
LECTURE 3

Characterisation of metastability.

Towards Interacting Particle Systems.



§ CHARACTERISATION OF METASTABILITY

Consider a Markov process X = (Xn)n∈N0
with discrete

state space S in discrete time. Let Px denote the law of X

given X0 = x. We assume that X is uniquely ergodic with

reversible invariant measure µ.

For C ⊂ S, let

τC = inf{n ∈ N : Xn ∈ C}.

The fundamental feature we would like to associate with

metastability is the existence of two well-separated time

scales and the partition of the state space into disjoint

sets Si, i ∈ I, such that, when X starts in Si:
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– On a short time scale X reaches some sort of local

equilibrium concentrated on Si.

– On a long time scale X exits Si and moves to some Sj
with j 6= i, where it again reaches local equilibrium.

Etcetera.
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Think of X as hopping between quasi-invariant sets. An appealing
way to characterise the rapid approach to local equilibrium is by
saying that X is locally recurrent: each Si contains a small set
Bi ⊂ Si that is revisited by X frequently before it moves out of Si.

An intuitively appealing definition of metastability could

therefore be the following.

DEFINITION 3.1

A family of Markov processes is called metastable if there

exists a collection of disjoint sets Bi ⊂ S, i ∈ I, such that

supx 6∈∪i∈IBi Ex[τ∪i∈IBi]

infi∈I infx∈Bi Ex[τ∪j∈I\iBj]
= o(1).

Here, o(1) is a small intrinsic parameter that characterises

the degree of metastability.
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Since, typically, we deal with a family of Markov processes

indexed by a parameter (like temperature, system size,

etc.), we can make the quotient as small as we like in

an appropriate metastable regime.

DEFINITION 3.1 characterises metastability in terms of

average hitting times. Certainly we want such a property

to hold in a metastable setting.

However, one of our goals is to compute average hitting times, and
so the condition would put us in a circular set-up. It is desirable
to have a definition involving more manageable quantities.
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The relations in Lecture 2 between average hitting times
and capacities suggest that we pursue a characterisation
of metastability through capacities.

DEFINITION 3.2

A family of Markov processes is called metastable if there
exists a collection of disjoint sets Bi ⊂ S, i ∈ I, such that

supi∈I supx∈Bi Px(τ∪j∈I\iBj < τBi)

infx6∈∪i∈IBi Px(τ∪i∈IBi < τ	
B(x))

= o(1),

where

B(x) is an appropriate neighbourhood of x

and
τ	
B(x) ≡ inf{t > τB(x)c : Xt ∈ B(x)}

is the first time when X returns to B(x) after having left
B(x).

5



This definition leaves several questions open:
• What should be the choice for B(x)?
• How can we relate the probabilities appearing in the definition
to capacities, as advertised in Lecture 2?

It will become clear that the usefulness of DEFINITION

3.2 depends crucially on further properties of the sets Bi,

i ∈ I, and on local mixing properties of X.

Everything becomes transparent when the state space S is

finite, and we replace the sets Bi, i ∈ I, and B(x), x ∈ S, by

single points. It is useful to understand this simple setting

first and later look for generalisations.
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The red configurations form a set M⊂ Ω of metastable points.
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DEFINITION 3.3

Suppose that |S| <∞. A Markov processes X is said to be
ρ-metastable with respect to a set of points M⊂ S if

|S|
supx∈M[cap(x,M\x)/µ(x)]

infy 6∈M[cap(y,M)/µ(y)]
≤ ρ,

which can be written alternatively as

|S|
supx∈M Px(τM\x < τx)

infy 6∈M Py(τM < τy)
≤ ρ.

Here, ρ is a small intrinsic parameter that characterises the
degree of metastability.

We want to show that if a process is metastable in the
sense of DEFINITION 3.3, then we can express the average
crossover times between points ofM in terms of capacities
and the reversible invariant measure alone.
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This approach is based on the key formula that we derived

in Lecture 2, which here reads

Em[τM′] =
1

cap(m,M′)
∑
y∈S

µ(y)hm,M′(y),

M′ ⊂M, m ∈M \M′,

where typically M′ is a set of points with a free energy

lower than that of m.

The denominator can be estimated with the help of the Dirichlet
Principle and the Thomson Principle presented in Lecture 2. The
numerator can be estimated by controlling the equilibrium potential
in terms of capacities.
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§ RENEWAL ESTIMATES

Estimation of the equilibrium potential through capacities

is based on a renewal argumentthat is simple in the case

of a discrete state space.

LEMMA 3.4

Let A,B ⊂ S be non-empty disjoint sets, and let x 6∈ A∪B.

Then

max

(
1−

cap(x,B)

cap(x,A)
,0

)
≤ hA,B(x) ≤ min

(
cap(x,A)

cap(x,B)
,1

)
.
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PROOF:

The upper bound follows from the estimate

hA,B(x) = Px(τA < τB) =
Px(τA < τB∪x)

1− Px(τx < τA∪B)

=
Px(τA < τB∪x)

Px(τA∪B < τx)
≤

Px(τA < τx)

Px(τB < τx)
=

cap(x,A)

cap(x,B)
,

where the second equality comes from counting the returns

to x without a hit of A or B. The lower bound follows

from the upper bound via the symmetry relation hA,B(x) =

1− hB,A(x). 2
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§ TOWARDS INTERACTING PARTICLE SYSTEMS

We think of an interacting particle system whose state
space consists of a finite set of configurations Ω and whose
evolution is given by a Markov generator L acting on a class
of test functions φ : Ω→ R as

(Lφ)(η) =
∑
η′∈Ω

c(η, η′)[φ(η′)− φ(η)], η ∈ Ω,

with c(η, η′) the rate at which the Markov dynamics moves
from η to η′.

Note the change of notation

S → Ω, x, y → η, η′,

to mark that henceforth we focus on interacting particle
systems. Further note that we consider continuous time
instead of discrete time.
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A natural choice for the transition rates is

c(η, η′) = exp
(
− β[H(η′)−H(η)]+

)
, η, η′ ∈ Ω,

which has reversible equilibrium

µ(η) =
1

Ξ
e−βH(η), η ∈ Ω,

where H, β and Ξ have the following interpretation:

• H : Ω→ R is the Hamiltonian that associates with each
configuration η an energy H(η).

• β ∈ (0,∞) is the inverse temperature
(= interaction strength).

• Ξ is the normalising partition function.

Typically transitions are restricted to a subset of admissible
transitions.
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The above dynamics is called the Metropolis dynamics associated
with (H,β), and its equilibrium is called the Gibbs measure.

The proper choice of Ω, H and β depends on the model

at hand. For β → ∞ or |Ω| → ∞ we may expect to see

metastability under certain conditions.
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Typically, the Hamiltonian H has three important sets of

configurations:

• Global minimum s: stable state.

• Local minimum m: metastable state.

(= bottom of the deepest valley not containing s).

• Saddle point c: critical droplet.

(= ridge between the valleys containing m and s).
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m c s
Ω

H

•

•

•

Caricature of the (free) energy lanscape.

Examples of dynamics:

spin-flip systems Lecture 7
particle-hop systems Lecture 8
systems of interacting disks Lectures 9–11 16



If m is a single configuration, then the average metastable

crossover time from m to s is given by

Em(τ s) =

∑
η∈Ω µ(η)hm,s(η)

cap(m, s)
EXERCISE!

where τ s is the first hitting time of s,

hm,s(η) = Pη(τm < τs), η ∈ Ω,

is the harmonic function and

cap(m, s) = 1
2

∑
η,η′∈Ω

µ(η)c(η, η′) [hm,s(η
′)− hm,s(η)]2

is the capacity. 17



m s

hm,s ≈ 1 hm,s ≈ 0

6

c

Schematic picture of the harmonic function hm,s:

trivial inside the valleys around m and s, nontrivial around c. 18



In metastable regimes it often turns out that∑
η∈Ω

µ(η)hm,s(η) = [1 + o(1)]µ(m)

in which case

Em(τ s) = [1 + o(1)]
e−βH(m)

Ξ cap(m, s)
.

This formula shows that the average metastable crossover time is
essentially controlled by the capacity, which in turn is essentially
controlled by the harmonic function near the critical set.

Note that for the Metropolis dynamics

Ξ cap(m, s) = 1
2

∑
η,η′∈Ω

e−β[H(η)∨H(η′)][hm,s(η
′)− hm,s(η)]2.
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§ SUPPORTING TECHNIQUES

Various methods are available to tackle specific hurdles

that arise when we want to apply the potential-theoretic

tools described in Lecture 2 to describe the metastable

behaviour of interacting particle systems. These include:

– approximation via test functions and test flows
– coarse-graining
– lumping
– coupling
– isoperimetric inequalities

We will see plenty of examples in Lectures 4–16.
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LITERATURE:

Chapters 8–9 of Bovier and den Hollander 2015, and references therein.
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