the height of the top surface of the coffee above the
bottom of the cup, A(y) is the area of the horizontal cross-section of the cup at height y above
the bottom, and k is a positive constant. (Also, assume that no coffee is drunk or lost to
evaporation.)

Toricellis Law : A(y)
dy

dt
= −k√y

Answer

Continued on page 11
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[7] 7. (a) [3] Show that the area of the region inside the ellipse (x2/a2)+ (y2/b2) = 1, where a and
b are positive constants, equals πab.

(b) [4] Let E be the ellipse x2 + k2y2 = 1, where k is a constant and k ≥ 1. Let S be the
region inside the circle x2+ y2 = 1, outside E, and above the x-axis. Find all values of k
such that the centroid (centre of mass) of S lies inside S (i.e. outside E). You may use
the result of part (a) above.

Answer

The End


