Be sure that this examination has 11 pages including this cover

The University of British Columbia

Sessional Examinations - April 2008

Mathematics 101

Integral Calculus with Applications to Physical Sciences and Engineering

Closed book examination

Time: 2.5 hours

Last Name:	First Name:
Student Number:	Instructor's Name:
Signature:	Section Number:

Rules governing examinations

1. Each candidate should be prepared to produce his or her library/AMS card upon request.	
2. Read and observe the following rules:	1
No candidate shall be permitted to enter the examination room after the expiration of one half	
hour, or to leave during the first half hour of the examination.	2
Candidates are not permitted to ask questions of the invigilators, except in cases of supposed	2
errors or ambiguities in examination questions.	3
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately	4
dismissed from the examination and shall be liable to disciplinary action.	
(a) Making use of any books, papers or memoranda, other than those authorized by the	5
examiners.	
(b) Speaking or communicating with other candidates.	6
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or	7
forgetfulness shall not be received.	
3. Smoking is not permitted during examinations.	Total

1	21
2	20
3	20
4	12
5	10
6	10
7	7
Total	100

April 2008

Mathematics 101

Page 2 of 11 pages

Marks

[21] 1. Short-Answer Questions. Put your answer in the box provided but show your work also. Each question is worth 3 marks, but not all questions are of equal difficulty. Full marks will be given for correct answers placed in the box, but at most 1 mark will be given for incorrect answers. Unless otherwise stated, simplify your answer as much as possible.

(a) Evaluate
$$\int \frac{x^3 - 2x}{\sqrt{x}} dx.$$

Answer

(b) Evaluate $\int_0^{\pi} (4\sin\theta - 3\cos\theta) \, d\theta$. You must simplify your answer *completely*.

Answer

(c) Express
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + (i/n)^2}$$
 as a definite integral. *Do not* evaluate this integral.

Answer	

(e) Let $f(x) = kx^2(1-x)$ if $0 \le x \le 1$ and f(x) = 0 if x < 0 or x > 1. For what value of the positive constant k is f(x) a probability density function?

(d) Write down the Trapezoidal Rule approximation T_3 for $\int_1^4 x \cos(\pi/x) dx$. Leave your

Mathematics 101

answer expressed as a sum involving cosines.

Answer

(f) Find the first three nonzero terms in the power-series representation in powers of x (i.e. the Maclaurin series) for $\int_0^x \frac{t}{1-t^8} dt$.

Answer

(g) Let
$$f(x) = \int_{x}^{x^{3}} \sqrt{t} \sin t \, dt$$
. Find $f'(x)$.

April 2008

Answer

Page 3 of 11 pages

April 2008

Mathematics 101

Page 4 of 11 pages

Full-Solution Problems. In questions 2–7, justify your answers and show all your work. If a box is provided, write your final answer there. Unless otherwise indicated, simplification of answers is not required.

[20] 2. (a) [5] Sketch the bounded region that lies between the curves $y = 2x^2$ and $y = 4 + x^2$, and find its area. (Place only your answer for the area in the answer box.)

Answer

(b) [5] Let R be the unbounded region that lies under the curve $y = 1/x^p$, above the x-axis, and to the right of the vertical line x = 1. For what values of the constant p does the solid obtained by rotating R about the x-axis have *finite* volume?

April 2008

Mathematics 101

Page 5 of 11 pages

(c) [5] Find the volume of the solid obtained by rotating the region bounded by the curves y = 5 and y = x + (4/x) about the line x = -1.

Answer

(d) [5] A cable that weighs 2 lb/ft is used to lift 800 lb of coal up a mine shaft 500 ft deep. Find the *total* work done (including the work done in lifting the cable itself).

April 2008

Mathematics 101

Page 6 of 11 pages

- [20] **3.** Evaluate the following integrals.
 - (a) [5]

 $\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$

Answer

(b) [5]

 $\int \cos \sqrt{x} \, dx$

Hint: You will need to use a substitution combined with another method of integration.

April 2008

(c)

Mathematics 101

Page 7 of 11 pages $% \left({{{\rm{P}}_{{\rm{P}}}} \right)$

$$\int \frac{dx}{x(x^2+4)}$$

Answer

(d) [5]

 $\int \frac{dx}{\sqrt{x^2 + 16}}$

April 2008	Mathematics 101	Page 8 of 11 pages

[12] **4.** (a) [6] Solve the initial-value problem 2y'' + 5y' + 3y = 0, y(0) = 3, y'(0) = -4.

Answer

(b) [6] Find the general solution of the differential equation $y'' - y' = \sin(2x)$.

April 2008

Mathematics 101

Page 9 of 11 pages

[10] 5. Let
$$I = \int_0^1 \cos(x^2) \, dx$$
.

(a) [6] Write down the first three nonzero terms obtained by using Maclaurin series to estimate I, and explain why the error in using this estimate is less than 0.001.

(b) [4] It can be shown that the 4th derivative of $\cos(x^2)$ has absolute value at most 60 on the interval [0, 1]. Using this bound, find the smallest positive integer n you can such that the Simpson's Rule approximation S_n for I has error less or equal to 0.001. You may use the fact that if $|f^{(4)}(t)| \leq K$ on the interval [a, b], then the error in using S_n to approximate $\int_a^b f(x) dx$ has absolute value less than or equal to $K(b-a)^5/180n^4$.

April 2008

Mathematics 101

Page 10 of 11 pages

[10] 6. A paper cup has the unusual shape depicted below. All of its horizontal cross sections are squares, with the top of the cup a square of side length 6 cm, and the cup has a height of 10 cm. The cup is initially full of Jolting Java, a potent coffee drink. The precious liquid is leaking from a small hole at the bottom of the cup. After 10 minutes, the height of the coffee above the bottom of the cup has decreased from 10 cm to 5 cm. After how many more minutes will the cup be completely empty? Assume the coffee drains according to Toricelli's Law, which is stated below. Here, y is the height of the top surface of the coffee above the bottom of the cup, A(y) is the area of the horizontal cross-section of the cup at height y above the bottom, and k is a positive constant. (Also, assume that no coffee is drunk or lost to evaporation.)

Toricelli's Law :
$$A(y)\frac{dy}{dt} = -k\sqrt{y}$$

April 2008

Mathematics 101

Page 11 of 11 pages

[7] 7. (a) [3] Show that the area of the region inside the ellipse $(x^2/a^2) + (y^2/b^2) = 1$, where a and b are positive constants, equals πab .

(b) [4] Let E be the ellipse $x^2 + k^2y^2 = 1$, where k is a constant and $k \ge 1$. Let S be the region inside the circle $x^2 + y^2 = 1$, outside E, and above the x-axis. Find all values of k such that the centroid (centre of mass) of S lies inside S (i.e. outside E). You may use the result of part (a) above.

Answer			