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Spectral geometry of LQG ?

• LQG is a certain canonical random geometry arising naturally in physics.  

What do classical theorems of (spectral) geometry become in this context? 

• What can be said about eigenvalues, eigenfunctions in LQG?  

• Eg: Can you hear the shape of Liouville quantum gravity? 
 

• Connections to ``quantum chaos’’.

Mark Kac



Plan

• I: Background on Liouville theory:  

Gaussian free field, Gaussian multiplicative chaos. 

• II: Liouville Brownian motion: a canonical diffusion in LQG 

Definition, spectrum, etc. 

• III: Reminders on spectral geometry 

Classical Weyl law 

• IV: Results on spectral geometry of LQG,  

• V: Conjectures 

Quantum chaos



I. Background on Liouville theory

• Polyakov (1981):  

Quantisation of the Liouville Lagrangian, motivated by 2D quantum gravity 

Given  a 2D Riemannian manifold, 

  for ,     

• Liouville Conformal Field Theory: 

                      

(Σ, g)

ϕ : Σ → ℝ S(ϕ) =
1

4π ∫
Σ

[ |∇ϕ(z) |2 + QRg(z)ϕ(z) + μeγϕ(z)]dvg(z)

P(dϕ) = exp(−S(ϕ))Dϕ

Scalar curvature Riemannian volume

 = Coupling constantγ ∈ (0,2)
Cosmological constant

Q = γ/2 + 2/γ

“Uniform” measure on fields



• Rigorous definition initiated by Duplantier, Sheffield 

(2010) then fully by David, Kupiainen, Rhodes, Vargas (2016) 

• Toy model: Gaussian free field in surface  or 

domain ,  with Dirichlet boundary conditions.   

• Think of  as random conformal factor. Very informally,             

 

 :        coupling constant.

ϕ = Σ

D

ϕ

dist(a, b) = inf
η ∫

1

0

eγϕ(η(t)) |η′￼(t) |dt

vol(A) = ∫
A

eγϕ(x)dx γ ∈ (0,2) =

I. Background

© N. Curien



Continuum GFF

•   : bounded domain. Let 

 

be the (continuum) Green function with Dirichlet  
boundary conditions.  

• In two dimensions, (owing to neighbourhood recurrence), 

 as  

(logarithmic blowup).  
Nice away from diagonal. 

• As a result, we cannot define  as a Gaussian 

centered stochastic process   

D ⊂ ℝ2

GD(x, y) = π∫
∞

0

pD
t (x, y)dt

GD(x, y) = − log |x − y | + O(1) |y − x | → 0

(ϕ(x))x∈D

𝔼[ϕ(x)ϕ(y)] = GD(x, y)

© E. Powell



Continuum GFF

• Instead, we view  as a Gaussian stochastic process , indexed by 

test functions  (=smooth with compact support): 

                                    

(Definition of this process via Kolmogorov’s extension theorem.) 

• In fact, this extends to  which can be rougher: , with  nonnegative 

measures such that 

                                          . 

(say  for such allowed test signed measures). Analytically: . 

ϕ ((ϕ, f ))
f∈𝒟(D)

f ∈ 𝒟(D)

𝔼[(ϕ, f )(ϕ, g)] = ∬
D

f(x)GD(x, y)g(y) dx dy

f f = f + − f − f ±

∬ GD(x, y)f ±(dx)f ±(dy) < ∞

f ∈ ℳ f ∈ H−1(D)



Continuum GFF

• Reminder:   if  . 

• Ex:  . Does  ? 

• Yes! 

• Ex: uniform measure on circle contained in ?  

• Yes! 

• Ex: ? 

•  No!

f ∈ ℳ ∬ GD(x, y)f ±(dx)f ±(dy) < ∞

f ∈ 𝒟(D) f ∈ ℳ

f = D

f = δx0
( ⋅ )



Circle Averages

• Let  such that . Let circle average of  at distance  

from .  

• This is well defined, and is a nice regularisation of GFF at scale . 

• Then  is Gaussian with variance  (logarithmic blowup).  

• In fact, if , then  is a 1D Brownian motion !

z ∈ D, ε > 0 B(z, ε) ⊂ D ϕε(z) = ϕ ε

z

ε

ϕε(z) log(1/ε) + O(1)

Bt = ϕe−t(z) (Bt, t ≥ t0)



Thick Points

• Thick points are exceptional points of the GFF. They play an important role.  

• Def: a point  is called thick if 

 

                                                            . 

• Call  the set of thick points. Note that for fixed , and given , 

, almost surely.  

• Indeed, , almost surely.

z ∈ D α−

lim
ε→0

ϕε(z)

log(1/ε)
= α

𝒯α α > 0 z0 ∈ D

z0 ∉ 𝒯α

lim
t→∞

Bt

t
= 0



Thick Points

• Nevertheless,  is not necessarily empty: there can be exceptional points for which the 

BM has drift  ! 

• In fact, , and  if and only if  

• Explanation/heuristics: 

 

 

𝒯α

α

dimH(𝒯α) = (2 − α2/2)+ 𝒯α ≠ ∅ α ≤ 2.

𝔼[#{z : ϕε(z) ≈ α log(1/ε)}] = ε−2ℙ[ϕε(z) ≈ α log(1/ε)]

≲ ε−2 exp (−
(α log(1/ε))2

2 log(1/ε) )
= ε−2+α2/2

on an -mesh gridε



Gaussian Multiplicative Chaos

• Introduced by Kahane 80s, motivated by turbulence (Kolmogorov, Mandelbrot). 

• Let  denote a GFF on domain  (more generally: log-correlated Gaussian 

field in ). some regularisation of  at scale :  for some 

convolution kernel  with compact support. 

• Let , where  is a coupling constant. 

• Theorem (Kahane ‘85, B. ’17, Shamov ’17) 

For ,  exists in probability w.r.t. weak topology.  

Limit  = GMC is nonzero iff  (more generally: ). 

Universal: does not depend on . 

ϕ D ⊂ ℝ2

ℝd ϕϵ = ϕ ϵ ϕϵ = ϕ * θϵ

θ

Mϵ(dx) = ϵγ2/2eγϕϵ(x)dx γ ≥ 0

0 < γ < 2 lim
ϵ→0

Mϵ(dx)

M γ < 2 γ < 2d

θ



Gaussian Multiplicative Chaos

γ = 0.2 γ = 1 γ = 1.8



Gaussian Multiplicative Chaos

• One can show:  is a.s. supported on thick points. 

• That is, , a.s.  

• Sampling from , points are a.s. thick.  

• This is why the measure cannot exist when .  (Recall  if ).

M γ−

M(𝒯c
γ) = 0

M γ−

γ > 2 𝒯α = ∅ α > 2



Liouville Quantum Gravity

• Recall:  a 2D Riemannian manifold, 

  for ,     

• Liouville Conformal Field Theory: 

                       ? 

• Idea (going back constructive field theory Glimm—Jaffe 1970s): 

(Σ, g)

ϕ : Σ → ℝ S(ϕ) =
1

4π ∫
Σ

[ |∇ϕ(z) |2 + QRg(z)ϕ(z) + μeγϕ(z)]dvg(z)

P(dϕ) = exp(−S(ϕ))Dϕ

exp( − ∫
Σ

|∇ϕ |2 dvg)Dϕ := ℙGFF(dϕ)



• Then (oversimplification of work of David-Kupiainen-Rhodes-Vargas 2016) 

 

 

gives a well defined measure ! (Where  total mass of GMC measure.) 

• If  is the sphere, there are no boundary conditions and this introduces additional 

complications.  

• Correlation functions can be computed exactly: DOZZ formula (Kupiainen, 

Rhodes, Vargas, Ann. Math.). 

• There are close connections to random planar maps (cf. Nina Holden’s course).

P(dϕ) = exp (−∫
Σ

QRg(z)ϕ(z)vg(dz) − μM(Σ)) ℙGFF(dϕ)

M(Σ) =

Σ

Liouville Quantum Gravity



© N. Curien

Toy model

• In the rest of these lectures,  will simply have the law  (instead of 

Polyakov’s normalized measure) on a domain  instead of surface  

• Recall:  endows domain  with random geometry: informally

 (NB: hard to define rigorously) 

 

      :     

GMC plays the role of the uniform volume measure in this random geometry.

ϕ ℙGFF(dϕ)

D ⊂ ℝ2 Σ

ϕ D

dist(a, b) = inf
η ∫

1

0

eγϕ(η(t)) |η′￼(t) |dt

vol(A) = ∫
A

eγh(x)dx = M(A)



II - Liouville Brownian motion

• Spectrum of Laplace-Beltrami operator, but 

diffusion more natural to describe. 

• Theorem (B. ’15); (Garban-Rhodes-Vargas ’15). 

Existence of Liouville Brownian Motion: 

, where 

    , 

Z(t) = lim
ε→0

Zε(t)

Zε(t) = BF−1
ε (t); Fε(t) = εγ2/2 ∫

t

0

eγϕε(Bs)ds

© H. Jackson. Landscape = , where  is a GFF. 

 Riemannian volume “=” .

ϕ ϕ

M(dx) = eγϕ(x)vg(dx)



Liouville Brownian motion

• Equivalent definitions: 

 is a time-change of Brownian motion, where the PCAF has Revuz measure  

• Dirichlet form: , with respect to . 

• Think of scaling limit of SRW on triangulation.  

• Theorem  (B.-Gwynne ’20): SRW on certain planar maps converge to Liouville 

Brownian motion.

Z = M

ℰ( f, g) = ∫
D

∇f(x) ⋅ ∇g(x)dx L2(M)



Liouville Brownian motion

• LBM  is a.s. continuous, does not stay stuck (iff ).  

• Can be started a.s. from all points simultaneously (given ). 

• Forms a.s. a Feller process. (Garban-Rhodes-Vargas). 

• Leaves GMC measure  invariant (e.g. on the sphere, torus). 

• For each , a.s.  .  

• A.s.,  is  a.e. differentiable if , with  (Jackson ’17) ! 

•  Scaling limit of random walk on random planar maps (CRT-mated maps), B.-Gwynne ‘2020  

• . So the Radon-Nikodym derivative exists and is called the heat kernel. 

(Garban-Rhodes-Vargas).

(Z(t))t≤τD
0 ≤ γ < 2

ϕ

M

t ≥ 0 Z(t) ∈ 𝒯γ

t ↦ Z(t) γ > 2 Z′￼(t) = 0

Pt(x, ⋅ ) ≪ M



III. Spectral Geometry

• We now recall a few facts from spectral geometry, before discussing what we know 

in LQG. 

• Schuster (1882): ``it would baffle the most skillful mathematician to find out the 

shape of a bell by means of the sound which it is capable of sending out’’.



Spectral Geometry

• Lorentz  (1910) in Göttingen: 

 

‘’In an encolosure with a perfectly reflecting surface there can form standing 

electromagnetic waves, analogous to tones of an organ pipe. We shall confine our 

attention to very high overtones. […] There arises the mathematical problem to 

prove that the number of overtones which lie between frequencies  and  is 

independent of the shape of the enclosure and is simply proportional to its 

volume… It has been verified for many simple shapes… There is no doubt that the 

theorem holds in general..’’ 

• Hilbert (apocryphal): not to be solved in my lifetime !

ν ν + dν



Weyl’s law (1912)

• Theorem. Let  eigenvalue counting function. Then, as , 

 

   

 

• This result would be the same whatever 2D Riemannanian manifold. 

(Of course, also works with adjustments when in dimension ) 

• Q: What do these results become in LQG?

N(λ) = ∑
n≥1

1{λn≤λ} = λ → ∞

N(λ)

λ
→ c0Leb(D), c0 =

1

2π
.

D ≥ 2.



Can you hear the shape of a drum?

• Kac 1966: do eigenvalues  of  

determine uniquely the domain (up to 

isometetry)? 

• Known counterexamples in  

Riemannian world 

(Milnor;  Gordon-Webb-Wolpert 92)

{λn}n≥0 −
1

2
Δ

Wikipedia



IV. Main results 

• Back to LQG. We will study its spectrum. How is this defined? 

• Answer: 
Andres-Kajino ’16,  

Maillard-Rhodes-Vargas-Zeitouni ‘16 

• The infinitesimal generator of LBM is delicate to handle directly 

• But the Green function  is a.s. a nice compact operator on  

  apply the spectral theorem to it.  

• Get a.s. ON basis of eigenfunctions for , with EV =  (random), 

. 

• Let  , eigenvalue counting function 

G(x, dy) L2(M)

→

{fn}n≥1, L2(M) λn

Gfn(x) =
1

λn

fn(x)

N(λ) = ∑
n

1{λn≤λ}



LQG Weyl law

• Theorem (B.-Wong 2023): 

Let Dirichlet GFF in domain . Let  

As , ,  

• where ,  , 

, BM with drift  conditioned to stay positive. 

• Concisely,  where   Sheffield’s quantum cone.

ϕ = D ⊂ ℝ2 γ ∈ (0,2) .

λ → ∞
N(λ)

λ
→ cγM(D)

cγ =
1

π {𝔼 [∫
∞

0

ℐ (eγ(Bt−αt)) dt] + 𝔼 [∫
∞

0

ℐ (e−γℬα
t ) dt]} ℐ(x) = xe−x

α = Q − γ =
2

γ
−

γ

2
> 0 ℬα = α

cγ =
1

π
𝔼[∫

∞

−∞

ℐ(eγC(t))dt] C(t) =

Mo Dick Wong



Weyl law constant

•  Theorem (B.-Wong 2023): 

 

             

 

Note that  for all  

 ! 

cγ =
1

π(2 − γ2/2)
.

cγ > c0,

γ ∈ (0,2)

© N.B., M.D. 



Trace Formula

• Starting point: spectral decomposition: , 

where Liouville heat kernel, which is a.s. jointly continuous (not obvious!). 

• Take and integrate over : 

•  

where  is the eigenvalue counting function of LQG. 

• Thus heat trace = Laplace transform of 

pt(x, y) =

∞

∑
n=1

e−λntfn(x)fn(y)

pt(x, y) =

x = y, x ∈ D

H(t) := ∫
D

pt(x, x)M(dx) =

∞

∑
n=1

e−λnt = ∫
∞

0

e−λtdN(λ),

N(λ) =

∞

∑
n=1

1{λn≤λ}

N(λ) .



Heat kernel asymptotics

• To prove the result we use the trace formula and show that for any open set , 

                                 as  

 in probability.  

• Usually, very hard to work with .  

BUT: here bridge decomposition 

 

                         

where  is the quantum clock = time-change.

A ⊂ D

t∫
A

pt(x, x)M(dx) → cγM(A), t → 0,

pt(x, y)

∫
∞

0

g(t) pt(x, y)dt = ∫
∞

0

Ex→y;t [g(F(t))] pt(x, y)dt

F(t)



• We established:      as  for all open sets 

. 

• Q: is it the case that  as , a.e.? 

• Cons: multifractal geometry.  
Pros: restrict to typical points. 

t∫
A

pt(x, x)M(dx) → cγM(A) t → 0

A ⊂ D

pt(x, x) ∼
cγ

t
t → 0 M−

Heat kernel asymptotics



• Ans: we can prove that it is not the case, even for a.e. . 

• Sample  from , view  as a RV. Average over randomness of GFF 

(=annealed asymptotics). 

• Theorem: (B.-Wong ’23 conjectured, B.-Klein ‘25+) 

  in law (=annealed), a nontrivial random variable as   

In fact,   independent.  

• We expect logarithmic upper and lower pointwise fluctuations, even if we 

restrict to Liouville typical points.

μ− x ∈ D

x M(dx) pt(x, x)

tpt(x, x) → X t → 0.

(tpt(x, x), tpt(y, y)) → (X, Y)

Heat kernel asymptotics



Second Term in Weyl’s law

• Back in 1912, Weyl conjectured: 

 

• This is still open! (Ivrii 1981: up to an ergodic assumption, but  

hard to verify in practice) 

• ``Corresponding’’ heat trace expansion is known: 

 

     

(in particular, is spectrally determined) 

N(λ) = c0λLeb(D) − c′￼0 λ |∂D | + o( λ) .

H(t) = ∫
D

pt(x, x)dx = c0

|D |

t
− c′￼0

|∂D |

t
+ …

|∂D |

Joint work with Jakob Klein

Jakob Klein



Anomalous heat trace expansion

• Setup: Sheffield’s quantum cone, restricted to bounded smooth . 

Informally: .  

• Describes scaling limit of whole plane models of maps (e.g., UIPT) when .  

Alternatively, local limit of LQG when we ``zoom in’’. (Metric geometry: tangent cone).  

• Theorem (B.-Klein, ‘25+) 

Let LQG heat trace in . Then  

,  where . 

• We conjecture that the analogous expansion holds for  as .

ϕ = γ− D ⊂ ℝ2

ϕ(z) = GFFℂ(z) + γ log(1/ |z | )

γ = 8/3

H(t) = ∫
D

pD
t (x, x) M(dx) = D

𝔼[H(t)] = cγ𝔼(M(D)) t−1 − t−1+b(γ)+o(1) b(γ) =
1

2
+

2

γ2
1 +

γ4

16
− 1

N(λ) λ → ∞



•
 

• (1) exact scale invariance of the heat kernel on Sheffield’s quantum cone  
—> first term must correspond to area term  
(2) second term comes from points near boundary. 

• Surprisingly, dominant behaviour comes from point with atypical thickness, 

                                      , where . 

• A key point — concentration of exit time of a small ball with given circle average.

H(t) = ∫
D

pD
t (x, x)M(dx)

= ∫
D

pℂ
t (x, x)M(dx) − ∫

D

pℂ∖D
t

(x, x)M(dx)

α = Q − Q2 − 2 Q =
2

γ
+

γ

2

Anomalous heat trace expansion



KPZ scaling for heat trace ?

• How can this be intrinsic?  

• Conjecture (B.-Klein, ‘25+) 

With high probability                , 

where quantum scaling exponent of .  

• (Intuitively, ). The KPZ scaling relation (Duplantier-

Sheffield, B.-Garban-Rhodes-Vargas, Gwynne-Holden-Miller): 

                                                                    

where  Euclidean scaling exponent. 

• The KPZ equation relates the ``random and deterministic dimensions’’ of a set.  

H(t) = cγM(D) t−1 − t−1+Δ+o(1)

Δ ∈ [0,1], = ∂D

dimγ(∂D)/dimγ(D) = 1 − Δ

x =
γ2

4
Δ2 + (1 −

γ4

4
)Δ

x ∈ [0,1], =



• So this exponent depends sensitively on the boundary conditions. 

• Most important case: quantum disc = scaling limit of planar maps with 

disc topology.  

Or, via work of Duplantier-Miller-Sheffield, boundary with 

.  

• Then , so   

(Rohde—Schramm, Beffara) 

• Plug into KPZ and get ,    indep. of . 

• Theorem (B.-Klein, ‘25+). Now suppose  is a quantum disc. Then  

 

. 

≈ SLEκ,

κ = γ2 ∈ (0,4)

dim(∂D) = 1 + κ/8 x = 1 − (1 + κ/8)/2 = 1/2 − κ/16.

Δ = 1/2 γ

(D, ϕ)

𝔼[H(t)] = cγ𝔼(M(D)) t−1 − t−1/2+o(1)

KPZ on quantum discs

© N.B., E. Gwynne; 

© J. Miller



Heuristics for KPZ conjecture 

• Let  denote the Hausdorff dimension of the metric space associated to LQG . 

• (The value of  is unknown even heuristically, except for . Cf. Watabiki’s 

prediction and work of Ding-Gwynne, Gwynne-Pfeffer, and Budd). 

• It is expected that  for . 

• Cover the boundary with balls of radius  (need  such balls). 

• For points in such balls, we expect , otherwise .  

• Hence .

dγ γ

dγ γ = 8/3

distγ(Zt, Z0) ≈ t1/dγ t → 0

r = t1/dγ N = r−dimγ(∂D) = t−(1−Δ)

pℂ∖D
t

(x, x) ≈ 1/t ≈ 0

∫
D

pℂ∖D
t

(x, x)μ(dx) ≈ N × μ(B(r)) × 1/t = t−(1−Δ) × rdγ × (1/t) = t−(1−Δ)



Some natural questions

• Quantum boundary length, by renormalizing the heat content/heat trace?  

• Any estimate on  ? 

• Can we get zeta-regularized determinant?  

• Polyakov-Alvarez conformal anomaly?  

• Logarithmic fluctuations of heat kernel?  

• Critical case  ? 

• Berezin-Li-Yau inequalities? 

• Selberg’s 1/4 conjecture?

|N(λ) − cγM(D)λ |

γ = 2



V. Conjectures. 
Hearing the shape of LQG

• Conjecture (B.-Wong ’23):  
One CAN hear the shape of LQG (!) 

That is,  is a.s. equal to a measurable function of the eigenvalues . 

• In fact, we conjecture that  determines  up to equivalence of 

random surfaces (Duplantier-Sheffield 2010)

ϕ {λn}n≥1

{λn}n≥1 (D, ϕ)



© N.B., M.D. Wong

Localisation/Delocalisation

• Should eigenfunctions be delocalised (as for standard BM) or localised (as for 

Anderson model)? 



Conjecture: Eigenfunctions delocalized,  

 | fn(x) |2 M(dx) ⇒ M(dx)

Motivation: connection to 

quantum chaos!

Quantum Chaos

© N.B., M.D. Wong



 Quantum Chaos

• Quantum chaos is manifestation at quantum level of ergodicity of geodesic flow: 

 

                                                         ,    ( ). 

• Proved for hyperbolic surfaces up to dense subsequence  (Shnirelman 1974, 

Zelditch 1987, Colin de Verdière 1985). 

• Rudnick-Sarnak (1994): conjectured quantum unique ergodicity; Lindenstrauss (2006) for 

arithmetic surfaces. 

• Polyakov’s action minimized for  of constant (negative) curvature  hyperbolic to 1st 

order! (Lacoin-Rhodes-Vargas 2020).

| fn(x) |2
⇒ vg(dx) n → ∞

{nk}k≥1

ϕ →



Random Waves in quantum chaos

© G. Peccati

• The local behaviour of eigenfunction was predicted to converge to  

Berry’s random wave model:  

• Gaussian random field in plane with , where Bessel function 

of 1st kind

𝔼[b(x)b(y)] = J0(∥x − y∥) J0 =



Random waves in LQG ?

• Notice the ``filament structure’’ 

 

• We also conjecture that LQG 

eigenfunctions converge locally 

to Berry’s random wave (up to 

local scale change?) 

© N.B., Mo Dick Wong.



Eigenvalue Spacing

• Conjecture: 

 

(this should also be true e.g. for planar maps !)

EV spacing
p

N→∞
FGOE(x),

For chaotic systems, quantum chaos also predicts eigenvalue repulsion.

© N.B., M.D. Wong


