LECTURE 2

Mathematical tools from potential theory:
capacities, harmonic functions, variational principles.



§ SETTING

We place ourselves in the setting of a discrete-time Markov
process X = (Xn)pen, ON @ countable state space S with
a transition kernel

P = (p(z,9)zyes

and a generator L = P—I. We assume that X is irreducible.

1. The first fundamental object in potential theory is the
following. Let A, B C S be two non-empty disjoint subsets.
Consider the Dirichlet problem

(—=Lh)(x) = O, Ve e S\(AUB),
h(x) 1, Vo e A,
h(x) 0, Vax € B.



Dirichlet problem for h: S — [0, 1] with boundary conditions h =1 on
A (‘target set’) and h =0 on B (‘killing set’).



If S is finite, then the Dirichlet problem always has a unique
solution. This solution, which is harmonic on S\(AUB), is
denoted by h 4 p(z) and is called the equilibrium potential.

2. The following representation holds:
hap(x) =Pz (t4a<7B), =€ S\(AUB).

Here, 7 = inf{n € N: X,, € C'}, where X is ignored.

REMARK: For x € AU B, we can write

Pe(ta<tg)= >  plz,y)Py(ta<t)+ > p(z,Yy)
y€S\(AUB) yeA
= > p(x,y)ha p(y) = (Phy p)(x)
yes

= (Lhy g)(x) + hg g(x).



Hence

z €A (=Lhyp)(@) =Pz (15 <7T4),
re B: (Lhap)(z)=Pz(t4a<7B).

The quantity

ea B(xz) = (=Lhy g)(x), T €A,

is called the equilibrium measure on A, and is the second
fundamental object. We know that ey g(z) = 0 for all
x e S\ (AUB).



3. The Green function of X Killed at B is defined as

Tg—1

> 1{Xn:y}] , =,y ¢ B,

n=0

GB(%, y) — Eﬂ?

and is the third fundamental object.

4. The equilibrium potential hy p satisfies the following
inhomogeneous Dirichlet problem

(—=Lh)(xz) = ey p(x), Ve S\B,
h(z) = O, Vo€ B.
THEOREM 2.1
hap(z) =) Gp(x,y)es p(y), rcS.

yeA



THEOREM 2.1, whose proof is straightforward, allows us
to express the Green function in terms of the equilibrium
potential and the equilibrium measure: simply choose A =
{a}, to get

ha,B(x)

Gp(z,a) = o (@)

x € S.

Note that
eq,B(a) = Po(mp < 7a)

has the meaning of an escape probability from a € A to B.



§ DIRICHLET FORM
Henceforth we restrict to reversible Markov processes.

DEFINITION 2.2

A Markov process with countable state space S and with
transition kernel P = (p(z,y))syecs IS called reversible if
there exists u: S — [0,00) such that

p(z)p(z,y) = p(y)p(y, x) Vz,y€S.

The function p is called the reversible measure of the
Markov process, and is easy to compute except for the
normalisation.

The function space L2(S, 1) is a natural space to work on
when the Markov process is reversible with respect to pu.



LEMMA 2.3

(a) If u is a reversible measure for P, then n is an invariant
measure for P.

(b) If 1 is an invariant measure for P, then Pf € L2(S, 1)
for all f € L?(S,u).

DEFINITION 2.4

Let L be the generator of a Markov process with reversible
measure . T hen L defines a quadratic form

E(f,9) =Y wa)f(z)(—Lg)(x), f,9 € L?(S, ),

xesS

called the Dirichlet form, which is non-negative-definite.



In the discrete case it is easy to write out E£(f, g) explicitly.
Namely, by reversibility,

E(f,9) = ) wp(x)p(z,y)f(x)[g(z) — g(y)]

x,yes

= > u@pl, ) fWlg(y) — g()].

x,yes

Symmetrising between the first and the second expression,
we get

E(f,9) =3 > w@)p(z,y)

x,yeSsS

x {f(@)[g(x) — 9] + FWgw) — g(=)]}
=3 Y p@)pz,y)

x,yesS

x [f(z) = F()]lg(z) — g(y)].



THEOREM 2.5

If P is reversible with respect to u, then for all non-empty
disjoint sets A, B C S,

hap@) =Y “gyi Gply.c)ean(y), z€S
yGA

In particular, if f given g is a solution of the inhomogeneous
Dirichlet problem

(=Lf)(x) = g(z), VxzeS\B,
f(z) = 0, Va € B,
then
1
y%;l va(W)f(y) = can(4, B) 2 Z u(x)h g p(x)g(x),

where v, g is the probability measure on A given by

u(y)ea g(y)
— : 9 E A?




with normalisation factor the capacity

cap(A, B) = Z p(z)ea p(x).
r€EA

PROOF:
By reversibility,

w(x)Gp(z,y) = p(y)Gply, z), T,y €5,
which yields the formula for hy p via THEOREM 2.1.
Multiplying this formula by p(xz)g(x), summing over x €
S, and noting that Y ,cs¢Gp(y,z)g(x) = f(y), we get the

formula for 3, cav4 B(y) f(y), apart from the normalisation
factor cap(A, B). O
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Here, v4 p is called the last-exit biased distribution on A
for the transition from A to B, while cap(A, B) is called
the capacity of the pair (A, B).

The following corollary of THEOREM 2.5, obtained by
picking g = 1 on S\ B, offers a formula for mean hitting
times that plays a crucial role in our study of metastability.

COROLLARY 2.6

Let A, B C S be non-empty and disjoint. For reversible
Markov processes,

1
> vap(@)Eglrg] = > wWha py).
TEA cap(4, B) yeS
In particular, for A = {x},
1
Ez[rg] = (¥)hy B(Y).
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LEMMA 2.7

Let A,B C S be non-empty and disjoint. Then cap(A, B)
can be expressed as

cap(A,B) = &(hap, haB)

PROOF:

This is obvious from the definition of the Dirichlet form,
the equilibrium potential, the equilibrium measure, and the
capacity. O

Note that LEMMA 2.7 becomes particularly useful through
the alternative representation of the Dirichlet form as a

quadratic form.
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§ DIRICHLET PRINCIPLE

The capacity of A, B is given by the Dirichlet Principle

cap(4, B) = ¢Ei£2 . E(¢, )

where
Pap={¢: S—1[0,1]: ¢(A) =1, ¢(B) = 0}
and

E(d,¢) = > u@p(z,y)d(y) — ¢(x)]?

x,yes

IS the Dirichlet form associated with the Markov dynamics.
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§ THOMSON PRINCIPLE

A unit flow from B to Aisa map u: S xS — R such that
the flows into and out of nodes in S\ {A, B} equal 0, while
the flow out of B and into A equal 1.

The Thomson Principle reads

1
cap(A,B) = sup ———
uely B D(“v u)

where Uy g is the set of unit flows from B to A, and

D(u,u) = Z 1

u\xr 2
2 n@we, ) Y

is a dual of the Dirichlet form. 15



The infimum in the Dirichlet Principle is uniquely taken at
the equilibrium potential

¢(x) = hg p(x),

while the supremum in the Thomson Principle is uniquely
taken at the equilibrium flow u given by

u(@)p(z,) [ha,p(y) —hap@)]

ulw,y) = cap(A, B)
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§ CAPACITY ESTIMATES

The estimation of capacity proceeds via

® Dirichlet principle

cap(A, B) < &(¢, ),

® [ homson principle
cap(A,B) > 1/D(u,u),

where ¢, u are properly chosen test functions and test flows
that live in the vicinity of the critical droplet.

T he choice of ¢, u requires physical insight into what drives
the metastable crossover. 17



GUIDING PRINCIPLE:

The formula relating metastable crossover time to capacity
effectively links non-equilibrium to equilibrium. The inverse of
the capacity plays the role of effective resistance.

ASYMPTOTICS:

The Dirichlet Principle and Thomson Principle allow for
the derivation of upper and lower bounds on capacity.
With care, these can be made to match asymptotically.

18



REDUCTION:

In metastable regimes the high-dimensional Dirichlet
form and dual Dirichlet form are largely controlled by
the low-dimensional set of critical droplets.
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§ RANDOM WALKS

For later use, in Lecture 4, we compute relevant quantities
for nearest-neighbour random walk on an interval [a, b] C Z.

e [ he Dirichlet problem reads
p(z,z + 1)[h(z 4+ 1) — h(x)]
+ p(z,z — D)[h(x—1) —h(x)] =0, a<x<b,
h(a) = 0,
h(b) = 1.
This is a recursion relation for the differences h(x) — h(x —

1), and a straightforward computation leads to expression
(swap the roles of a and b)

R(a,x)
R(a,b)’

hyo(x) = Pa(m, < 70) = a<z<b,
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with (use reversibility to bring in u)

v 1
filu,v) = y:zu:H w(y)ply,y — 1)’

e [ he equilibrium measure is given by the formula
ea,b(a)
= p(a,a+ 1)hb,a(a + 1) +p(a,a— 1)hb,a(a - 1)
=p(a,a+ 1)hy ,(a+ 1),

where we use that hy,(a — 1) = 0. Inserting the formula
for hy, derived above, we get

R(a,a+ 1)
R(a,b)

eqp(a) =pla,a+ 1)

p(a,a+1)
_ pla+Dplatia) _ 1

R(a,b) u(a)R(a,b)
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Consequently, for the capacity we get
1

cap(a,b) = R(ab)

e Inserting the expressions for h,; and cap(a,b) into the
formula for Egz[ry] in COROLLARY 2.6 (with A = {z} and
B = {a}), we get

rx—1 a 00
Exlral = R(a,2) ( Y ) D+ Y u(y)) <
y=a+1 3 y=x

This formula will be needed in Lecture 4 to compute the
average metastable crossover time for a mean-field model
called the Curie-Weiss model. The latter will be shown to
link up with the Kramers formula for Brownian motion in
a double-well potential, hinted at in Lecture 1.
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§ DICRETE VERSUS CONTINUOUS

Definitions and computations become more involved when
the state space is infinite discrete or continuous.

Often A and B are not single configurations but are sets
of configurations with an interesting geometric structure.

We will see examples in Lectures 9-12.
23



LITERATURE:

Chapter 7 of Bovier and den Hollander 2015, and references therein.
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